平方差公式与完全平方公式口诀

合集下载

初一奥数专题讲义——完全平方公式与平方差公式

初一奥数专题讲义——完全平方公式与平方差公式

完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

2.基本公式完全平方公式:(a±b)2=a2±2ab+b2平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广(1)多项式平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc即:多项式平方等于各项平方和加上每两项积的2倍。

(2)二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5…………注意观察右边展开式的项数、指数、系数、符号的规律4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得 a2+b2=(a+b)2-2ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)5.由平方差、立方和(差)公式引伸的公式(a+b )(a 3-a 2b+ab 2-b 3)=a 4-b 4 (a+b)(a 4-a 3b+a 2b 2-ab 3+b 4)=a 5+b5(a+b)(a 5-a 4b+a 3b 2-a 2b 3+ab 4-b 5)=a 6-b 6…………注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n 为正整数 (a+b)(a2n -1-a2n -2b+a2n -3b 2-…+ab2n -2-b2n -1)=a 2n -b2n(a+b)(a 2n -a 2n -1b+a 2n -2b 2-…-ab 2n -1+b 2n )=a 2n+1+b 2n+1 类似地:(a -b )(a n -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)=a n -b n 由公式的推广③可知:当n 为正整数时 a n -b n 能被a -b 整除, a 2n+1+b 2n+1能被a+b 整除, a 2n -b 2n 能被a+b 及a -b 整除。

完全平方公式和平方差公式

完全平方公式和平方差公式

完全平方公式和平方差公式
平方差公式:
a²-b²=(a+b)(a-b)平方差:一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式。

例句:6²-4²=(6+4)x(6-4)=10x2=20
完全平方差公式:
(a-b)²=a²-2ab+b²完全平方差:两数差的平方,等于它们的平方和,减去它们的积的2倍即完全平方公式。

例句:(6-4)²=6²-2x6x4+4²=36-48+16=4
完全平方公式平方差公式区别:
计算具体数据结果不同(若a=2,b=1)完全平方差公式:(a-b)²=a²-2ab+b²=1。

平方差公式:a²-b²=(a+b)(a-b)=3。

完全平方公式是三项:a²-2ab+b²,平方差公式是两项:a²-b²。

平方差可利用因式分解及分配律来验证。

先设a及b。

ba-ab=0那即是ab=ba,同时运用了环的原理。

把这公式代入:a²-ab+ba-b²若上列公式是a²-b²就得到以下公式:a²-ab+ba-b²-(a²-b²)=0以上运用了r-r=0,也即是两方是相等,就得到:a²-ab+ba-b²=a²-b²注:a2-ab+ba-b2=(a-b)(a+b)。

