贵州省铜仁地区2013年中考数学试卷(解析版)

合集下载

【真题】贵州省铜仁市中考数学试题含答案解析()

【真题】贵州省铜仁市中考数学试题含答案解析()

贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题一、知识准备:抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。

(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。

二、例题精析㈠【抛物线上的点能否构成等腰三角形】(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 例一.经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.考点:二次函数综合题专题:综合题.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.㈡【抛物线上的点能否构成直角三角形】(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 例二.的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a (x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.㈢【抛物线上的点能否构成相似三角形】例三.(2013•恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB 沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.考点:二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: 解:(1)∵直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B ,∴A (﹣1,0),B (0,3);∵把△AOB 沿y 轴翻折,点A 落到点C ,∴C (1,0).设直线BD 的解析式为:y=kx+b ,∵点B (0,3),D (3,0)在直线BD 上,∴,解得k=﹣1,b=3,∴直线BD 的解析式为:y=﹣x+3.设抛物线的解析式为:y=a (x ﹣1)(x ﹣3),∵点B (0,3)在抛物线上,∴3=a ×(﹣1)×(﹣3),解得:a=1,∴抛物线的解析式为:y=(x ﹣1)(x ﹣3)=x 2﹣4x+3.(2)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M (2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N1(0,0);(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,∵OB=OD=ON2=3,∴N2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(3)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.三、形成训练1.(2013•湘西州)如图,已知抛物线y=﹣x 2+bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)试判断△AOC 与△COB 是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB;(4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解答:解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB成立.理由如下:在△AOC与△COB中,∵OA=2,OC=4,OB=8,∴,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.(4)∵抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC===,AQ==,CQ==.i)当AQ=CQ时,有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)当AC=AQ时,有=,t2=﹣5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t2﹣8t+5=0,解得:t=4±,∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).点评: 本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点.难点在于第(4)问,符合条件的等腰三角形△ACQ 可能有多种情形,需要分类讨论.2 :已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.3、如图,抛物线212222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标;(2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.4、如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1个单位长度的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S ,求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ成为以.BQ ..为一腰...的等腰三角形?若存在, 求出点Q 的坐标,若不存在,说明理由.5、(09年成都)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS ∠BCO =31010。

2013年贵州省遵义市中考数学试题含答案.docx

2013年贵州省遵义市中考数学试题含答案.docx

2013 年中考真題2013 年贵州省遵义市中考数学试题1.如果 +30m表示向东走30m ,那么向西走40 米表示为(B)A . +40m B.-40m C.+30m D.-30m2.一个几何体的三视图如图所示,则这个几何体是(D)3.遵义市是国家级红色旅游市,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道 :2012 年全市共接待游客 3354 万人次,将 3354万用科学计数法表示为(B)A 、3.35410 6B 、3.354 107C、3.35410 8D、33.5410 64.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是(A)A、 70°B、 80° C 、 65° D 、 60°5.计算 (- 1ab223的结果是(D))A 、 3 a3b6B 、 3 a3b5C、 1 a3b5 D 、 1 a3b622886.如图 , 在 4×4 正方形网格中,任取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是(A)1B、111A 、4C、 D 、63127. P1(x1, y1) ),P2 ( x 2 , y 2 ) 是正比例函数y 1x 图象上的两点,下列判断中,正确的是2( D)A 、y1y2B、y1y2C、当 x1x2时 y1 y2D、当x1x2时, y1 y28. 如图, A、 B 两点在数轴上表示的数分别是a、 b。

则下列式子中成立的是( C )2013 年中考真題A 、 a+b<0B 、 -a<-b C、 1-2a>1-2b D、 |a|-|b|>09.如图,将边长1cm 的等边三角形ABC 沿直线l 向右翻动 (不滑动 ),点 B 从开始到结束,所经过的长度为(C)A 、3cmB 、(22) cm23C、4cm D 、 3cm 3210.二次函数y=ax+bx+c ( x≠0)的图象如图所示,若M=a+b-c ,N=4a-2b+c , P=2a-b ,则 M 、 N、 P 中,值小于0 的数有 ( A)A 、 3 个B 、 2 个C、 1 个 D 、 0 个111.计算:.212.已知点 P( 3, -1 )关于 y 轴的对称点 Q 的坐标是( a+b,1-b),则 a b的值为25.3x(x+1)(x-1).13.分解因式: x -x=14.如图, OC 是⊙O 的半径, AB 是弦,且OC⊥AB ,点 P 在⊙O 上,∠APC=26 °,则∠BOC= 52°.2013 年中考真題2+mx-6=0 的一个根,则方程的另一个根是x=3.15.已知 x=-2 是方程 x16.如图,在矩形 ABCD中,对角线 AC , BD 相交于点 O,点 E,F 分别是 AO,AD的中点,若AB=6cm , BC=8cm ,则△AEF 的周长 =9.17.如图,在Rt △ABC中,∠ACB=90°,AC=BC=1, E 为 BC边上的一点,以 A 为圆心, AE 为半径的圆弧交于点D,交 AC的延长线于点F,若图中两个阴影部分的面积相等,则AF 的长为2.C18. 如图,已知直线y 1x 与双曲线 yk( k> 0)交于点2xA,B 两点,点 B 的坐标为( -4 , -2 ) C 为双曲线y k( k > 0)x上一点,且在第一象限内,若△AOC的面积为 6,则点 C 的坐标为 (2,4)或( 8,1)。

