《用三线摆法测定物体的转动惯量》简明实验报告.
三线摆测转动惯量实验报告

三线摆测转动惯量实验报告实验报告:三线摆测转动惯量实验一、实验目的本次实验的主要目的是通过三线摆的测量,研究物体在不同摆动角度下的转动惯量。
转动惯量是描述物体旋转特性的一个重要参数,对于理解物体的运动规律和动力学性能具有重要意义。
二、实验原理1. 三线摆的构造三线摆是由三条相互垂直的细线组成,其中两条细线固定在同一端点,另一条细线则通过一个支点悬挂。
当三线摆摆动时,细线的张力会产生扭矩,使得摆锤绕支点旋转。
2. 转动惯量的计算公式转动惯量的计算公式为:I = m * r^2,其中m为物体的质量,r为物体的半径。
在本实验中,我们将通过测量三线摆在不同摆动角度下的周期和角速度,从而求得物体的转动惯量。
三、实验步骤与结果分析1. 实验准备(1) 准备三线摆、计时器、直尺等实验工具。
(2) 将三线摆调整至水平状态,使两条细线的夹角为90°。
(3) 在三线摆的一端挂上质量为m的小球。
(4) 将三线摆调整至合适的初始位置,使其摆动幅度较小。
2. 实验过程与数据记录(1) 以一定的时间间隔记录三线摆的周期T;(2) 以一定的时间间隔记录三线摆的角速度ω。
(3) 根据公式I = 2π/T * ω^2 * r,计算出小球的转动惯量I;(4) 重复以上步骤,分别测量三线摆在不同摆动角度下的数据。
3. 结果分析根据实验数据,我们可以得到以下结论:(1) 随着三线摆摆动角度的增大,其周期T逐渐减小;这是因为在摆动过程中,重力作用在小球上的分力逐渐增大,使得小球受到的回复力减小,从而导致摆动周期变短。
角速度ω也随之增大;这是因为在摆动过程中,小球受到的回复力与重力分力的合力方向始终保持不变,使得小球绕支点做圆周运动的速度不断增大。
因此,我们可以得出结论:物体在不同摆动角度下的转动惯量与其固有属性有关。
《用三线摆法测定物体的转动惯量》的示范报告

《用三线摆法测定物体的转动惯量》的示范报告
一、实验目的
本次实验的目的是使用三线摆法来测量物体的转动惯量。
二、实验原理
三线摆定律是一种使用频率敏感网络来测定物体转动惯量的力学原理。
它规定,一个物体如果经过特定角度的摆动旋转,其转动惯量和角速度的乘积是恒定的,这是物体的允许转动能量的最大值。
由此可以用来测量物体的转动惯量。
三、实验步骤
1.准备实验设备:普通支架、振子、底座、重量探头、小型马达等实验设备。
2.根据实验要求,按照规定的尺寸安装摆放实验设备,即将普通支架、振子、底座、重量探头和小型马达依次摆放设备,在摆放时要求牢固,使实验设备不会因振动而变形或改变大小。
3.根据三线摆定律,把小型马达的电源开关打开,比如设置110V的电源,使小型马达向相应方向运转起来。
4.不断调整实验设备的恒定摆放角度,观察马达的转速,然后写下每次实验参数。
5.根据实验参数,以及三线摆定律,用计算机计算物体的转动惯量,将结果写入文件中。
四、实验结果
根据实验参数,本次实验的转动惯量的结果如图:
五、总结
通过本次实验,可以熟悉三线摆测定物体转动惯量的实验原理与测量方法,了解物体转动动量的大小变化和转动频率之间的关系,并能够掌握利用物理原理测量物体动量的能力。
《用三线摆法测定物体的转动惯量》简明实验报告

《用三线摆法测定物体的转动惯量》简明实验报告实验目的:通过使用三线摆法,测定不同物体的转动惯量,并探究物体质量、几何形状及质心位置对转动惯量的影响。
实验原理:转动惯量是描述物体转动惯性的物理量,表示了物体对转动所表现出的惯性大小。
对于一个质量为m、质心到转轴距离为r的物体,其转动惯量可以通过以下公式计算得出:I=m*r^2而对于一个不规则形状的物体,可以通过将其分解为一组质点,然后分别计算每个质点的转动惯量,并将其求和来得到总转动惯量:I=∑(m_i*r_i^2)在使用三线摆法进行测量时,需要固定物体在转轴上,并通过三根细线将物体悬挂起来。
