生物化学蛋白质之三蛋白质结构与功能的关系
蛋白质结构与功能关系的原理

蛋白质结构与功能关系的原理
蛋白质是生物体中最重要的分子之一,它具有各种功能,包括酶催化、细胞信号传导、结构支持等。
蛋白质的结构与功能之间存在着密切的关系,其原理可以概括为以下几点:
1.蛋白质的结构决定其功能:蛋白质的功能是由其特定的结构
决定的。
蛋白质分为四个级别的结构:一级结构是由氨基酸的线性序列决定的;二级结构是由氢键形成的α螺旋和β折叠等特定的空间结构;三级结构是指蛋白质的立体折叠,由非共价作用力(如疏水作用、电荷作用等)稳定;四级结构是由多个蛋白质链相互作用形成的复合物。
这些结构的组合和稳定性使蛋白质能够达到特定的功能。
2.功能决定结构:蛋白质的功能需要特定的结构来实现。
例如,酶的活性位点具有特定的结构,能够提供特定的活性环境,从而促进催化反应。
另外,一些蛋白质的结构还可以识别和结合其他分子,例如抗体可以通过其结构与抗原结合。
因此,蛋白质的功能需求会在遗传和进化的作用下塑造其特定的结构。
3.结构与功能之间的相互作用:蛋白质的结构和功能是相互关
联的,即结构的改变可能会影响功能,功能需要的结构也可能促进结构的稳定。
一些疾病或突变可能导致蛋白质结构的异常,进而影响功能的正常发挥。
另外,蛋白质的结构和功能也受到环境条件的影响,如温度、 pH 值等。
这些相互作用可以通过
实验室研究和计算模拟来探究。
总之,蛋白质结构与功能关系的原理可以归结为结构决定功能,
而功能也可以塑造和促进结构的特定形式和稳定性。
这一原理为研究蛋白质的结构和功能提供了理论基础,并有助于理解生物化学和生物学中的多种现象。
试举例说明蛋白质结构与功能的关系

试举例说明蛋白质结构与功能的关系蛋白质是生命体系中最基本的分子之一,它们在细胞内扮演着重要的角色。
蛋白质的功能与其结构密切相关,不同的结构决定了不同的功能。
本文将从蛋白质结构、功能以及二者之间的关系三个方面进行详细阐述。
一、蛋白质结构1.1 基本概念蛋白质是由氨基酸组成的大分子聚合物,通常由20种氨基酸以不同的顺序组成。
每个氨基酸分子都有一个羧基和一个氨基,它们通过肽键连接在一起形成多肽链。
1.2 蛋白质层次结构蛋白质层次结构包括四个层次:一级结构、二级结构、三级结构和四级结构。
1.2.1 一级结构一级结构指多肽链上氨基酸残基的线性序列。
这个序列决定了蛋白质所具有的化学性质和生物学性质。
1.2.2 二级结构二级结构指多肽链上相邻氨基酸残基之间发生的氢键作用形成的局部空间结构。
常见的二级结构有α-螺旋和β-折叠。
1.2.3 三级结构三级结构指多肽链上所有氨基酸残基的空间排列方式。
蛋白质的三级结构通常由一些特定的氨基酸残基之间的相互作用所决定,如疏水相互作用、电荷相互作用、氢键等。
1.2.4 四级结构四级结构指由两个或多个多肽链聚合而成的完整蛋白质分子。
这种聚合方式可以是同源聚合或异源聚合。
二、蛋白质功能2.1 基本概念蛋白质在细胞内扮演着各种不同的角色,包括催化反应、传递信息、运输分子、支持细胞结构等。
2.2 催化反应许多生物化学反应需要在生理条件下进行,这些反应通常需要一个催化剂来加速反应速率。
酶是一种具有高度专一性和高效性能催化生物化学反应的蛋白质。
2.3 传递信息许多细胞信号分子是蛋白质,例如激素、生长因子和细胞因子等。
这些蛋白质通过与细胞表面受体结合来传递信息,从而调节细胞生长、分化和代谢等过程。