2013年贵州省贵阳市中考数学试卷

2013年贵州省贵阳市中考数学试卷

2013年贵州省贵阳市中考数学试卷一、选择题(以下每小题均有A,B,C,D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.(3分)3的倒数是()A.﹣3 B.3 C.﹣ D.2.(3分)2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为()A.79×10亿元 B.7.9×102亿元C.7.9×103亿元D.0.79×103亿元3.(3分)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°4.(3分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(3分)一个几何体的三视图如图所示,则这个几何体摆放的位置是()A.B.C.D.6.(3分)某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到绿灯的概率为,那么他遇到黄灯的概率为()A.B.C.D.7.(3分)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A.B.C.D.8.(3分)如图,M是Rt△ABC的斜边BC上异于B、C的定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条 B.2条 C.3条 D.4条9.(3分)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()A.B.C.D.10.(3分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈 B.2圈 C.3圈 D.4圈二、填空题(每小题4分,共20分)11.(4分)方程3x+1=7的根是.12.(4分)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有个.13.(4分)如图,AD、AC分别是直径和弦,∠CAD=30°,B是AC上一点,BO ⊥AD,垂足为O,BO=5cm,则CD等于cm.14.(4分)直线y=ax+b(a>0)与双曲线相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为.15.(4分)已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.三、解答题:16.(6分)先化简,再求值:,其中x=1.17.(10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.18.(10分)在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)19.(10分)贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:甲校参加汇报演出的师生人数统计表(1)m=,n=;(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3)哪个学校参加“话剧”的师生人数多?说明理由.20.(10分)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.21.(10分)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.22.(10分)已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB 于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)23.(10分)已知:直线y=ax+b过抛物线y=﹣x2﹣2x+3的顶点P,如图所示.(1)顶点P的坐标是;(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=﹣x2﹣2x+3的交点坐标.24.(12分)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为三角形;当△ABC三边分别为6、8、11时,△ABC为三角形.(2)猜想,当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.25.(12分)如图,在平面直角坐标系中,有一条直线l:与x轴、y 轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标;(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.2013年贵州省贵阳市中考数学试卷南通数学名师团解析一、选择题(以下每小题均有A,B,C,D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.(3分)3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义进行答题.【解答】解:设3的倒数是a,则3a=1,解得,a=.故选:D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为()A.79×10亿元 B.7.9×102亿元C.7.9×103亿元D.0.79×103亿元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于790有3位,所以可以确定n=3﹣1=2.【解答】解:790=7.9×102.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【分析】根据平移的性质得出l1∥l2,进而得出∠2的度数.【解答】解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.【点评】此题主要考查了平移的性质以及平行线的性质,根据已知得出l1∥l2是解题关键.4.(3分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数【分析】儿童福利院最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(3分)一个几何体的三视图如图所示,则这个几何体摆放的位置是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答】解:根据几何体的主视图和左视图是矩形,俯视图是三角形可以得到该几何体是三棱柱,根据俯视图三角形的方向可以判定选A,故选:A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.请查一下题干.6.(3分)某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到绿灯的概率为,那么他遇到黄灯的概率为()A.B.C.D.【分析】根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为,遇到绿灯的概率为,即可求出他遇到黄灯的概率.【解答】解:∵经过一个十字路口,共有红、黄、绿三色交通信号灯,∴在路口遇到红灯、黄灯、绿灯的概率之和是1,∵在路口遇到红灯的概率为,遇到绿灯的概率为,∴遇到黄灯的概率为1﹣﹣=;故选:D.【点评】此题考查了概率的意义,用到的知识点是概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.7.(3分)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A.B.C.D.【分析】过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出tanα=,代入求出即可.【解答】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴tanα==,故选:C.【点评】本题考查了锐角三角函数的定义的应用,注意:在Rt△ACB中,∠C=90°,则sinB=,cosB=,tanB=.8.(3分)如图,M是Rt△ABC的斜边BC上异于B、C的定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条 B.2条 C.3条 D.4条【分析】过点M作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【解答】解:∵截得的三角形与△ABC相似,∴过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形满足题意∴过点M作直线l共有三条,故选:C.【点评】本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.9.(3分)如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()A.B.C.D.【分析】先根据圆的半径为定值可知,在当点P从点A到点B的过程中OP的长度为定值,当点P从点B到点O的过程中OP逐渐缩小,从点O到点A的过程中OP逐渐增大,由此即可得出结论.【解答】解:∵圆的半径为定值,∴在当点P从点A到点B的过程中OP的长度为定值,当点P从点B到点O的过程中OP逐渐缩小,从点O到点A的过程中OP逐渐增大.故选:A.【点评】本题考查的是定点问题的函数图象,熟知圆的特点是解答此题的关键.10.(3分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈 B.2圈 C.3圈 D.4圈【分析】根据题意易证四边形OEAF是正方形,则AF=OE=1.所以硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)﹣8AF=20﹣8=12,依此可求硬币自身滚动的圈数大约是:12÷硬币的周长≈2(圈).【解答】解:如图,连接AD、AB与⊙O的切点E、F,则OE⊥AD,OF⊥AB.易证四边形OEAF是正方形,则AF=OE=1.∵⊙O的周长=2π×1=2π,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)﹣8AF=20﹣8=12,又因为在每个角硬币滚动一段弧,四个角的弧就是一个整圆,∴硬币自身滚动的圈数大约是:12÷2π≈2(圈).故选:B.【点评】本题考查了切线的性质、弧长的计算.理清“硬币自身滚动的圈数=(矩形ABCD的周长﹣8AF)÷硬币的周长”是解题的关键.二、填空题(每小题4分,共20分)11.(4分)方程3x+1=7的根是x=2.【分析】根据一元一次方程的解法,移项、合并同类项、系数化为1即可.【解答】解:移项得,3x=7﹣1,合并同类项得,3x=6,系数化为1得,x=2.故答案为:x=2.【点评】本题考查了移项、合并同类项解一元一次方程,是基础题,比较简单.12.(4分)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有4个.【分析】根据摸到白球的概率公式=40%,列出方程求解即可.【解答】解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)==40%,解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)如图,AD、AC分别是直径和弦,∠CAD=30°,B是AC上一点,BO ⊥AD,垂足为O,BO=5cm,则CD等于5cm.【分析】在直角△ACD中,依据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求得AB的长,然后利用勾股定理即可求得半径OA的长度,则直径AD即可求得,然后在直角△ACD中,依据30度的锐角所对的直角边等于斜边的一半即可求解.【解答】解:∵在直角△AOB中∠CAD=30°,∴AB=2OB=2×5=10cm,AO==5cm.∴AD=2AO=10cm.∵AD是圆的直径,∴∠C=90°,又∵∠CAD=30°,∴CD=AD=×10=5(cm).故答案是:5.【点评】本题考查了圆周角定理以及直角三角形的性质:30度的锐角所对的直角边等于斜边的一半,理解定理是关键.14.(4分)直线y=ax+b(a>0)与双曲线相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为6.【分析】将A与B坐标代入反比例解析式求出x1y1与x2y2的值,即可求出所求式子的值.【解答】解:将A(x1,y1),B(x2,y2)两点分别代入y=中,得:x1y1=x2y2=3,则x1y1+x2y2=6.