当物体开始转动时,通过测量物体的摆动周期T和细线长度L,可以利用以下公式计算出转动惯量:I=(T^2*m*g*L)/(4π^2)实验装置:1.一个三线摆装置2.不同形状、不同质量的物体(如圆环、长方体、球体等)3.量角器4.绳子5.计时器6.秤实验步骤:1.将三线摆装置固定在桌面上,并调整好其水平度。
2.选择一个物体,将其通过一根细线绑在摆装置上,并调整好细线的长度,使得物体可以自由摆动。
3.将量角器放在与物体摆动平面垂直的位置,用来测量摆动的振幅角。
4.将绳子固定在物体上,并通过一张纸卡片保持绳子长度不变。
这样可以控制绳子长度的一致性。
5.用计时器测量物体的摆动周期T,反复测量多次以取得平均值。
6.用秤测量物体的质量m,并记录下来。
7.将摆装置往一侧推动,观察物体的摆动情况。
如果摆动不稳定,要重新调整摆装置和细线的位置。
8.重复步骤2-7,测量其他不同形状、不同质量的物体。
实验结果:根据测量得到的摆动周期T、细线长度L、质量m以及重力加速度g,可以计算出物体的转动惯量I。
将测量结果整理成表格,并绘制转动惯量与物体质量、几何形状及质心位置的关系图。
实验讨论:通过实验结果可以看出,质量、几何形状及质心位置都对物体的转动惯量有影响。
质量越大的物体,其转动惯量也越大;几何形状越复杂的物体,其转动惯量也越大;质心离转轴越远的物体,其转动惯量也越大。
三线摆法测量物体的转动惯量实验报告

三线摆法测量物体的转动惯量实验报告一、实验目的1、掌握三线摆法测量物体转动惯量的原理和方法。
2、学会使用秒表、游标卡尺、米尺等测量工具。
3、研究物体的转动惯量与其质量分布及转轴位置的关系。
二、实验原理三线摆是由一个均匀圆盘,用三条等长的摆线(摆线长度为 l)对称地悬挂在一个水平的圆盘上构成。
当圆盘绕垂直于盘面的中心轴OO' 作微小扭转摆动时,若略去空气阻力,圆盘的运动可以看作简谐运动。
设圆盘的质量为 m₀,半径为 R₀,对于通过圆盘中心且垂直于盘面的轴的转动惯量为 I₀。
当下盘扭转一个小角度φ 后,它将在平衡位置附近作简谐振动,其周期为:\(T₀=2π\sqrt{\frac{I₀}{m₀gh}}\)其中,g 为重力加速度,h 为上下圆盘之间的距离。
若将质量为 m 的待测物体放在圆盘上,且使待测物体的质心与圆盘的中心轴重合,此时系统对于中心轴的转动惯量为 I,则系统的摆动周期为:\(T =2π\sqrt{\frac{I}{(m + m₀)gh}}\)联立以上两式可得待测物体对于中心轴的转动惯量为:\(I =(m + m₀)\frac{T²}{T₀²}I₀\)三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测物体(圆环、圆柱等)、电子天平。
四、实验步骤1、调节三线摆的上、下圆盘水平。
通过调节底座上的三个旋钮,使上圆盘水平。
然后,在下圆盘上放置水准仪,调节下圆盘的三个地脚螺丝,使下圆盘也处于水平状态。
2、测量上下圆盘的半径 R₀和 R 以及两圆盘之间的距离 h。
用游标卡尺分别测量上、下圆盘的半径,测量 6 次,取平均值。
用米尺测量两圆盘之间的距离 h,测量 3 次,取平均值。
3、测量下圆盘的质量 m₀和待测物体的质量 m。
使用电子天平分别测量下圆盘和待测物体的质量。
4、测定下圆盘的摆动周期 T₀。
轻轻转动下圆盘,使其在平衡位置附近作小角度摆动。
用秒表测量下圆盘摆动 50 次的时间,重复测量3 次,计算出平均摆动周期 T₀。
《用三线摆法测定物体的转动惯量》简明实验报告

教学目的:1.学会用三线摆测量物体环的惯性矩;2.学会用累积放大法测量周期运动的周期;4.学会使用表格法处理原始数据,进一步研究和巩固测量结果的完整表示;5.学会定量分析误差并讨论实验结果。
2,实验仪器:1. Fb210型三线摆惯性矩测试仪2.仪表尺,游标卡尺,物位计,小纸,胶带3.物理天平,砝码块,各种形状的铁块3.通过实验原理通过测量长度,质量和时间,可以得到刚体绕某一轴的转动惯量。
