吉林省长春市2018年中考数学二模试题含答案 (2).docx
2018年吉林长春市中考数学试卷(含解析)

2018年吉林省长春市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题:(本大题共8小题,每小题3分,共24分)1.(2018吉林省长春市,1,3)-15的绝对值是(A)-15(B)15(C)-5 (D)5【答案】B【解析】根据负数的绝对值是它的相反数,可知-15的绝对值是15.【知识点】绝对值2.(2018吉林省长春市,2,3)长春市奥林匹克公园即将于2018年年底建成,它的总投资约为2 500 000 000元,2 500 000 000这个数用科学记数法表示为(A)0.25×1010(B)2.5×1010(C)2.5×109(D)25×108【答案】C【解析】把一个数写成|a|×10n的形式(其中1≤|a|<10,n为整数),这种计数的方法叫做科学记数法.其方法是:(1)确定a,a是只有一位整数的数;(2)确定n,当原数的绝对值≥10时,n为正整数,且等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前面零的个数(含整数数位上的零)2 500 000 000=2.5×109.故选C.错误!未找到引用源。
【知识点】科学记数法3.(2018吉林省长春市,3,3)下列立体图形中,主视图是圆的是(A)(B)(C)(D)【答案】D【解析】空间几何体的三视图首先是要确定主视图的位置,然后要时刻遵循“长对正,高平齐,宽相等” 的规律,即是空间几何体的长对正视图的长,高对侧视图的高,宽对俯视图的宽.轮廓内看见的棱线用实线画出,看不见的棱线用虚线画出.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.A. 圆锥的主视图为三角形,不符合题意;B. 圆柱的主视图为长方形,不符合题意;C.圆台的主视图为梯形,不符合题意;D.球的三视图都是圆,符合题意;故选D.【知识点】立体图形三视图——主视图.4.(2018吉林省长春市,4,3) 不等式3x —6≥0的解集在数轴上表示正确的是1231231230–1123(A ) (B ) (C) (D)【答案】B【解析】解一元一次不等式的步骤: (1)去分母; (2)去括号; (3)移项;(4)合并同类项; (5)系数化为1.此题只需移项,系数化为1即可. 解:3x —6≥0 3x ≥6 x ≥2123【知识点】一元一次不等式 5.(2018吉林省长春市,5,3) 如图,在△ABC 中,CD 平分 ∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A=54°,∠B=48°,则∠CDE 的大小为EDAB C(A )44° (B )40° (C )39° (D )38°【答案】C【解析】根据三角形内角和定理,可以计算出∠ACB=180°—∠A —∠B=180°—54°—48°=78°,又CD 平分 ∠ACB ,所以∠DCB=39°,因DE ∥BC ,根据两直线平行,内错角相等,所以∠CDE=∠DCB=39°. 【知识点】角平分线;两直线平行,内错角相等;三角形内角和. 6.(2018吉林省长春市,6,3)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(A )五丈 (B )四丈五尺 (C )一丈 (D )五尺【答案】B【解析】本题是利用相似求物高的问题,默认已知条件:太阳光是平行光线;同一时刻,甲物高/乙物高=甲影长/乙影长.看实际问题:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸.提取关键信息:标杆高度-----一尺五寸,标杆影长----五寸,竹竿高度----未知数,竹竿影长一丈五尺,画出草图,设竹竿高度为x ,建立数学模型:= x 一丈五尺一尺五寸五寸,解得x =四丈五尺.【知识点】相似,数学文化,方程思想.7.(2018吉林省长春市,6,3) 如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为(A )800sin α米 (B )800tan α米 (C )800sin α米 (D )800tan α米 αACB【答案】D【解析】由题中条件可知,在RT △ABC 中,∠ABC=α,AC=800米,建立数学模型tan α=AC AB ,可得AB=800tan α米.【知识点】解直角三角形,锐角三角函数,俯角问题. 8.(2018吉林长春,8,3分)如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数xky =(x > 0)的图象上.若AB =2,则k 的值为 (A )4(B )22 (C )2 (D )2(第8题)【答案】A【思路分析】本题中,若能求出点C 的坐标,即可求出k 值. 由等腰直角三角形的性质,再利用勾股定理可求出斜边AC 的长,又AC ⊥x 轴,即可得出点C 纵坐标;由等腰直角三角形ABC 可知∠BAC=45°,又有AC ⊥x 轴可知∠CAO =90°,故∠OAB=45°,所以ΔOAB 是等腰直角三角形,进而可求出OA 的长,即可得点C 的横坐标. 