故答案为:6【点评】此题考查了反比例函数与一次函数的交点问题,熟练掌握反比例函数的性质是解本题的关键.15.(4分)已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是m≥﹣2.【分析】根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解.【解答】解:抛物线的对称轴为直线x=﹣=﹣m,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.【点评】本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.三、解答题:16.(6分)先化简,再求值:,其中x=1.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=×=,当x=1时,原式==2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.(10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.【分析】(1)根据题意画树状图,再根据概率公式求出概率,即可得出答案;(2)根据概率公式求出和为4的概率,即可得出答案.【解答】解:(1)根据题意画树状图如下:数字相同的情况有2种,则P(小红获胜)=P(数字相同)=,P(小明获胜)=P(数字不同)=,则这个游戏公平;(2)不正确,理由如下;因为“和为4”的情况只出现了1次,所以和为4的概率为,所以她的这种看法不正确.【点评】此题考查了游戏的公平性,关键是根据题意画出树状图,求出每件事情发生的概率,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(10分)在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)【分析】(1)根据锐角三角函数关系,得出tan∠ACB=,得出AC的长即可;(2)利用锐角三角函数关系,得出tan∠ADE=,求出AE即可.【解答】解:(1)在Rt△ABC中,∠ACB=30°,AB=4,∴tan∠ACB=,∴AC===4(m)答:AC的距离为4m;(2)在Rt△ADE中,∠ADE=50°,AD=5+4,∴tan∠ADE=,∴AE=AD•tan∠ADE=(5+4)×tan50°≈14(m),答:塔高AE约为14m.【点评】此题主要考查了解直角三角形的应用,根据已知正确得出锐角三角函数关系是解题关键.19.(10分)贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:甲校参加汇报演出的师生人数统计表(1)m=25,n=38%;(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3)哪个学校参加“话剧”的师生人数多?说明理由.【分析】(1)首先求得总人数,然后再计算m和n的值即可;(2)话剧的圆心角等于其所占的百分比乘以360°即可;(3)算出参加话剧的师生的人数后比较即可得到结论.【解答】解:(1)∵参加演讲的有6人,占12%,∴参加本次活动的共有6÷12%=50人,∴m=50×50%=25人,n=19÷50×100%=38%(2)乙校的扇形统计图中“话剧”的圆心角度数为:360°×(1﹣60%﹣10%)=108°;(3)(150﹣50)×30%=30人,∵30>25∴乙校参加“话剧”的师生人数多.【点评】本题考查了扇形统计图及统计表的知识,解题的关键是从统计图和统计表中整理出有关信息.20.(10分)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.【分析】(1)连接AC,根据菱形的对角线互相垂直平分可得BD垂直平分AC,再根据线段垂直平分线上的点到线段两端点的距离相等即可得证;(2)先判定出△ABC是等边三角形,根据等边三角形的每一个角都是60°可得∠BAC=60°,再根据等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和求出∠EAC=30°,从而判断出AF是△ABC的角平分线,再根据等边三角形的性质可得AF是△ABC的BC边上的中线,从而解得.【解答】(1)证明:连接AC,∵BD也是菱形ABCD的对角线,∴BD垂直平分AC,∴AE=EC;(2)解:点F是线段BC的中点.理由如下:在菱形ABCD中,AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=60°,∵AE=EC,∠CEF=60°,∴∠EAC=∠BAC=30°,∴AF是△ABC的角平分线,∵AF交BC于F,∴AF是△ABC的BC边上的中线,∴点F是线段BC的中点.【点评】本题考查了菱形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,熟练掌握各图形的性质是解题的关键.21.(10分)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.【分析】(1)设2010年底至2012年底该市汽车拥有量的年平均增长率是x,根据2010年底该市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达144万辆可列方程求解.(2)设2012年底到2013年底该市汽车拥有量的年平均增长率为y,则2013年底全市的汽车拥有量为144(1+y)×90%万辆,根据要求到2013年底全市汽车拥有量不超过155.52万辆可列不等式求解.【解答】解:(1)设2010年底至2012年底该市汽车拥有量的年平均增长率是x,根据题意,100(1+x)2=1441+x=±1.2∴x1=0.2=20% x2=﹣2.2(不合题意,舍去)答:2010年底至2012年底该市汽车拥有量的年平均增长率是20%.(2)设2012年底到2013年底该市汽车拥有量的年平均增长率为y,根据题意得:144(1+y)﹣144×10%≤155.52解得:y≤0.18答:2012年底至2013年底该市汽车拥有量的年增长率要控制在不超过18%能达到要求.【点评】本题考查了一元二次方程的应用及不等式的应用,重点考查理解题意的能力,根据增长的结果做为等量关系列出方程求解,根据2013车的总量这个不等量关系列出不等式求解.22.(10分)已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB 于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)【分析】(1)作OC⊥AB于点C,由OC⊥AB可知AC=BC,再根据AE=BF可知EC=FC,因为OC⊥EF,所以OE=OF,再由∠EOF=60°即可得出结论;(2)在等边△OEF中,因为∠OEF=∠EOF=60°,AE=OE,所以∠A=∠AOE=30°,故∠AOF=90°,再由AO=10可求出OF的长,根据S阴影=S扇形AOD﹣S△AOF即可得出结论.【解答】(1)证明:作OC⊥AB于点C,∵OC⊥AB,∴AC=BC,∵AE=BF,∴EC=FC,∵OC⊥EF,∴OE=OF,∵∠EOF=60°,∴△OEF是等边三角形;(2)解:∵在等边△OEF中,∠OEF=∠EOF=60°,AE=OE,∴∠A=∠AOE=30°,∴∠AOF=90°,∵AO=10,∴OF=,∴S△AOF=××10=,S扇形AOD=×102=25π,∴S阴影=S扇形AOD﹣S△AOF=25π﹣.【点评】本题考查的是垂径定理,涉及到等边三角形的判定与性质、直角三角形的性质及扇形的面积等知识,难度适中.23.(10分)已知:直线y=ax+b过抛物线y=﹣x2﹣2x+3的顶点P,如图所示.(1)顶点P的坐标是(﹣1,4);(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=﹣x2﹣2x+3的交点坐标.【分析】(1)利用配方法求出图象的顶点坐标即可;(2)利用待定系数法求一次函数解析式即可;(3)利用关于x轴对称点的坐标性质,首先求出直线y=mx+n的解析式,进而得出直线y=mx+n与抛物线y=﹣x2﹣2x+3的交点坐标.【解答】解:(1)∵y=﹣x2﹣2x+3=﹣(x 2+2x)+3=﹣(x+1)2+4,∴P点坐标为:(﹣1,4);故答案为:(﹣1,4);(2)将点P(﹣1,4),A(0,11)代入y=ax+b得:,解得:,∴该直线的表达式为:y=7x+11;(3)∵直线y=mx+n与直线y=7x+11关于x轴成轴对称,∴y=mx+n过点P′(﹣1,﹣4),A′(0,﹣11),∴,解得:,∴y=﹣7x﹣11,∴﹣7x﹣11=﹣x 2﹣2x+3,解得:x1=7,x2=﹣2,此时y1=﹣60,y2=3,∴直线y=mx+n与抛物线y=﹣x2﹣2x+3的交点坐标为:(7,﹣60),(﹣2,3).【点评】此题主要考查了二次函数性质以及待定系数法求一次函数解析式和函数交点坐标求法,根据已知得出图象上对应点坐标是解题关键.24.(12分)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为锐角三角形;当△ABC三边分别为6、8、11时,△ABC为钝角三角形.(2)猜想,当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.【分析】(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;(2)根据(1)中的计算作出判断即可;(3)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解.【解答】解:(1)两直角边分别为6、8时,斜边==10,∴△ABC三边分别为6、8、9时,△ABC为锐角三角形;当△ABC三边分别为6、8、11时,△ABC为钝角三角形;故答案为:锐角;钝角;(2)当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形;故答案为:>;<;(3)∵c为最长边,2+4=6,∴4<c<6,a2+b2=22+42=20,①a2+b2>c2,即c2<20,0<c<2,∴当4≤c<2时,这个三角形是锐角三角形;②a2+b2=c2,即c2=20,c=2,∴当c=2时,这个三角形是直角三角形;③a2+b2<c2,即c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,读懂题目信息,理解三角形为锐角三角形、直角三角形、钝角三角形时的三条边的数量关系是解题的关键.25.(12分)如图,在平面直角坐标系中,有一条直线l:与x轴、y 轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标(,3);(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.【分析】(1)根据等边三角形ABC的高为3,得出A1点的纵坐标为3,再代入即可;(2)设P(x,y),连接A2P并延长交x轴于点H,连接B2P,先求出A2B2=2,HB2=,根据点P是等边三角形A2B2C2的外心,得出PH=1,将y=1代入,即可得出点P的坐标;(3)根据点P是等边三角形A2B2C2的外心,得出△PA2B2,△PB2C2,△PA2C2是等腰三角形,得P(3,1),由(2)得,C2(4,0),点C2满足直线的关系式,得出点C2与点M重合,∠PMB2=30°,设点Q满足的条件,△QA2B2,△B2QC2,△A2QC2能构成等腰三角形,则QA2=QB2,B2Q=B2C2,A2Q=A2C2,作QD ⊥x轴与点D,连接QB2,根据QB2=2,∠QB2D=2∠PMB2=60°,求出Q(,3),设点S满足的条件,△SA2B2,△C2B2S,△C2SA2是等腰三角形,则SA2=SB2,C2B2=C2S,C2A2=C2S,作SF⊥x轴于点F,根据SC2=2,∠SB2C2=∠PMB2=30°,求出S(4﹣3,),设点R满足的条件,△RA2B2,△C2B2R,△C2A2R能构成等腰三角形,则RA2=RB2,C2B2=C2R,C2A2=C2R,作RE⊥x轴于点E,根据RC2=2,∠RC2E=∠PMB2=30°,R (4+3,﹣).【解答】解:(1)∵等边三角形ABC的高为3,∴A1点的纵坐标为3,∵顶点A1恰落在直线l上,∴3=,解得;x=,∴A1点的坐标是(,3),故答案为:(,3);(2)设P(x,y),连接A2P并延长交x轴于点H,连接B2P,在等边三角△A2B2C2中,高A2H=3,∴A2B2=2,HB2=,∵点P是等边三角形A2B2C2的外心,∴∠PB2H=30°,∴PH=1,即y=1,将y=1代入,解得:x=3.∴P(3,1);(3∵点P是等边三角形A2B2C2的外心,∴△PA2B2,△PB2C2,△PA2C2是等腰三角形∴点P满足的条件,由(2)得P(3,1),由(2)得,C2(4,0),点C2满足直线的关系式,∴点C2与点M重合。