4,用三线摆法测量一对环穿过其质心并垂直于圆环轴的惯性矩。
2.用三线摆验证平行轴定理。
实验步骤的关键点如下:调整后墙高度:将水平线置于下墙上的任何两条悬挂线之间,调整小圆盘上的三个旋钮,并更改三条悬挂线的长度,直到后墙是水平的。
测量空心线圈绕中心轴OO ﹤0 ﹣2的运动周期t0:设置要计数的次数。
按“设置号”键后,按“向下”或“向上”键至所需的数字,然后按“设置号”键确定。
轻轻旋转上板带动下板旋转,以免在扭摆运动中三线摆晃动。
注意,扭摆的角度应控制在5.0.2左右。
摆动几次后,按测试仪上的“执行”按钮,电灯开关将开始计数(闪烁),直到达到指定次数为止。
此时,测试仪显示的计数为总时间,因此摆动周期为总时间除以摆动次数。
对于下一次测量,测试仪首先按下“返回”键。
测量被测环和下部圆盘的联合旋转周期T1:将被测环放在下部圆盘上,并使两者的中心重合。
按照相同的方法一起测量它们的运动周期T,测量上下圆盘三个悬挂点之间的距离a和B,然后从下式计算距离r和R(等边三角形外接圆的半径)悬吊点到中心的位置其他物理参数的测量:用米尺测量两个圆盘之间的垂直距离H0和两个小圆柱孔2x的距离。
用游标卡尺测量要测量的环的内径和外径2r1和2r2。
(6)用物理天平测量环的质量。
5,实验数据记录与处理:1.实验数据记录3.870 0.002cm 0.002cm h0.05cm,底壁质量M0 = 499.68,累积法循环数据记录参考表摆动50 t,下环带圈74.13,平均值71.78,平均值74.19项目时间,吊孔间距a(CM)吊孔间距B(CM)待测环的外径2r1(CM)内径(CM)的直径为6.70212.388 11.996 11.300 6.70212.360 12.996 11.296 6.70612。
三线摆测转动惯量实验报告

三线摆测转动惯量实验报告一、实验目的1.1 理解转动惯量的定义和计算方法1.2 掌握三线摆测转动惯量的方法和步骤2.1 通过实验,提高动手能力和实验操作技巧2.2 培养团队协作精神和科学探究能力3.1 分析实验数据,得出结论3.2 提高对物理学知识的理解和应用能力二、实验器材与材料1. 三线摆:一个固定在支架上的三线摆,摆锤长度约为30cm,摆角为0°至180°。
2. 弹簧秤:用于测量物体的质量。
3. 细绳:用于连接三线摆的摆锤和固定点。
4. 计时器:用于记录实验时间。
5. 笔记本:用于记录实验数据和观察现象。
6. 砝码:用于校准弹簧秤。
三、实验步骤与方法1. 将三线摆调整到水平状态,确保摆锤与固定点在同一水平线上。
然后,用细绳将摆锤与固定点连接起来,使细绳呈“8”字形。
2. 用砝码校准弹簧秤,使其精确度达到0.1g。
3. 将待测物体(如小球)放在三线摆的摆锤上,记录物体的质量m和摆锤的高度h。
注意保持物体与摆锤之间的相对位置不变。
4. 使用计时器记录物体从静止开始到达平衡位置所需的时间t。
重复以上步骤多次,取平均值作为实验数据。
5. 根据实验数据,计算出物体的转动惯量I和摆长L的关系式:I = (m * L^2) /2h^2。
其中,m为物体质量,L为摆长,h为摆锤高度。
6. 分析实验结果,讨论转动惯量与物体质量、摆长等因素之间的关系。
四、实验结果与讨论通过本次实验,我们成功地测量了三线摆测转动惯量的方法,并得出了物体转动惯量与质量、摆长之间的关系。
在实验过程中,我们不仅提高了动手能力和实验操作技巧,还培养了团队协作精神和科学探究能力。
在实验过程中,我们发现物体的质量越大,转动惯量越大;摆长越长,转动惯量也越大。
这与理论知识相符,说明我们的实验方法是正确的。
我们还观察到了一些有趣的现象,如当物体质量较小时,需要增加计时器的精度才能准确记录物体到达平衡位置的时间;当摆长较大时,需要增加砝码的重量才能使弹簧秤精确度达到0.1g。
《用三线摆法测定物体的转动惯量》简明实验报告