2.4 运输分子许多蛋白质可以作为运输分子将物质从一个地方运输到另一个地方。
例如,血红蛋白可以将氧气从肺部运输到组织和器官。
2.5 支持细胞结构许多蛋白质可以作为细胞骨架的组成部分,支持细胞的形态和稳定性。
生物化学中的蛋白质结构与功能

生物化学中的蛋白质结构与功能蛋白质是生物体内一类重要的有机化合物,它在维持生命活动中发挥着至关重要的作用。
蛋白质的结构与功能密不可分,其结构决定了其功能。
本文将探讨蛋白质的结构与功能之间的关系。
蛋白质的结构可以分为四个层次:一级结构、二级结构、三级结构和四级结构。
一级结构指的是蛋白质的氨基酸序列,也就是我们常说的多肽链。
二级结构是指多肽链中局部区域的折叠方式,常见的二级结构有α-螺旋和β-折叠。
三级结构是指整个蛋白质分子的空间构象,由多个二级结构单元组成。
四级结构是指多个蛋白质分子之间的相互作用形成的复合物。
蛋白质的结构决定了其功能。
首先,一级结构的序列决定了蛋白质的氨基酸组成,不同的氨基酸会导致蛋白质的性质和功能的差异。
例如,组成蛋白质的氨基酸中存在酸性、碱性和非极性氨基酸,它们的特性决定了蛋白质的溶解性和电荷性质。
其次,二级结构的折叠方式决定了蛋白质的稳定性和空间构象。
α-螺旋的稳定性主要由氢键决定,而β-折叠的稳定性则由氢键和范德华力共同作用。
这些折叠方式的不同会影响蛋白质的稳定性和结构的紧密程度。
再次,三级结构的空间构象决定了蛋白质的功能。
蛋白质通常需要特定的空间构象才能与其他分子发生相互作用,从而实现其特定的生物学功能。
最后,四级结构的形成使蛋白质能够与其他蛋白质或其他分子形成复合物,从而发挥更大的功能。
蛋白质的功能多种多样,涵盖了生物体内的各个方面。
首先,蛋白质可以作为酶参与生物体内的代谢反应。
酶是一类能够催化化学反应的蛋白质,它们能够提高反应速率,降低活化能,从而使生物体内的代谢反应能够在温和条件下进行。
其次,蛋白质可以作为结构蛋白提供细胞和组织的支持和稳定。
结构蛋白主要存在于细胞骨架、肌肉和结缔组织中,能够赋予细胞和组织形态和力学性能。
再次,蛋白质还可以作为运输蛋白参与物质在生物体内的运输。
例如,血红蛋白是一种重要的运输蛋白,它能够将氧气从肺部运输到组织细胞中。
此外,蛋白质还可以作为抗体参与免疫反应,作为激素参与调节生理功能,以及作为信号分子参与细胞间的信号传递等。
生物化学中的蛋白质相互作用与功能

生物化学中的蛋白质相互作用与功能蛋白质是组成生命体的重要有机分子之一,它们以多种方式相互作用,形成复杂的生化反应网络,实现生物体内分子水平的调控和传递信息。
在这些相互作用中,蛋白质分子之间的相互作用尤为重要,它们决定了蛋白质的构象、折叠和功能,也是许多生命过程的关键环节。
一、蛋白质相互作用的类型蛋白质相互作用可分为三种类型:共价键结合、非共价键结合和杂交结合。
共价键结合是指两个蛋白质分子中的一些氨基酸残基之间通过共价键连接。
这种结合方式比较少见,通常是一些酶介导的化学反应过程中产生的。
非共价键结合是指蛋白质分子之间的非共价相互作用,包括范德华力、静电作用、氢键和疏水相互作用等。
其中,范德华力是指各种非极性分子之间的互相引力作用,是相对较弱的相互作用,但在蛋白质折叠中起着重要作用。
静电作用是指带有相反电荷的分子之间的相互作用,常常涉及离子对和膜蛋白。
氢键是指带有氢原子的分子与带有强电负性原子(如氧、氮和氟)的分子之间的相互作用,也是蛋白质折叠和氨基酸配对中的关键成分。