贵州省黔东南州2013年中考数学试卷(解析版)

贵州省黔东南州2013年中考数学试卷(解析版)

2013年凯里附中中考模拟考试试题答案参考答案及评分标准一、选择题(共10小题,每题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案 D D B C C B A BB C二.填空题(共8小题,每题4分,共32分)题号 11 12 13 14 15 16 17 18答案丙40°﹣2821:33320 2 cm三、解答题(本题共9小题,共88分),20.(本题6分) 19、解:原式 3233311-+-+-=。

(5)33+-= (6)20、解:化简得:⎩⎨⎧-=-=-205383y x y x ………………………………… 2分①-②得:284=y ,7=y ………………………………………5分把7=y 代入①得:5=x ……………………………7分所以原方程组的解为:⎩⎨⎧==75y x 。

…………………8分21、解:(1)a=5,b=0.2,c=0.24……………………………………………3分 (2)72…………………………………………………………………4分 (3)1525 ×100=60(个)答:PM2.5日平均浓度值符合安全值的城市约有60个. ………………6分22、(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,…………1分 由题意得:7x+4(10-x )≤55,解得x ≤5,………………………………5分 又∵x ≥3,则x=3,4,5,∴购买方案有三种:……………………………7分方案一:轿车3辆,面包车7辆;方案二,轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆。

…………………………………………………………8分(2)方案一的日租金为:3×200+7×110=1370(元); 方案二的日租金为:4×200+6×110=1460(元);方案三的日租金为:5×200+5×110=1550(元);……………………………11分 为保证日租金不低于1500元,应选择方案三。