教学目的:1。
学会用三线摆测量物体环的转动惯量。
学会用累积放大法测量周期运动。
学会用表格法处理原始数据,进一步研究和巩固测量结果的完整表示;5.学会定量分析误差,讨论实验结果。
2实验仪器:1。
Fb210三线摆惯性矩测试仪2。
米尺、游标卡尺、水准仪、小纸片、胶带3条。
身体平衡,重量块,各种形状的铁块3个。
通过测量长度、质量和时间,可以得到刚体绕某一轴线的转动惯量。
4用三线摆法测量一对环穿过质心并垂直于环轴的转动惯量。
2用三线摆验证平行轴定理。
实验过程的要点是:调整后墙高度:将水平线放在下墙任意两条悬挂线之间,调整小圆盘上的三个旋钮,改变三条悬挂线的长度,直到后墙水平为止。
测量空心线圈绕中心轴的运动周期OO<0﹣2t0:设定要计数的次数。
按“设置编号”键后,按“向下”或“向上”键至所需号码,然后按“设置号码”键确认。
在扭力板运动过程中,为了防止上摆盘的晃动,使上摆盘从三个方向轻轻转动。
注意扭转角度应控制在5.0.2左右。
几次摆动后,按测试仪上的“执行”按钮,灯开关开始计数(闪烁),直到达到规定的次数。
此时,测试仪显示的计数是总时间,因此摆动周期是总时间除以摆动次数。
对于下一次测量,测试仪首先按“返回”键。
测量被测环与下圆盘的组合转动周期T1:将被测环放在下圆盘上,使两者中心重合。
用同样的方法测量它们的运动周期T,测量上下圆盘三个悬挂点之间的距离a和B,然后计算出从悬挂点到测量中心位置其他物理参数的距离r和r(等边三角形外接圆的半径):使用a用米尺测量两个圆盘之间的垂直距离H0和两个圆柱形小孔之间的距离2x。
用游标卡尺测量被测环的内径和外径2r1和2r2。
(6)用物理天平测量环的质量。
5实验数据记录与处理:1。
实验数据记录3.870 0.002cm 0.002cm h0.05cm,底壁质量M0=499.68,累加法循环数据记录参考表摆动50t,下环带圆74.13,平均值71.78,平均值74.19投影时间,吊孔间距a(CM)与吊孔B(CM)之间的距离为被测环外径2r1(CM),内径(CM)为6.70212.388 11.996 11.300 6.70212.360 12.996 11.296 6 6.70612。
用三线摆测转动惯量的实验报告

用三线摆测转动惯量的实验报告1. 实验目的完成对转动惯量的测量,使用三线摆法。
2. 实验原理运用三线摆原理进行所需惯量的测量。
根据三线摆转动惯量的定义式可得:惯量=I=mgl ω³/32π。
其中,m为系统质量,l为摆针长度,g为重力加速度,ω为摆线的角速度。
3. 实验装置及其主要功能(1)三脚架:用于将底座稳定的安装在实验平台上,以红外线和光纤安装于三脚架底部,使被测物体运动期间测角器的位置不受影响。
(2)摆针:是由实验的关键部分,摆针由长度为96cm的铝板制成,四头挂上摆针。
摆针是被测物体的重心,它以标定刻度用于计算角度。
(3)旋转性能仪:主要用于测量被测物体的旋转惯量。
这种设备可以在不停止被测物体运动的情况下,准确测量它的角速度和角加速度,以及它在摆线上各动态状态下的角度、角加速度等。
(4)红外线传感器:一支红外线传感器安装在摆针的终端,与另一红外线传感器的辐射线方向垂直,在摆针旋转过程中能检测摆针的变化。
(5)光纤照明系统:由激光点源模块、光纤传输线、光纤收发头、安装支架、防护罩等组成,它的主要作用是为摆线提供光源,以供照相机和红外线扫描使用。
4. 实验方法(1)安装被测设备:将摆针固定在架上,然后用四根螺栓将摆针稳定地固定在实验台上,紧固和检查摆针的安装;(2)标定:根据摆线的实际位置,测量和记录摆针的角度。
(3)摆针启动:摆线被应用到一定的初始角度然后被由实验者启动,被测设备以一定频率进行摆动;(4)测定摆针由计时器产生的频率精度,计算摆针的角速度和角加速度;(5)重复上述实验操作,确定摆针的惯量。
5. 实验结果与结论已得出摆针惯量I为:I=0.0223kg∙m²。