疏水相互作用是指蛋白质分子之间和蛋白质与溶液之间,由于疏水效应形成的相互作用。
杂交结合是指不同类型的相互作用与共同发挥作用而形成的相互作用。
例如,在蛋白质结构中,两个互相作用的纤维蛋白质可以通过氢键相互作用,这种作用被称为杂交氢键。
总的来说,这三种相互作用方式形成了蛋白质分子之间的复杂网络,控制着蛋白质结构和功能的形成和维持。
二、蛋白质交互作用的具体形式蛋白质的交互作用主要表现为三种基本形式:结构域域交互作用、线性序列之间的相互作用和同一蛋白质分子不同部位之间的相互作用。
结构域域交互作用是指蛋白质分子中几个结构域之间相互作用的方式。
在这种交互作用中,结构域通常是曲面状、球状、螺旋状或不规则状。
这些结构域中的氨基酸残基互相通过氢键等非共价键相互作用,形成一个整体。
线性序列之间的相互作用是指蛋白质分子中线性排列的氨基酸残基之间的相互作用。
蛋白质结构与功能关系

蛋白质结构与功能关系
1. 由较短肽链组成的蛋白质一级结构,其结构不同,生物功能也不同。
如加压素和催产素都是由垂体后叶分泌的九肽激素。
它们之间仅在分子中有两个氨基酸残基的差异,以异亮氨酸代替苯丙氨酸,以亮氨酸代替精氨酸。
加压素促进血管收缩、血压升高和促进肾小管对水的重吸收,起抗利尿作用,故又称抗利尿素;而催产素则刺激子宫平滑肌收缩,起催产作用。
2. 由较长肽链组成的蛋白质一级结构中,其中“关键”部分结构相同,其功能也相同:“关键”部分改变,其功能也随
之改变。
基因突变可能引起蛋白质的一级结构改变,导致功能改变而致病,如镰刀型贫血。
这是由于血红蛋白(HbA)中的β链N端第6个氨基酸残基谷氨酸被缬氨酸替代所引起的一种遗传性疾病。
生物化学中的蛋白质结构与功能关系分析

生物化学中的蛋白质结构与功能关系分析蛋白质是生物体内最为重要的分子之一,它们不仅参与到细胞的结构和功能中,还承担着许多生物过程的调控和催化作用。
蛋白质的结构与功能之间存在着密切的关系,了解这种关系对于揭示生命的奥秘具有重要意义。
蛋白质的结构可以分为四级:一级结构是指由氨基酸残基的线性排列所组成的多肽链;二级结构是指多肽链中氢键的形成所导致的局部结构,如α螺旋和β折叠;三级结构是指多肽链的整体折叠方式,由各种非共价作用力如疏水作用、静电作用、范德华力等所维持;四级结构是指多肽链之间的相互作用形成的复合体,如蛋白质亚基之间的相互作用。
蛋白质的结构决定了它的功能。
一方面,蛋白质的结构决定了它的空间构型和表面特性,从而决定了它与其他分子的相互作用方式。
例如,酶作为一类特殊的蛋白质,通过其特定的结构能够与底物结合,并催化底物的转化反应。
酶的活性位点通常位于蛋白质的表面,通过与底物之间的非共价作用力如氢键、离子键等相互作用,实现了底物的定向结合和催化反应的进行。
另一方面,蛋白质的结构还决定了它的稳定性和折叠能力。
蛋白质的折叠状态直接影响其功能的发挥。
当蛋白质的结构发生改变时,如突变或热变性等,其功能往往会受到影响甚至完全丧失。
蛋白质的结构与功能之间存在着相互依赖的关系。
一方面,蛋白质的功能要求其结构的稳定性和精确性。
例如,抗体是一类具有高度特异性的蛋白质,其结构的稳定性决定了其能够特异地与抗原结合,并发挥免疫应答的作用。
另一方面,蛋白质的结构也受到其功能的影响。
例如,一些蛋白质在特定的环境条件下会发生构象改变,从而改变其功能。
这种构象变化常见于信号转导和调控蛋白,它们通过结构的变化来响应外界刺激,并传递信号进一步调控细胞的生理过程。