2013年贵州省遵义市中考数学试卷

2013年贵州省遵义市中考数学试卷

6.第1页(共24页)2013年贵州省遵义市中考数学试卷、选择题(本题共 10个小题,每小题 3分,共30分•在每小题给出的四个选项中,只 有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.(3分)如果+30m 表示向东走30m ,那么向西走40m 表示为(C . +30mD . - 30m(3分)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据为( )(3分)如图,在4X 4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是(A .1.3.有关部门统计报道:2012年全市共接待游客 3354万人次.将3354万用科学记数法表示A . 3.354 X 10B . 3.354 X 108C . 3.354 X 106D . 33.54 X 103的度数是(5. (3分)计算( A .-a 3b 6B . -a 3b 5C . C .65°-a 3b 5 D . 60°D . -a 3b 6A . +40mB . - 40m O67/ 2= 70° ,则/-ab 2) 3的结果是(贝BOC =C .7. ( 3分)P i (x i , y i ), P 2 (X 2, y 2)是正比例函数 y —x 图象上的两点,下列判断中,正确的是( )A . y i >y 2B . y i < y 2C .当 x i < X 2 时,y i < y 2D .当 x i < X 2 时,y i > y 2& (3分)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是 (.右1 1 1少 1 J -20 12 b 站A . a+b < 0C . 1 - 2a > 1 - 2bD . |a|-|b|>09. ( 3分)如图,将边长为ABC 沿直线I 向右翻动(不滑动) ,点B 从开C . 一 cmD . 3 cm1cm 的等边三角形贝BOC =210. (3 分)二次函数 y = ax +bx+c (a * 0)的图象如图所示, 若 M = a+b - c, N = 4a - 2b+c ,、填空题(本题共 8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直 接在答题卡的相应位置上.)0 -111 . (4 分)计算:2013 - 2= _______.b12.( 4分)已知点P ( 3, - 1)关于y 轴的对称点Q 的坐标是(a+b,1 - b ),则a 的值为 _____313 . (4分)分解因式:x - x = _________ .14 . (4分)如图,0C 是O O 的半径,AB 是弦,且0C 丄AB ,点P 在O O 上, / APC = 26°,B . - a <- bC . 1个0的数有( )-2是方程x 2+mx - 6 = 0的一个根,则方程的另一个根是16. (4分)如图,在矩形 ABCD 中,对角线AC 、BD 相交于点0,点E 、F 分别是AO 、ADACB = 90°, AC = BC = 1, E 为 BC 边上的一点,以 AAB 于点D ,交AC 的延长于点F ,若图中两个阴影部分的面积相等,则 AF 的长为 _________ (结果保留根号)三、解答题(本题共 9小题,共88分•答题请用黑色墨水笔或黑色签字笔直接在答题卡的 相应位置上•解答时应写出必要的文字说明、证明过程或演算步骤.cm .18. (4分)如图,已知直线 一x 与双曲线y -(k > 0)交于 A 、B 两点,点B 的坐标为 (-4, - 2),C 为双曲线y — (k > 0)上一点,且在第一象限内, 若厶AOC 的面积为6,则点C 的坐标为 _________度.则厶AEF 的为圆心,AE 为半径的圆弧交19. (6分)解方程组220. (8分)已知实数a满足a+2a- 15 = 0,求——---- ------------- 的值.21. (8分)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示)•小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM= 17米,且点A, B, M 在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:—1.73, sin37°〜0.60, cos37°~ 0.81, tan37°~ 0.75).22. (10分)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有______ 人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是 _________ 度;(3)在条形统计图中,“非常了解”所对应的家长人数是 ________ 人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?学生及家长对校园婪全知学生及家怪对校园宾全知识了解程度条形統计閏识了解程度扁形疑计圏日鬧了屛基本了解了钾少不了解了驛臺23. (10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为(1 )求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.24. (10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM = CN;(2)若厶CMN的面积与厶CDN的面积比为3: 1,求——的值.25. (10分)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区•已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1 )若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?26. (12 分)如图,在Rt△ ABC 中,/ C= 90°, AC = 4cm, BC= 3cm.动点M , N 从点C 同时出发,均以每秒1cm的速度分别沿CA、CB向终点A, B移动,同时动点P从点B 出发,以每秒2cm的速度沿BA向终点A移动,连接PM , PN,设移动时间为t (单位:秒,0v t v2.5).(1 )当t为何值时,以A, P, M为顶点的三角形与△ ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.2 一y = ax+bx+c (0)的顶点坐标为(4, -),且与y轴交于点C( 0,2),与x轴交于A, B两点(点A在点B的左边).(1) 求抛物线的解析式及A、B两点的坐标;(2) 在(1)中抛物线的对称轴I上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3) 以AB为直径的O M相切于点E,CE交x轴于点D,求直线CE的解析式.2013年贵州省遵义市中考数学试卷参考答案与试题解析每小题 3分,共30分•在每小题给出的四个选项中,只A . +40mB . - 40mC . +30mD . - 30m【解答】解:如果+30米表示向东走30米,那么向西走 40m 表示-40m .【解答】解:如图,俯视图为三角形,故可排除 A 、B .主视图以及左视图都是矩形,可排除C , 故选:D .3. (3分)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客 为( ) 67A . 3.354 X 10B . 3.354 X 10【解答】 解:I 3354万=33540000, •••用科学记数法表示为: 3.354 X107 .故选:B .有一项是符合题目要求的,请用 2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.1. (3分)如果+30m 表示向东走 30m , 那么向西走40m 表示为( 故选:B .则这个几何体是(、选择题(本题共 10个小题,3354万人次.将3354万用科学记数法表示C . 3.354 X 108D . 33.54 X 106/ 2= 70°,则/ 3的度数是( )4. (3 分)如图,直线11〃12,若/ 1= 140°,【解答】解:•••直线1l // 12,/ 1 = 140 .•./ 1 = / 4 = 140°,•••/ 5= 180 ° - 140 ° = 40°, •••/ 2= 70°,• / 6= 180° - 70°- 40°= 70°, •••/ 3=/ 6, 故/ 3的度数是70°.故选:A .6. ( 3分)如图,在4X 4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是(C.-【解答】解:•••白色的小正方形有 12个,能构成一个轴对称图形的有 2个情况(第二行 中第4个,还有第四行中第 3个),B . 80°C . 65D . 60\ _____ /rsA , / “V5. ( 3分)计算( -ab 2) 3的结果是(3 63 5A . -a bB . -a b【解答】解:(-ab 2) 3=( -)3?a 3故选:D .)C . 3 5 -a bD . 3 6-a b(b 2) 33 6一 a b .•使图中红色部分的图形构成一个轴对称图形的概率是: 故选:A.7. ( 3分)P i (x i , y i ), P 2 (X 2, y 2)是正比例函数 y —x 图象上的两点,下列判断中,【解答】解:T y -x , k - < 0,••• y 随x 的增大而减小. 故选:D .& (3分)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是 (右1 1 1 § L J2 ^-1 0 12 b 站A . a+b < 0B . - a <- bC . i - 2a > i - 2bD . |a|—|b|>0【解答】解:a 、b 两点在数轴上的位置可知:- 2<a <- i , b >2,• a+b >0,- a <b ,故 A 、B 错误; •/ a < b , ••- 2a >- 2b ,• i - 2a > i - 2b ,故 C 正确;T |a|< 2, |b|>2,• |a|- |b|< 0,故 D 错误. 故选:C .【解答】解:•••△ ABC 是等边三角形, • / ACB = 60 ° , • / AC (A )= 120°, 点B 两次翻动划过的弧长相等,正确的是( )A . y i > y 2C .当 x i < X 2 时,y i v y 2B . y i <y 2D .当 x i < X 2 时,y i > y 29. ( 3分)如图,将边长为icm 的等边三角形 ABC 沿直线I 向右翻动(不滑动),点B 从开C . 一 cmD . 3 cm则点B经过的路径长=2故选:C.210. (3 分)二次函数y= ax+bx+c (0)的图象如图所示,若M = a+b-c, N = 4a-2b+c,P = 2a - b.贝U M , N , P中,值小于0的数有()A . 3个C. 1个【解答】解:•••图象开口向下,•••a v 0,•••对称轴在y轴左侧,• a, b同号,• a v 0, b v 0,•••图象经过y轴正半轴,• c> 0,二M = a+b- c v 0当x =- 2 时,y = 4a - 2b+c v 0,• N= 4a - 2b+c v 0,—> 1,•—v 1,•/ a v 0,• b > 2a,• 2a - b v 0,• P= 2a - b v 0,则M, N, P中,值小于0的数有M , N, P.故选:A.、填空题(本题共8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.)0 -111. (4 分)计算:2013 - 2 =-.0 —1【解答】解:2013 - 2 ,=1 -,故答案为:-.I12. (4分)已知点P (3,- 1)关于y轴的对称点Q的坐标是(a+b, 1 - b),贝U a的值为25 .【解答】解:•••点P (3,- 1)关于y轴的对称点Q的坐标是(a+b, 1-b),解得:,则a b的值为:(-5) 2= 25.故答案为:25.313. (4 分)分解因式:x - x= x ( x+1) (x- 1).【解答】解:x3-x,=x ( x2- 1),=x ( x+1) (x- 1).故答案为:x (x+1) ( x- 1 ).14. (4分)如图,OC是O O的半径,AB是弦,且OC丄AB,点P在O O 上, / APC = 26°,贝BOC= 52度.c【解答】解:••• OC是O O的半径,AB是弦,且OC丄AB,•••/ BOC= 2/APC = 2X 26°= 52 22215. (4分)已知x =- 2是方程x+mx - 6 = 0的一个根,则方程的另一个根是3【解答】解:设方程另一个根为 x i ,根据题意得-2?x i =- 6, 所以x i = 3.