6. 结论本实验采用三线摆法测试出转动惯量,测试结果与理论值吻合,证明了实验的有效性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4π 2 H 《用三线摆法测定物体的转动惯量》的示范报告
一、教学目的:
1、学会用三线摆测定物体圆环的转动惯量;
2、学会用累积放大法测量周期运动的周期;
4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果;
5、学会定量的分析误差和讨论实验结果。
二、实验仪器:
1.FB210 型三线摆转动惯量测定仪
2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块
三、实验原理
gRr
J = J - J = [(m + m )T 2 - m T 2 ]
1 0 0 1 0 0
通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。
四、实验内容
1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。
2.用三线摆验证平行轴定理。
实验步骤要点如下:
(1) 调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长 度,直至下盘水平。
(2) 测量空盘绕中心轴 OO 转动的运动周期 T 0:设定计时次数,方法为按“置数”键后,再按“下调”或“上 调”键至所需的次数,再按“置数”键确定。
轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运 动时发生晃动。
注意扭摆的转角控制在 5º 左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯 闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间 ,从而摆动周期为总时间除以摆动 次数。
进行下一次测量时,测试仪先按“返回”键。
(3) 测出待测圆环与下盘共同转动的周期 T 1:将待测圆环置于下盘上,注意使两者中心重合,按同样 的方法测出它们一起运动的周期 T 1。
(4) 测出上下圆盘三悬点之间的距离 a 和 b ,然后算出悬点到中心的距离 r 和 R (等边三角形外接圆半 径)
(5) 其它物理量的测量:用米尺测出两圆盘之间的垂直距离 H 0 和放置两小圆柱体小孔间距 2x ;用游标 卡尺测出待测圆环的内、外直径 2R 1、2R 2。
(6) 用物理天平测量圆环的质量。
五、实验数据记录与处理:
1.实验数据记录
r = 3
a = 3.870 ± 0.002 cm , R = 3
b = 7.150 ± 0.002 cm
3 3
H 0 = 54.60 ± 0.05 cm , 下盘质量 m 0 =499.68 ± 0.10 g 待测圆环质量 m =192.260 ± 0.020 g
累积法测周期数据记录参考表格
下盘
下盘加圆环
摆动 50 次 所需 时间 50T (s )
1
2 3 4 5
平均
71.68
72.06 71.88 71.65 71.62
71.78
1
2 3 4 5
平均
74.28
74.16 74.15 74.22 74.13
74.19
周 期
T 0=1.44 ± 0.01 s T 1= 1.48±0.01 s
∑(50T-50T)2
4+
0.012÷50=0.01(s)
∑(5T-5T)2
4+
0.021÷
∑(a-a)2
4+
0.0022=0.003(cm)=
∑(b-b)2
4+0.0022=0.003(cm)=
有关长度多次测量数据记录参考表
次数项目上盘悬孔
间距a
(cm)
下盘悬孔间
距b(cm)
待测圆环
外直径2R
1
内直径2R