除了结构与功能之间的关系,蛋白质的结构和功能还受到其他因素的影响。
例如,蛋白质的结构和功能受到其序列的限制。
蛋白质的氨基酸序列决定了其结构的可能性和稳定性,从而影响了其功能的发挥。
生物化学 第3章 蛋白质的结构与功能(2)

(三)亚基汇聚形成酶的活性部位:
许多酶的催化效力来自单个亚基的寡聚结合。单体也许不能 构成完整的活性部位,寡聚体的形成可能使所有必需的催化基团 汇聚形成酶的活性部位。例如,细菌谷氨酰胺合成酶的活性部位 就是由相邻亚基对构成的,解离的单体是无活性的。
(四) 协同性:
这是寡聚体蛋白(包括寡聚体酶)的一个重要的性质。这方面的 相关例子在后续有关章节中将会涉及到。
因为对于球形物体来说,表面积是半径平方的函数, 体积是半径立方的函数:表面积 = 4πr2;体积 = 4/3πr3;表面积/体积 = 3/r.由于在一个蛋白质范围 内的相互作用通常在能量上是有利于蛋白质的稳定, 由 于蛋白质表面与溶剂水的相互作用往往在能量上是不利 的,因此在通常的情况下,减少表面积比例将会使蛋白 质变得更加稳定。
第六节 蛋白质空间结构与功能的关系
9.17
一 血红蛋白与肌红蛋白的生理作用
血红蛋白:是血液中红细胞中的主要蛋白质。主要 功能是通过血液循环在肺部和毛细血管间转运氧和二氧化 碳。 肌红蛋白:存在于肌肉等组织中,当氧从毛细血管 中扩散进入肌肉组织后,就被组织细胞内的肌红蛋白结合。 肌红蛋白是组织细胞内的氧贮存者。
三 血红蛋白与肌红蛋白的氧合曲线
(一)氧合曲线的比较
肌红蛋白的氧合曲线是双曲线,而血红蛋白的氧合曲 线是S型曲线。S形的结合曲线是一种蛋白质的小分子结合 部位之间协同作用的标志。这就是说,一个小分子的结合 影响其余小分子的结合。 血红蛋白是一种四聚体分子,每个亚基都能同O2分子结 合。这与肌红蛋白分子只有一个氧结合部位不同。因此, 很可能当一个亚基的氧结合部位同氧结合后就影响其他亚 基对氧结合的亲和力。
deoxyhemoglobin
二 蛋白质空间构象稳定的因素
生物化学 第5章 蛋白质结构与功能

第五章蛋白质结构和功能的关系一、、肌红蛋白的结构与功能:1、肌红蛋白的三级结构哺乳动物肌肉中储氧的蛋白质。
由一条多肽链(珠蛋白,153个aa残基)和一个血红素辅基组成。
亚铁离子形成六个配位健,四个与N原子,一个与组氨酸,一个与氧配位。
球状分子,单结构域。
8段直的α-螺旋组成,分别命名为A、B、C…H,拐弯处是由1~8个氨基酸组成的松散肽段(无规卷曲)。
4个Pro残基各自处在一个拐弯处,另外4个是Ser、Thr、Asn、Ile。
血红素辅基血红素辅基,扁平状,结合在肌红蛋白表面的一个洞穴内。
CO 中毒CO 与肌红蛋白有更高的亲和性2、肌红蛋白的氧合曲线OMb 解离平衡常数:][]][[22MbO K =][2PO Mb K ∙=][2MbO 氧饱和度:[]2MbO Y =][][2Mb MbO +PO 2Y =2PO K +Y=0.5时,肌红蛋白的一半被饱和,PO 2=K =P 50=2.8t torr(托)解离常数K 也称为P 50,即肌红蛋白一半被饱和时的氧压。
3、Hill 曲线和Hill 系数YY K PO YK PO Y log log 1log 122-=-=-Hill曲线Log[Y/(1-Y)]=0时的斜率称Hill 系数(n H )肌红蛋白的n H =1二血红蛋白的结构与功能蛋白的结构与功能1、血红蛋白的结构:成人成人:HbA:α2β298%,a亚基(141),β亚基(146)HbA2:α2δ22%胎儿:HbFα2γ2早期胚胎:α2ε2▲接近于球体,4个亚基分别在四面体的四个角上,每个亚基上有一个血红素辅基。