故答案为3.16. (4分)如图,在矩形 ABCD 中,对角线AC 、BD 相交于点0,点E 、F 分别是AO 、AD9 cm .•••点E 、F 分别是AO 、AD 的中点,••• EF 是厶 AOD 的中位线,EF -OD -BD -AC -cm , AF -AD - BC = 4cm , AE -AO -AC 一 cm ,• △ AEF 的周长=AE+AF+EF = 9cm . 故答案为:9.17. (4 分)如图,在 Rt △ ABC 中,/ ACB = 90°, AC = BC = 1, E 为 BC 边上的一点,以 A为圆心,AE 为半径的圆弧交 AB 于点D ,交AC 的延长于点F ,若图中两个阴影部分的 面积相等,则 AF 的长为 —— (结果保留根号)【解答】解::•图中两个阴影部分的面积相等,又••• AC = BC = 1 , • AF• AF【解答】 解:在Rt △ ABC 中,AC 10cm ,•- S 扇形 ADF = S A A BC ,即:AC X BC ,BC = 8cm ,则厶AEF 的周长=18. (4分)如图,已知直线 y —x 与双曲线y -( k > 0)交于A 、B 两点,点B 的坐标为(-4,- 2),C 为双曲线y —(k > 0)上一点,且在第一象限内,若厶AOC 的面积为6,•••— 2, k = 8,根据中心对称性,点 A 、B 关于原点对称, 所以,A (4, 2),如图,过点 A 作AE 丄x 轴于E ,过点C 作CF 丄x 轴于F ,设点C 的坐标为(a ,-), 若 S ^AOC = S A COF +S 梯形 ACFE - S A AOE ,-8 -(2 -) (4 - a ) - 8,=4 ----------- 4,•/△ AOC 的面积为6, • ---------- 6,整理得,a 2+6a - 16= 0,一上, 故答案为y解得a i= 2, a2=- 8 (舍去),•••—- 4,•••点C的坐标为(2, 4).若S A AOC= S A AOE+S 梯形ACFE —S^ COF --------------•- -------- 6,解得:a = 8或a=- 2 (舍去)•••点C的坐标为(8, 1).故答案为:(2, 4)或(8, 1).三、解答题(本题共9小题,共88分•答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上•解答时应写出必要的文字说明、证明过程或演算步骤. )19. (6分)解方程组【解答】解:,由得,x= 2y+4③,③代入得 2 (2y+4)+y- 3= 0,解得y=- 1,把y =- 1 代入③得,x= 2X(- 1)+4= 2,所以,方程组的解是220. (8分)已知实数 a 满足a +2a - 15 = 0,求【解答】解:..2-a +2a - 15= 0,2a+1) = 16,•••原式 一21. (8分)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB ),放置在教学楼的顶部(如图所示)•小明在操场上的点 D 处,用1米高的测角仪 CD ,从 点C 测得宣传牌的底部 B 的仰角为37°,然后向教学楼正方向走了 4米到达点F 处,又 从点E 测得宣传牌的顶部 A 的仰角为45°.已知教学楼高 BM = 17米,且点A , B , M 在同一直线上,求宣传牌 AB 的高度(结果精确到 0.1米,参考数据:—1.73, sin37°〜0.60, cos37°~ 0.81, tan37°~ 0.75).【解答】解:过点C 作CN 丄AM 于点N ,则点C , E , N 在同一直线上, 设 AB = x 米,贝U AN = x+ (17 - 1)= x+16 (米), 在 Rt △ AEN 中,/ AEN = 45°, EN = AN = x+16,在 Rt △ BCN 中,/ BCN = 37°, BM = 17, ■ tan / BCN ——0.75,解得:x = 1 一 1.3 .经检验:x = 1 -是原分式方程的解.的值.答:宣传牌AB的高度约为1.3m.22. (10分)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安 全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统 计图中的信息,解答下列问题:(1) 参与调查的学生及家长共有 400人;(2) 在扇形统计图中,“基本了解”所对应的圆心角的度数是 135度;(3) 在条形统计图中,“非常了解”所对应的家长人数是62人;(4) 若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本 了解”的学生共有多少人?学生及窸氏对檯园虫全知 学生及家怪对校园宾全知识了解程度条形統计图 识了解程度扇形統计圏【解答】解:(1)参与调查的学生及家长总人数是:(16+4)- 5% = 400 (人);故答案为:400;(2)基本了解的人数是:73+77 = 150 (人), 则对应的圆心角的底数是: 360° —— 135° ; 故答案为:135°;+ 7JSA90 r"■斎张m 鬧了無基本了解了糊少不了斡了驛遑(3) “非常了解”所对应的家长人数是:400 - 83 - 77 - 73 - 54 - 31 - 16 - 4 = 62 (人);故答案为:62 ;(4)调查的学生的总人数是:83+77+31+4 = 195 (人)对“校园安全“知识达到“非常了解“和“基本了解“的学生是83+77 = 160 (人),则全校有1200名学生中,达到“非常了解“和“基本了解“的学生是:1200 —984(人)•答:达到“非常了解“和“基本了解“的学生共有984人.23. (10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为(1 )求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法” 或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.【解答】解:(1)设口袋中黄球的个数为x个,根据题意得:------ -,解得:x= 1,经检验:x= 1是原分式方程的解;•••口袋中黄球的个数为1个;(2)画树状图得:红蓝黄红蓝黄红红黄红红蓝2种情况,•••共有12种等可能的结果,两次摸出都是红球的有•••两次摸出都是红球的概率为:(3)•••摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,•••乙同学已经得了7分,•••若随机再摸一次,乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;•••若随机再摸一次,乙同学三次摸球所得分数之和不低于10分的概率为:-•24. (10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM = CN;(2)若厶CMN的面积与厶CDN的面积比为3: 1,求一的值.【解答】(1)证明:•将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,•••/ ANM = Z CNM ,••四边形ABCD是矩形,• AD // BC,•••/ ANM = Z CMN ,•••/ CMN = Z CNM ,• CM = CN;(2)解:过点N作NH丄BC于点H ,则四边形NHCD是矩形,• HC = DN, NH = DC ,•△ CMN的面积与厶CDN的面积比为3: 1 ,••• MC = 3ND = 3HC,••• MH = 2HC ,设DN = x,贝U HC = x, MH = 2x,CM = 3x= CN ,在Rt△ CDN 中,DC 2 _x,• HN = 2 _x,在Rt△ MNH 中,MN 2 _x,25. (10分)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失•某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区•已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1 )若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【解答】解:(1)设租用甲种货车x辆,租用乙种货车为(16-x)辆,根据题意得,①,由得,x> 5,由得,x< 7,•, 5< x< 7,•/ x为正整数,• x= 5 或 6 或7,因此,有 3 种租车方案:方案一:租甲种货车 5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9 辆;(2)方法一:由(1 )知,租用甲种货车x辆,租用乙种货车为(16-x)辆,设两种货车燃油总费用为y 元,由题意得,y= 1500X+1200 (16 - x),=300X+19200,•/ 300>0,••• y随x值增大而增大,当x= 5时,y有最小值,y 最小=300 X 5+19200 = 20700 兀;方法二:当x = 5 时,16-5 = 11,5X 1500+11X1200=20700 兀;当x = 6 时,16 -6 = 10,6X 1500+10 X 1200= 21000 元;当x = 7 时,16 -7 = 9,7X 1500+9X1200= 21300元;答:选择( 1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.26. (12 分)如图,在Rt△ ABC 中,/ C= 90°, AC = 4cm, BC= 3cm.动点M , N 从点C 同时出发,均以每秒1cm 的速度分别沿CA、CB 向终点A, B 移动,同时动点P 从点B 出发,以每秒2cm 的速度沿BA向终点A移动,连接PM , PN,设移动时间为t (单位:秒,0v t v2.5).(1 )当t为何值时,以A, P, M为顶点的三角形与△ ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.Rt △ ABC 中,/ C = 90°, AC = 4cm , BC = 3cm .5cm .(1 )以A , P , M 为顶点的三角形与△ ABC 相似,分两种情况: 当厶AMP ABC 时,—— ——,即解得t -;当厶 APM ABC 时,一一,即 ------------- ------- ,解得t = 0 (不合题意,舍去);综上所述,当t -时,以A 、P 、M 为顶点的三角形与△ ABC 相似;(2)存在某一时刻t ,使四边形APNC 的面积S 有最小值.理由如下: 假设存在某一时刻t ,使四边形APNC 的面积S 有最小值.如图,过点 P 作PH 丄BC 于点H .贝U PH // AC , •——,即——,• PH ,•- S= S A ABC - S A BPN ,-3X 4 -( 3 - t)?-t ,2-(t -) 一 (0v t v 2.5).•••- >0, • S 有最小值. 当t 一时,S 最小值 一.•••根据勾股定理,得答:当t -时,四边形APNC的面积S有最小值,其最小值是一.2 、27. (14分)如图,已知抛物线y = ax+bx+c (0)的顶点坐标为(4, 一),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴I上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的O M相切于点E, CE交x轴于点D,求直线CE的解析式.【解答】解:(1)由题意,设抛物线的解析式为y= a (x-4)2- (a工0)•••抛物线经过(0, 2)2••• a (0- 4)- 2解得:a -• y - (x-4)2 -即:y -x2 -x+22当y = 0 时,—x -x+2 = 0解得:x= 2或x= 6• A (2, 0), B (6, 0);第22页(共24页)(2)存在,如图2,由(1)知:抛物线的对称轴I为x= 4,因为A、B两点关于I对称,连接CB交I于点P,则AP = BP,所以AP+CP = BC的值最小••• B (6, 0), C ( 0, 2)••• OB= 6, OC = 2••• BC= 2 —,• AP+CP= BC= 2 —• AP+CP的最小值为 2 —;(3)如图3,连接ME•/ CE是O M的切线• ME 丄CE ,Z CEM = 90°•/ C的坐标(0, 2),• OC = 2,•/ AB= 4,• ME = 2• OC = ME= 2,•••/ ODC = Z MDE ,•••在△ COD与厶MED中Z Z•△ COD◎△ MED (AAS),• OD = DE , DC = DM设OD = x则CD = DM = OM - OD = 4 - x2 2 2则Rt△ COD 中,OD +OC = CD ,2 2 9• x +2 = ( 4 - x)• • x 一••• D (-, 0)设直线CE的解析式为y= kx+b (k丰0),•••直线CE 过 C (0, 2), D (-, 0)两点, 则_ 解得:一•直线CE的解析式为y - 2;。