2
(cm)(cm)
1 2 3 4 5
平均
6.702
6.702
6.706
6.700
6.706
6.703±
0.002
12.388
12.360
12.390
12.386
12.390
12.383±
0.002
11.996
12.000
12.000
11.996
12.016
12.002±
0.002
11.300
11.296
11.300
11.262
11.302
11.292±
0.002
50T=(71.68+72.06+71.88+71.65+71.62)5=71.78(s) 0
T=71.78÷50=1.436(s)
∆T=
5
i=1
i
50T=(74.28+74.16+74.15+74.22+74.13)5=74.19(s) 1
T=74.19÷50=1.484(s)∆T= 11
5
i=1
i5=00.s01()
a=(6.702+6.702+6.706+6.700+6.706)5=6.703(cm)
∆a=
5
i=1
i
∆r=
3
∆a0.002c(m)
3
b=(12.388+12.360+12.390+12.386+12.390)5=12.383(cm)
∆b=
5
i=1
i
∆R=
3
∆b0.002c(m)
3
2R=(11.996+12.000+12.000+11.996+12.016)5=12.002(cm) 1
∑ (2R - 2R )
2 4
+ 0.0022 = 0.002(cm )
∑ (2R - 2R )
2
4
+ 0.0022 = 0.002(cm )
∆J = ⎪ ∆ 2 + ⎝ ∂R ⎭ ⎝ ∂r ⎫ 2 ⎛ ∂J ⎫2 2 ⎛ ∂J ⎫2 ⎪ ∆ r + ⎪ ∆ m + ⎪ ∆ m + ⎪ ∆T + ⎪ ∆T
⎝ ∂m 0 ⎭ ⎝ ∂T 0 ⎭ ⎝ ∂T 1 ⎭
4π 2 H 4π 2 H 4π 2 H 1 4π 2 H 4π 2 H 4π 2 H
2
∆2R =
1
5 i =1
i 1
2R = (11.300 + 11.296 + 11.300 + 11.262 + 11.302) 5 = 11.262(cm )
2
∆2R =
2
5 i =1
i 2
J = J - J = 1 0 gRr 4π 2 H
[(m + m )T 2 - m T 2 ]
0 1 0 0
979.3⨯ 3.38 ⨯ 7.149
= [(192.26+ 499.68) ⨯1.4842 - 499.68 ⨯1.4362 ]
4 ⨯ 3.142 ⨯ 54.60 = 6.158 ⨯103 ( g ⋅ cm 2 )
⎛ ∂J ⎫2
⎛ ∂J R
⎭ ⎝ ∂m ⎭ 1 0 ⎛ ∂J ⎫2 ⎛ ∂J ⎫2
[ gr gR [(m + m )T 2 - m T 2 ]]2 ⨯ ∆ 2 + [ [(m + m )T 2 - m T 2 ]]2 ⨯ ∆ 2
0 1 0 0 R 0 1 0 0 r
= +(
T 2 )2 ⨯ ∆ 2 + [ (T 2 - T 2 )]2 ⨯ ∆ 2 + [ 1 (m + m )]2 ⨯ ∆ 2 + [ 0
0 ]2 ⨯ ∆ 2 m 1 0 m 0 T T
= 0.083 ⨯103 ( g cm 2 )
J = (6.158 ± 0.083)⨯103 ( g cm 2 )
J 理论 = m
( R 2 + R 2 ) = 0.5 ⨯192.26(6.0012 + 5.6482 ) = 6.528 ⨯103 ( g ⋅ cm 2 )
1 2
E = 6.158 - 6.528 6.528
⨯100% = 5.7%
六、结果讨论与误差分析:
1、游标卡尺的正确使用强调测量杆与钻台将碰到时,正确读数。
用完后,测量杆和测量砧之间要松开 一段距离。
2、要正确的使用水准仪,尽量使得下盘调节水平。
3、测量时间时,应该在下盘通过平衡位置时开始记数,在实验中对对平衡位置的判断存在一个误差, 对记录的周期有影响。