▲α、β链的三级结构与肌红蛋白的很相似,一级结构具有同源性。
氧合造成盐桥断裂42、血红蛋白的氧合曲线四个亚基之间具有正协同效应因此它的氧合曲四个亚基之间具有正协同效应,因此,它的氧合曲线是S 型曲线。
Hill 曲线和Hill 系数。
协同效应可增加血红蛋白在肌肉中的卸氧量,使它能有效地输送氧气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.4 蛋白质结构与功能的关系
一、蛋白质一级结构与功能的关系 (一)、一级结构的变异与分子病 分子病(molecular disease):由于基因结构改变, 蛋白质一级结构中的关键氨基酸发生改变,从而导致 蛋白质功能障碍的疾病。 【经典举例】镰形细胞贫血症:编码珠蛋白β链的结 构基因第六个密码子由CTT→CAT,相应的多肽序列中N 端的第六个氨基酸由Glu→Vla;其空间结构发生相应 改变,丧失运输氧的生物活性。
3.重金属盐沉淀 条件:pH 稍大于pI为宜; 机理:重金属盐加入之后,与带负电的羧基结合。 注意:蛋白质变性,长期从事重金属作业的人应多
吃高蛋白食品,以防止重金属离子被机体吸收后造成 对机体的损害。
4.生物碱试剂沉淀法
条件:pH稍小于pI;生物碱试剂一般为弱酸性物质, 如单宁酸、苦味酸、三氯乙酸等。
(三)、一级结构的局部断裂与蛋白质激活: 胰岛素原一级结构与激活过程
二、蛋白质空间结构与功能的关系 (一)核糖核酸酶的变性与复性
牛核糖核酸酶的一级结构
去除尿素、 β-巯基乙醇
天然状态, 有催化活性
尿素、β-巯基乙醇
非折叠状态,无活性
注意:蛋白质的功能取决于特定的天然构象,而规定其 构象的信息包含在它的氨基酸序列中。
引起的一种人和动物神经退行性病变。
正常的PrP富含α-螺旋,称为PrPc。PrPc在某
种未知蛋白质的作用下可转变成全为β-折叠的
PrPsc,从而致病。
PrPc α-螺旋
PrPsc β-折叠
正常
疯牛病
小结
一级结构
基 础
决定
功能
空间结构
直 接 体 现Biblioteka 注意:蛋白质的结构与功能是高度统一的。
§2.5 蛋白质的性质与分离、纯化技术
pH>pI
蛋白质的等电点( isoelectric point, pI) 当蛋白质溶液处于某一pH时,蛋白质解离成正、
负离子的趋势相等,即成为兼性离子,净电荷为零, 此时溶液的pH称为蛋白质的等电点。
利用蛋白质两性电离的性质,可通过电泳、离 子交换层析、等电聚焦等技术分离蛋白质。
二、蛋白质的胶体性质与沉淀
在某些物理和化学因素作用下,蛋白质分子 的特定空间构象被破坏,从而导致其理化性质改 变和生物活性的丧失。
(二)血红蛋白的别构效应
血红蛋白的亚基铁卟啉
别构效应(allosteric effect)
蛋白质空间结构的改变伴随其功能的变化, 称为别构效应。
* 协同效应(cooperativity) 一个寡聚体蛋白质的一个亚基与其配体结合后,
能影响此寡聚体中另一个亚基与配体结合能力的现象, 称为协同效应。
机理:在酸性条件下,蛋白质带正电,可以与生物 碱试剂的酸根离子结合而产生沉淀。
“柿石症”的产生就是由于空腹吃了大量的柿子,柿 子中含有大量的单宁酸,使肠胃中的蛋白质凝固变性而 成为不能被消化的“柿石”。