铜仁市2013年中考数学科试题质量分析

铜仁市2013年中考数学科试题质量分析

铜仁市2013年中考数学科试题质量分析一、试题概况:1、试题重视考查学生的基础知识重点考查初中数学主干的、核心的知识,如有理数、整式、不等式、方程、函数、三角形、四边形、圆、相似形、概率统计等基础知识作了重点考查。

对于一些重要的基本原理、基本概念、基本方法如科学计数法、简单的因式分解、解方程(不等式)、待定系数法、多边形内角和、三角形全等和相似证明、特殊四边形性质、众数等常考常新。

2、试题重视考查基本技能和基本数学思想方法:在突出基础知识考查的同时注重能力考查,解答题的19、20、21、22、23、24题虽然以考查基础知识为背景,而每个题目都有一两个能力点,考查学生在理解知识的基础上能灵活运用知识去解决问题。

10题考查学生数形结合的基本思想,18题考查学生寻找规律的基本能力,25题对考生的思维水平有更高的要求,考查二次函数、三角形面积、等腰三角形等多种知识的掌握以及函数思想、分类讨论思想等。

3、试题重视考查学生的运算能力、阅读理解能力、获取信息处理数据的能力、逻辑推理能力。

第19(1)题,考查学生数的运算能力,19(2)考查学生式的运算能力,第22题考查学生阅读理解能力、获取信息处理数据的能力,第8、20、24题,考查学生的逻辑推理能力。

4、试题重视考查学生运用所学数学知识的应用:在整份试卷中以实际问题为背景或与实际操作有联系的有7个题目,3、9、13、17、21、22、23题,题目紧贴学生熟悉的生活,内容丰富又具体。

5、试题注重探究性的考查第25题(3)问考查学生的探究能力。

6、试题信息量较大,问题具有多样性。

全卷总体信息量较大,除部分单一知识点的简单题外其余题目大都包含多个知识点和较大信息量,有5个题目设计了2-3个问题,问题设计具有多样性,注意到探究性和。

如第20题,证明两条线段相等,必须寻找两个三角形全等,而证明两个三角形相等,需要寻找条件,对学生来说,还要考查学生的逻辑推理能力,这个题量是稍大了点,再如21(1),考查在三角形中平行于底边的线段,分成的小三角形与原本角形相似,在新材中需要证明,(2)考查学生灵活运用三角函数定义解决问题,还考查了学生的抽象表达能力,这题稍难;25题一次函数的性质、二次函数、用待定系数法,求函数解析式、求三角形的面积、分类讨论思想、等腰三角形的性质等综合类型。

2013年贵州省黔西南州中考数学试题(含答案)

2013年贵州省黔西南州中考数学试题(含答案)

黔西南州2013年初中毕业生学业暨升学统一考试试卷数 学考生注意:1.一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定位置内。

2.本试卷共4页,满分150分,答题时间120分钟。

一、选择题(每小题4分,共40分 ) 1.3-的相反数是A 、3B 、-3C 、3±D 、132.分式211x x -+的值为零,则x 的值为A 、-1B 、0C 、1±D 、13.已知ABCD 中,200A C ∠+∠=︒,则B ∠的度数是A 、100︒B 、160︒C 、80︒D 、60︒ 4.下列调查中,可用普查的是A 、了解某市学生的视力情况B 、了解某市中学生的课外阅读情况C 、了解某市百岁以上老人的健康情况D 、了解某市老年人参加晨练的情况5.一直角三角形的两边长分别为3和4.则第三边的长为BOAECA 、5B 、7C 、5D 、5或7 6.如图1所示,线段AB 是O 上一点,20CDB ∠=︒,过点C 作O 的切线交AB 的延长线于点E ,则E ∠等于A 、50︒B 、40︒C 、60︒D 、70︒ 7.某机械厂七月份生产零件50万个,第三季度生产零件196万个A 、50(1+x2)=196B 、50+50(1+x2)=196C 、50+50(1+x )+50(1+x2)=196D 、 50+50(1+x )+50(1+2x )=196[来源:学§科§网Z§X§X§K]8.在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有A 、1个B 、2个C 、3个D 、4个9.如图2,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为A 、32x < B 、3x < C 、32x > D 、3x >xy 图2AO10.如图3所示,二次函数y=ax2+bx+c 的图像中,王刚同学观察得出了下面四条信息:(1)b2-4ac>0 (2)c>1 (3)2a-b<0 (4)a+b+c<0,其中错误的有A 、1个B 、2个C 、3个D 、4个二、填空题(每小题3分,共30分) 11、81的平方根是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年贵州省铜仁地区中考数学试卷一、选择题(共10小题)1.(2013铜仁)2-的相反数是( )A .21B .12- C .2- D .2 考点:相反数。