八年级数学平方差公式和完全平方公示记忆

八年级数学平方差公式和完全平方公示记忆

一、导言在数学学科中,平方差公式和完全平方公式是中学阶段必须掌握的重要知识点。

从初中开始,学生就需要掌握这两个公式的具体内容和运用方法。

八年级是数学学科内容较多的阶段,学习者需要在日常学习中加强对平方差公式和完全平方公式的记忆和理解。

本文章旨在帮助八年级学生加深对这两个数学概念的印象,提高数学学习成绩。

二、平方差公式的记忆1.平方差公式是指两个数的平方差可以用来表示两个数的乘积。

具体公式为(a+b)(a-b)=a²-b²。

2.学生在记忆平方差公式时,可以通过以下方法加深理解和记忆:a.通过实例理解。

将(a+b)(a-b)展开可以得到a²-ab+ab-b²,简化后得到a²-b²,这样可以直观地理解平方差公式的含义。

b.多练习算式转换。

让学生多做一些相关的抽象计算练习,锻炼学生对平方差公式的运用能力。

充分练习可以加深记忆,也有助于提高数学计算能力。

三、完全平方公式的记忆1.完全平方公式是指一个二次多项式能够被写成一个完全平方的形式,即二次多项式的平方等于一个平方数。

具体公式为a²+2ab+b²=(a+b)²。

2.学生在记忆完全平方公式时,可以通过以下方法进行记忆和理解:a.设定变量。

让学生通过给定一些具体的实际数学问题,然后使用完全平方公式进行推导和解决问题,可以在实际操作中加深对完全平方公式的理解和记忆。

b.应用到实际问题。

同样可以利用具体实例,让学生仿照实际问题中的公式应用,从而加深对公式的记忆和理解。

四、平方差公式和完全平方公式的联系1.平方差公式和完全平方公式之间有一定联系。

在实际问题中,可以通过平方差公式和完全平方公式进行变形和转换,以解决特定问题。

2.学生在学习中需要注意理解和掌握这两个公式的联系和差异,举一反三,灵活运用。

五、结语在数学学科中,平方差公式和完全平方公式是非常基础但又非常重要的知识点。

平方差公式与完全平方公式知识点总结

平方差公式与完全平方公式知识点总结

平方差公式与完全平方公式知识点总结乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1.已知2=+b a ,1=ab ,求22b a +的值。

例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3 已知a b ab -==45,,求a b 22+的值。

完全平方公式和平方差公式需要注意事项

完全平方公式和平方差公式需要注意事项

完全平方公式和平方差公式需要注意事项
1. 嘿,可得注意啦!完全平方公式和平方差公式里的符号可千万别搞错!就像(a+b)²=a²+2ab+b²,这里的+号要是弄成减号,那可就全错啦!比如
计算(3+2)²,如果写成(3-2)²,结果不就完全不一样了嘛!这可不能马虎呀!
2. 注意呀,在用公式的时候一定要仔细看清楚是完全平方还是平方差!可别像没头苍蝇一样乱撞!比如计算+3),这得用平方差公式呀,要是用成
完全平方公式,那不是闹笑话嘛!
3. 哎呀呀,完全平方公式和平方差公式可都是宝贝呀,但你得会用才行!就好像给你一把宝剑,你不会用不也白搭嘛!比如说要计算(4+3)²,你得正确运用公式,不然怎么得出正确结果呢!
4. 大家要记住哟,完全平方公式展开后项可别少啦!就像(a-b)²=a²-
2ab+b²,要是漏了某个项,那不就完蛋啦!比如计算(2-1)²,少个项可不
行哦!
5. 注意咯注意咯,运用这两个公式的时候心要定呀,不能慌慌张张!不然很容易出错哦!好比计算(6+4)²,要是心不定算错了,那不就糟糕啦!
6. 喂喂喂,可别小看这两个公式呀,稍微不注意就会被它们戏耍!想想看,如果计算(3+5)²算错了,那岂不是很气人!所以一定要小心再小心呀!
7. 完全平方公式和平方差公式呀,不认真对待它们可不行!就像朋友一样,你真心对他们,他们才会给你正确答案呀!比如算(7-3)²,好好用公式,才能得到对的结果呀!
我觉得呀,完全平方公式和平方差公式真的特别重要,我们在用的时候一定要特别特别小心,仔细认真,这样才能把它们用好,得出正确的结果!千万别小瞧它们哟!。