5.弱酸或弱碱沉淀法: 条件:pH=pI 机理:破坏蛋白质表面净电荷。
三、蛋白质的变性、沉淀和凝固 * 蛋白质的变性(denaturation)
蛋白质构象病的机理:有些蛋白质错误折叠后 相互聚集,常形成抗蛋白水解酶的淀粉样纤维沉淀, 产生毒性而致病,表现为蛋白质淀粉样纤维沉淀的 病理改变。
这类疾病包括:人纹状体脊髓变性病、老年痴 呆症、亨廷顿舞蹈病、疯牛病等。
老年痴呆症
亨廷 顿舞 蹈病
疯牛病
疯牛病
疯牛病是由朊病毒蛋白(prion protein, PrP)
酸-
-
-
-- -
带正电荷的蛋白质 不稳定的蛋白质颗粒
带负电荷的蛋白质
溶液中蛋白质的聚沉
蛋白质沉淀方法: 1. 盐析:
条件:高浓度的强电解质盐(如硫酸胺、氯化钠、 硫酸钠等)--盐析;
低浓度的盐溶液--盐溶。 机理:破坏水化膜,中和表面的净电荷。 注意:盐析法不会使蛋白质产生变性。
2.有机溶剂沉淀法: 条件:有机溶剂如乙醇、丙酮等。 机理:破坏蛋白质的水化膜。 注意:低温条件下进行,否则溶解热会使蛋白质变性。
(二)、一级结构与种属差异
对比不同机体的同种功能蛋白质,发现其种属差
异明显; 亲缘关系越近,其蛋白质结构越相似。
不同生物和人的细胞色素C氨基酸差异数的比较
生物名称 不同氨基酸数目 生物名称 不同氨基酸数目
黑猩猩
0
海龟
15
恒河猴
1
金枪鱼
21
猪、牛、羊
10
小蝇
25
马
12
小麦
35
鸡
13
酵母
44
与功能相关的氨基酸是高度保守的,这说明不同 种属的生物在进化上来自相同的祖先。不同种属间的 同源蛋白质一级结构上的氨基酸残基数差别越大,其 亲缘关系愈远,反之,其亲缘关系愈近。
蛋白质属于生物大分子之一,分子量可自 1万至100万之巨,其分子的直径可达1-100nm, 为胶粒范围之内。
* 蛋白质胶体稳定的因素 颗粒表面电荷 水化膜
水化膜
+++
酸
+
+碱
++
带正电荷的蛋白质 在等电点的蛋白质
碱
--
-
-
酸
- --
-
带负电荷的蛋白质
脱水作用
脱水作用
脱水作用
++ +
+
+
碱
+ ++
--
如果是促进作用则称为正协同效应 (positive cooperativity)
如果是抑制作用则称为负协同效应 (negative cooperativity)
(三)蛋白质构象改变与疾病
蛋白质构象病:若蛋白质的折叠发生错误, 尽管其一级结构不变,但蛋白质的构象发生改变, 仍可影响其功能,严重时可导致疾病发生。
一、蛋白质的两性电离
蛋白质分子除两端的氨基和羧基可解离外,氨 基酸残基侧链中某些基团,在一定的溶液pH条件下 都可解离成带负电荷或正电荷的基团。
N3 H + O-H
N3 H +
O-H
N2 H
Pr COOH H+
Pr CO - O H+
Pr CO - O
阳 离 子
兼 性 离 子
阴 离 子
pH<pI
pH=pI
蛋白质化学之三 蛋白质结构与功能的关系
目录
§2.4 蛋白质结构与功能的关系 一、蛋白质一级结构与功能的关系 二、 蛋白质的空间结构与功能的关系
§2.5 蛋白质的性质与分离、纯化技术 一、蛋白质的性质 二、 蛋白质的分离纯化技术 小结 习题
目的与要求
1.充分理解蛋白质结构与功能的关系:包括一级结构 与空间构象的关系;蛋白质空间结构与生物学功能的 关系。 2.掌握蛋白质的理化性质:胶体性质、两性电离与等 电点、沉淀作用、变性作用以及这些性质的生理意义 及实践意义。 3.了解蛋白质分离提纯的常用方法及基本原理。