解答:解:∵2+(﹣2)=0, ∴2-的相反数是2. 故选D .2.(2013铜仁)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 考点:中心对称图形;轴对称图形。

解答:解:A 、是轴对称图形,也是中心对称图形; B 、是轴对称图形,不是中心对称图形; C 、是轴对称图形,也是中心对称图形; D 、是轴对称图形,也是中心对称图形. 故选B .3.(2013铜仁)某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是( )A .15,15B .15,15.5C .15,16D .16,15 考点:众数;中位数。

解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人, 所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是15162+=15.5. 故选B .4.(2013铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( ) A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-=D .5(21)6x x +=考点:由实际问题抽象出一元一次方程。

解答:解:设原有树苗x 棵,由题意得5(211)6(1)x x +-=-.故选A .5.(2013铜仁)如图,正方形ABOC 的边长为2,反比例函数ky x=的图象过点A ,则k 的值是( )A .2B .﹣2C .4D .﹣4 考点:反比例函数系数k 的几何意义。

解答:解:因为图象在第二象限, 所以k <0,根据反比例函数系数k 的几何意义可知|k |=2×2=4, 所以k =﹣4. 故选D .6.(2013铜仁)小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( ) A .270πcm 2 B .540πcm 2 C .135πcm 2 D .216πcm 2 考点:圆锥的计算。

解答:解:圆锥形礼帽的侧面积=π×9×30=270πcm 2, 故选A .7.(2013铜仁)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.9考点:等腰三角形的判定与性质;平行线的性质。

解答:解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9∴MN=9,故选D.8.(2013铜仁)如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠K B.BC=2HI C.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六=2S六边形GHIJKL边形ABCDEF考点:相似多边形的性质。

解答:解:A、∵六边形ABCDEF∽六边形GHIJKL,∴∠E=∠K,故本选项错误;B、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴BC=2HI,故本选项正确;C 、∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,∴六边形ABCDEF 的周长=六边形GHIJKL 的周长×2,故本选项错误;D 、∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,∴S 六边形ABCDEF =4S 六边形GHIJKL ,故本选项错误. 故选B .9.(2013铜仁)从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一,299.7万平方公里用科学记数法表示为( )平方公里(保留两位有效数字) A .6103⨯ B .7103.0⨯ C .6100.3⨯ D .61099.2⨯考点:科学记数法与有效数字。

解答:解:299.7万=2.997×106≈3.0×106. 故选:C .10.(2013铜仁)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是( )A .54B .110C .19D .109 考点:规律型:图形的变化类。

解答:解:第①个图形中有1个平行四边形; 第②个图形中有1+4=5个平行四边形; 第③个图形中有1+4+6=11个平行四边形; 第④个图形中有1+4+6+8=19个平行四边形; …第n 个图形中有1+2(2+3+4+…+n )个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形; 故选D .二、填空题:(本大题共8个小题,每小题4分,共32分)11.(2013铜仁)|﹣2013|= .考点:绝对值。

解答:解:∵﹣2013<0, ∴|﹣2013|=2013.故答案为:2013.12.(2013铜仁)当x 时,二次根式1x有意义. 考点:二次根式有意义的条件。

解答:解:根据题意得,1x>0, 解得x >0. 故答案为:x >0.13.(2013铜仁)若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .考点:多边形内角与外角。

解答:解:360÷40=9,即这个多边形的边数是9.14.(2013铜仁)已知圆O 1和圆O 2外切,圆心距为10cm ,圆O 1的半径为3cm ,则圆O 2的半径为 . 考点:圆与圆的位置关系。

解答:解:∵圆O 1和圆O 2外切,圆心距为10cm ,圆O 1的半径为3cm , ∴圆O 2的半径为:10﹣3=7(cm ). 故答案为:7cm .15.(2013铜仁)照如图所示的操作步骤,若输入x 的值为5,则输出的值为 .考点:代数式求值。

解答:解:(5+5)2﹣3=100﹣3=97, 故答案为97.16.(2013铜仁)一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,现从中任意摸出一个球,恰好是黑球的概率为 .考点:概率公式。

解答:解:根据题意可得:一袋中装有红球6个,白球9个,黑球3个,共18个, 任意摸出1个,摸到黑球的概率是==.故答案为:.17.(2013铜仁)一元二次方程0322=--x x 的解是 .考点:解一元二次方程-因式分解法。

解答:解:原方程可化为:(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.18.(2013铜仁)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是.考点:正方形的性质;垂线段最短;全等三角形的判定与性质;直角三角形斜边上的中线。

解答:解:∵四边形CDEF是正方形,∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,∵AO⊥OB,∴∠AOB=90°,∴∠CAO+∠AOD=90°,∠AOD+∠DOB=90°,∴∠COA=∠DOB,∵在△COA和△DOB中,∴△COA≌△DOB,∴OA=OB,∵∠AOB=90°,∴△AOB是等腰直角三角形,由勾股定理得:AB==OA,要使AB最小,只要OA取最小值即可,根据垂线段最短,OA⊥CD时,OA最小,∵正方形CDEF,∴FC⊥CD,OD=OF,∴CA=DA,∴OA =CF =1, 即AB =,故答案为:.三、解答题:(本题共4个题,19、20题每小题5分,第21、22、23每题10分,共40分,要有解题的主要过程)19.(2013铜仁)(1)化简:12)1111(2-÷--+x x x 考点:分式的混合运算。

解答:解:原式=21)1111(2-⋅--+x x x =1112----x x x 212-⋅x = -1 (2)(2013铜仁)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)考点:作图—应用与设计作图。

解答:解:作图:连接AB …(1分) 作出线段AB 的垂直平分线…(3分) 在矩形中标出点M 的位置…(5分)( 必须保留尺规作图的痕迹,痕迹不全少一处扣(1分),不用直尺连接AB 不给分,无圆规痕迹不给分.)20.(2013铜仁)如图,E 、F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AE =CF ,BE =DF . 求证:△ADE ≌△CBF .考点:全等三角形的判定。

解答:证明:∵AE ∥CF ∴∠AED =∠CFB ,…(3分) ∵DF =BE , ∴DF +EF =BE +EF , 即DE =BF ,…(6分) 在△ADE 和△CBF 中,⎪⎩⎪⎨⎧=∠=∠=BF DE CFB AED CF AE ,…(9分) ∴△ADE ≌△CBF (SAS )…(10分).21.(2013铜仁)某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为 ,b 的值为 ,并将频数分布直方图补充完整;(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是 ;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数。

解答:解:(1)∵20÷0.1=200, ∴a =200﹣20﹣40﹣70﹣10=60, b =10÷200=0.05; 补全直方图如图所示. 故填60;0.05.(2)∵根据中位数的定义知道中位数在4.6≤x <4.9, ∴甲同学的视力情况范围:4.6≤x <4.9; (3)视力正常的人数占被统计人数的百分比是:,∴估计全区初中毕业生中视力正常的学生有35%×5000=1750人. 故填35%.22.(2013铜仁)如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan 30°= ; (2)如图,已知tanA =43,其中∠A 为锐角,试求ctanA 的值.考点:锐角三角函数的定义;勾股定理。

相关文档
最新文档