平方差公式和完全平方公式

平方差公式和完全平方公式

第三讲 平方差公式和完全平方公式【名言警句】细节决定成败!【知识点归纳讲解】(一)平方差公式:(a+b)(a-b)=a 2-b 2 两数和与这两数差的积,等于它们的平方差. 特征:①左边:二项式乘以二项式,两数(a 与b )的和与它们差的乘积. ②右边:这两数的平方差. 平方差公式的常见变形:①位置变化:如()()()()22a b b a b a b a b a +-=+-=-②符号变化:如()()()()()2222a b a b b a b a b a b a ---=---+=--=-⎡⎤⎡⎤⎣⎦⎣⎦或()()()()()2222a b a b a b a b a b a b ---=-+-=--=-+ ③系数变化:如()()()()()22ma mb a b m a b a b m a b +-=+-=-(二)完全平方公式()()22222222a b a ab b a b a ab b+=++-=-+ 完全平方公式常见变形:① 符号变化:如()()22222a b a b a ab b --=+=++ ()()22222a b a b a ab b -+=-=-+②移项变化:()()22222222a b a ab b a b a ab b +=++-=-+⇒()()22222222a b a b ab a b a b ab+=+-+=-+⇒()()224a b a b ab +--=【经典例题讲解】(一)平方差公式例1:计算:()()()()2244a b b a b a b a ---+-例2:计算:①(2x+y )(2x-y) ②(y x 3121+)(y x 3121-)③(-x+3y)(-x-3y) ④(2a+b)(2a-b)(4)22b a +.【同步演练】应用平方差公式计算(1)()()a a 2121+- (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+3121312122x x (3)()()y x y x 3232+---例3:某初级中学得到政府投资,进行了校园改造建设,他们的操场原来是长方形,改建后变为正方形,正方形的边长比原来的长方形少6米,比原来的长方形的宽多了6米,问操场的面积比原来大了还是小了?相差多少平方米?(二)完全平方公式例1:已知2291822a b ab a b +==+,,求的值例2:利用完全平方公式计算:(1)1022 (2)1972【同步演练】利用完全平方公式计算:(1)982 (2)2032例3:计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x【同步演练】)3)(3(+---b a b a例4:若22)2(4+=++x k x x ,则k =若k x x ++22是完全平方式,则k =例:5:完全平方公式的推广()2222222a b c a b c ab ac bc ++=+++++()222222222a b c d a b c d ab bc cd ad +++=+++++++附加题:若实数222,,9,a b c a b c ++=满足()()()222a b b c c a -+-+-则代数式的最大值是多少?【课堂检测】 (一)平方差公式 一、填空题1、=--+-)2)(2(y y _______.2、=-+)2)(2(y x y x ______.3、=-+)3121)(3121(b a b a ______. 4、=---))((22x a x a _______. 5、=++-))()((22b a b a b a _______. 6、=-+-))((y x y x _______. 7、=+-----+))(())((y x y x y x y x _______. 8、+xy (_______)-xy (_______)81122-=y x . 二、选择题9、下列各式中,能直接用平方差公式计算的是( ) (A ))22)(2(b a b a +--; (B ))2)(2(a b b a +-; (C ))2)(2(b a b a +--; (D ))2)(2(b a a b ++-.10、下列各式中,运算结果是223625y x -的是( ) (A ))56)(56(x y x y --+- ; (B ))56)(65(x y y x +-; (C ))56)(56(x y x y ++- ; (D ))65)(65(y x y x +--. 三、解答题11.计算)2)(2())((n m n m n m n m -+-+-.12.先化简后求值2),2)(2()2)(2(22-=-+--+x x x x x .13.解方程4)2()1)(1(2=---+x x x x .(二)完全平方公式 一、填空题1、=-+)2)(2(b a b a _______.2、)5(x +-_______225x -=. 用平方差公式计算并填空3、)218(5.75.8+=⨯__ ___4363=. 4、=⨯95105_______.5、=-+22)2()2(y x y x (_______)2. 二、选择题6、=+----))((y x y x _______.( )(A )22y x +-;(B )22y x -;(C )22y x --;(D )22y x +.7、如果16)(2-=+a m a p ,则( )(A )4),4(=+=m a p ; (B )4),4(-=-=m a p (C )4),4(-=+=m a p ; (D )4,4=+-=m a p . 三、解答题8、解不等式x x x x x 3)6()3)(3(>+-+-.9、解方程)1)(1(2)3)(12(+-=+-x x x x .10、先化简后求值)5)(5(2)4)(3(-+-+-x x x x ,其中10-=x11、一个梯形上底是)(b a +㎝,下底是)(b a -㎝,高为)2(b a +㎝,求梯形的面积,若2,215==b a ,求这个梯形的面积.【课后作业】一、填空题(每题2分,共28分)1.(34=⋅a a ____()⨯____34)+=a ; 2.=-⋅-54)()(x y y x _________; 3.()(23=m _____)(_____23)⨯=m ; 4.=-⋅--535)(])([a a _________; 5.=⨯3)87(_________3387⨯=; 6.(8164=y x ______2); 7.已知长方形的长是m 4,它的面积是nm 20,则它的宽是_________;8.=⋅+-222483)41(6y x x y x xy _________;9.=⋅+n m 2)7(_________;10.=+--)()(b a a a b b _________; 11.=++))((t z y x _________; 12.=+++-))()()((4422b a b a b a b a _________; 13.=++-+-))((c b a c b a _________; 14.=--+22)()(b a b a _________. 二、选择题(每题3分,共12分)15.下列各式中正确的是( )(A )222)(b a b a -=-; (B )2222)2(b ab a b a ++=+; (C )222)(b a b a +=+; (D )2222)(b ab a b a +-=+-.16.计算)102.2()105.3(53⨯⨯⨯的结果并用科学记数法表示,正确的结果是( ) (A )770000000;(B )71077⨯;(C )8107.7⨯;(D )7107.7⨯.17.20072006)32()23(⋅-的计算结果是( )(A )23-;(B )32-;(C )32;(D )23.18.下列计算正确的是( )(A )1262432a a a a a =⋅+⋅; (B )252212)2(3bc a c a ab =⋅;(C )322322+=⋅⋅+⋅n n a a a a a a ; (D )432222)21()2(y x y x xy -=-⋅-.三、简答题:(每题6分,共30分)19.计算:4453)()(a a a a -+-20.结果用)(y x -的幂的形式表示62323)(2])[(])[(y x x y y x -+-+-.21.用简便方法计算63720052006)2()81()125.0()8(⨯+-⨯-22.计算453210)2()(b a ab b a +⋅- .23.计算)1()1(22++-++x x x x x . 24.计算))()((22b a b a b a -+-.四、解答题(每题5分,共20分)25.解方程)2(2)2()1(-=++-x x x x x x26.化简并求值31,3),3)(3(==--b a a b b a 其中.27.化简并求值2,)1()12(22-=-++x x x 其中.28.计算2)(c b a --29.综合题(10分,每小题5分)(1)已知一个圆的半径若增加2厘米,则它的面积就增加39平方厘米,求这个圆的直径.(用π的代数式表示这个圆的直径)(2)阅读:若一家商店的销售额10月比9月份增长(减少)10%,则设这家商店9月10月份销售额的增长率为0.1(-0.1);理解:甲、乙两店9月份的销售额均为a万元,在10月到11月这两个月中,甲,问到商店的销售额的平均每月增长率为x,乙商店的销售额平均每月的增长率为x11月底时,甲商店的销售额比乙商店的销售额多多少万元(用a和x的代数式表示结果).【课后作业】家长意见及建议:家长签字:日期:年月日。

(完整版)平方差公式与完全平方公式知识点总结

(完整版)平方差公式与完全平方公式知识点总结

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。

这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。

例 1.已知a b 2 , ab 1,求a2b2的值。

例 2.已知a b 8, ab2,求 (a b)2的值。

解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。

解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。

平方差公式及完全平方公式

平方差公式及完全平方公式

平方差公式及完全平方公式(a+b)(a-b)=a^2-b^2在这个公式中,(a+b)和(a-b)被称为差的产品。

平方差公式可以证明如下:设c=a+b,d=a-b,则可以将平方差公式表示为:c*d=(c+d)(c-d)将a+b和a-b分别代入c和d的等式中,则得到:c=a+bd=a-b代入后,等式变为:(a+b)(a-b)=(a+b+a-b)(a+b-a+b)通过合并和简化可得:(a + b)(a - b) = a^2 + ab - ab - b^2由于ab和-ab可以相互抵消,因此最终结果为:(a+b)(a-b)=a^2-b^2这就是平方差公式的推导过程。

平方差公式在数学中有着广泛的应用,可以用于简化复杂的运算和化简代数式。

完全平方公式是指一个二次方程的解可以表示为两个平方项的和或差。

设有二次方程ax^2 + bx + c = 0,完全平方公式可以表示为:x = [-b ± √(b^2 - 4ac)] / 2a在这个公式中,b^2 - 4ac被称为判别式。

完全平方公式可以根据判别式的值分为三种情况:1.判别式大于0:这种情况下,二次方程有两个不相等的实根。

例如,当a=1,b=5,c=6时,判别式为25-24=1,有两个不同的解x1=-3和x2=-22.判别式等于0:这种情况下,二次方程有两个相等的实根。

例如,当a=1,b=4,c=4时,判别式为16-16=0,有一个解x=-23.判别式小于0:这种情况下,二次方程没有实根,解为虚数。

例如,当a=1,b=2,c=3时,判别式为4-12=-8,在实数范围内没有解。

完全平方公式可以通过配方法来推导。

对于二次方程ax^2 + bx + c = 0,可以将其变形为:a(x^2+(b/a)x+c/a)=0为了让这个方程成为一个完全平方,需要找到一个用以平方的表达式。

将二次项的系数的一半平方加到方程中,即。

(b/2a)^2,结果是(b^2/4a^2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档