【解题过程】解:在Rt ΔABC 中,AB=BC ,∠ABC=90°,AB=2 ∴ AC =4 ,∠BAC=45° ∵AC ⊥x 轴 ∴∠CAO =90° ∴∠OAB=45°∴ΔOAB 是等腰直角三角形 又AB=2由勾股定理OA 2+OB 2=AB 2 得OA=2 ∴点C 坐标为(2,22) 把点C (2,22)代入函数xky =(x > 0)得k = 4. 故选项A 正确. 【知识点】等腰直角三角形,勾股定理,待定系数法求反比例函数解析式二、填空题(本大题共6小题,每小题3分,共18分)9.(2018吉林长春,9,3分)比较大小:10 3.(填“>”、“=”或“<”) 【答案】>【解析】∵ 3=9,10>9 ∴10>3. 【知识点】实数的大小比较 10.(2018吉林长春,10,3分)计算:a 2 ·a 3= . 【答案】a 5 【解析】a 2 ·a 3=a 2+3=a 5 【知识点】同底数幂的乘法11. (2018吉林长春,11,3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3).若直线y =2x 与线段AB 有公共点,则n 的值可以为 .(写出一个即可)(第11题) 【答案】2【解析】由点A 、B 的坐标分别为(1,3)、(n ,3)可知,线段AB // x 轴;令y =3得,x =23. ∴当x ≥23时,直线y =2x 与线段AB 有公共点,故取n ≥23的数即可. 【知识点】平面直角坐标系,一次函数12.(2018吉林长春,12,3分)如图,在ΔABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A =32°,则∠CDB 的大小为 度.(第12题)【答案】37【解析】∵AB=AC ,∠A =32° ∴∠ACB =(180°-32°)÷2=74° 由尺规作图知,CB=CD ∴∠CBD=∠CDB 又∵∠CBD+∠CDB=∠ACB∴∠CDB =21∠ACB=37° 【知识点】等腰三角形,三角形内角和,尺规作图,外角13.(2018吉林长春,13,3分)如图,在YABCD 中,AD=7,AB=32,∠B=60°.E 是边BC 上任意一点,沿AE 剪开,将ΔABE 沿BC 方向平移到ΔDCF 的位置,得到四边形AEFD ,则四边形AEFD 周长的最小值为 .(第13题)【答案】20【思路分析】由平移性质可知,四边形AEFD 是平行四边形,且AD=7. 故当边AE 值最小时,四边形AEFD 周长有最小值.如图,作AE ⊥BC ,此时AE 有最小值.【解题过程】解:如图,作AE ⊥BC .此时四边形AEFD 周长最小. 在R tΔAEB 中,∠AEB=90°,AB=32,∠B=60° ∴AE =AB·sin 60°=32×23=3 由平移性质可知,四边形AEFD 是平行四边形 ∴四边形AEFD 周长为2(AD +AE )=2×(7+3)=20. 【知识点】平行四边形,平移,最值14. (2018吉林长春,14,3分)如图,在平面直角坐标系中,抛物线y =x 2 + mx 交x 轴的负半轴于点A . 点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ' 恰好落在抛物线上. 过点A ' 作x 轴的平行线交抛物线于另一点C .若点A' 的横坐标为1,则A'C 的长为 .(第14题)【答案】3 【思路分析】如下图,A'C 与y 轴交于点D. 因为点A 与点A' 关于点B 对称,则AB=A'B ;又因A'C// x 轴,则ΔABO ≌ ΔA'BD ,AO=A'D. 点A' 的横坐标为1,即A'D=AO=1.所以点A 坐标为(-1,0),把点A (-1,0)代入函数解析式可求得m 值,进而可知A' 坐标,由A'C// x 轴,可求出点C 横坐标,即可求出A'C 的长.【解题过程】解:如图,A'C与y轴交于点D.∵点A与点A'关于点B对称∴AB=A'B又A'C// x轴∴∠A'DB=∠AOB=90°,∠DA'B=∠OAB∴ΔABO ≌ΔA'BD∴AO=A'D∵点A' 的横坐标为1∴A'D=AO=1∴A坐标为(-1,0)把(-1,0) 代入抛物线解析式y=x2 + mx 得m=1∴抛物线解析式为y=x2 + x∴A' 坐标为(1,2)令y=2得,x1 = -2 , x2=1∴A'C=1-(-2)=3.【知识点】待定系数法求抛物线解析式,对称的性质,平行线的性质,三角形全等,直角坐标系中求线段长度三、解答题(本大题共10小题,共78分)15.(2018吉林长春,15,6分)先化简,再求值:22111xx x-+--,其中51x=-.【思路分析】本题是同分母分式的加法运算,直接分母不变,分子相加即可,然后利用因式分解进行化简,最后代入求值.【解题过程】解:原式=2211 xx-+-=211 xx--=()()111x xx+--=1x+将51x=-代入,得,原式=511-+=5.【知识点】分式的化简求值16.(2018吉林长春,16,6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱.现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)(第16题)【思路分析】本题共有3张卡片,且是有放回抽取,依据题意用列表法或画树状图法分析所有可能出现的结果,然后根据概率公式求出该事件的概率即可. 【解题过程】解法一: 解:列表如下A 1 A 2BA 1 (A 1,A 1) (A 1,A 2) (A 1,B )A 2 (A 2,A 1) (A 2,A 2) (A 2,B ) B(B ,A 1)(B ,A 1)(B ,B )由表知,所有可能出现的结果有9种,其中抽出的两张卡片上的图案都是“金鱼”的情况有4种,并且每一种情况出现的可能性都是相同的. 所以, P(两张卡片上的图案都是“金鱼”)=49. 解法二:解:根据题意,可以画出如下的树状图:由树状图知,所有可能出现的结果有9种,其中抽出的两张卡片上的图案都是“金鱼”的情况有4种,并且每一种情况出现的可能性都是相同的. 所以, P(两张卡片上的图案都是“金鱼”)=49. 【知识点】随机事件的概率,列表法,树状图法17. (2018吉林长春,17,6分)图①、图② 均是8×8的正方形网格,每个小正方形的顶点称为格点, 线段OM 、ON 的端点均在格点上,在图①、图② 给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上. 要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.A 2 A 1A 1B A 2 A 2 A 1 B A 2 B A 1 B图①图②O NMMNO【思路分析】依据题意,理解格点的定义,结合轴对称的图形的定义和性质以及题目的要求,做出符合要求的图形.例如,可作出∠MON 的平分线,其平分线与格点的交点即为另一个顶点.【解题过程】图②图①O NMMNO【知识点】新定义(格点)的理解;轴对称;18.(2018吉林长春,18,7分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购,可以优惠. 结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润. (1)每套课桌椅的成本. (2)求商店的利润. 【思路分析】(1)设每套课桌椅成本为x 元,则优惠后的单价为(100-x )元,然后依据商店获得了同样多的利润,列出关于x 的方程,最后求出方程的解,即可.(2)总利润=每套课桌椅的利润×课桌椅的套数. 【解题过程】(1)解:设每套课桌椅的成本为x 元.由题意得60(100-x )=72(100-3-x ) 解得x =82.答:每套课桌椅的成本是82元.(2)由(1)得每套课桌椅的成本是82元,所以商店的利润是60(100-x)=60(100-82)=1080答:商店的利润是1080元【知识点】一元一次方程解决实际问题;总利润=每套课桌椅的利润×课桌椅的套数19.(2018吉林长春,19,7分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C= 40°.(1)求∠B的度数.(2)求»AD的长.(结果保留π)【思路分析】本题考查了圆的切线的性质,直角三角形两锐角的关系;以及弧长的计算公式.(1)由切线的性质可得,△ABC为直角三角形,利用直角三角形两锐角互余可求∠B的度数(2)利用弧长公式:l=错误!未找到引用源。
吉林省长春市朝阳区2018年中考数学二模试卷

吉林省长春市朝阳区2018年中考数学二模试卷一、选择题(本大题共8道小题,每小题3分,共24分)1.的绝对值是()A.B.C.2 D.﹣22.据某市旅游局统计,今年“春节”长假期间,旅游总收入达到855000000元,将855000000这个数字用科学记数法表示为()A.8.55×107B.0.855×109C.8.55×108D.85.5×1073.下列图形是正方体表面积展开图的是()A.B.C.D.4.把不等式2x+2≥0在数轴上表示出来,则正确的是()A.B.C.D.5.如图,AB∥CD,且∠1=115°,∠A=75°,则∠E的度数是()A.30° B.50° C.40° D.60°6.如图,AB是半圆O的直径,点C在半圆周上,连结AC,∠BAC=30°,点P是线段AB上任意一点,若AB=4,则CP的长不可能为()A.3 B.2 C.D.17.如图,在平面直角坐标系中,Rt△OAB的顶点A、B的坐标分别是(2,0),(2,4),将△OAB绕点O逆时针方向旋转90°,得到△OA′B′,函数y=(x<0)的图象过A′B′的中点C,则k的值为()A.4 B.﹣4 C.8 D.﹣88.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点B与原点O重合,顶点A、C 分别在y轴、x轴的正半轴上,将Rt△ABC沿直线y=2x向上平移得到Rt△A′B′C′,纵坐标为4,若AB=BC=3,则点A′的坐标为()A.(3,7) B.(2,7) C.(3,5) D.(2,5)二、填空题9.计算:=.10.一元二次方程x2﹣3x+1=0的根的判别式的值是.11.如图,在△ABC中,∠ACB=90°,将△ABC绕着点C顺时针旋转90°得到△A′B′C.若∠A=25°.则∠AB′A′的度数是度.12.如图,在平面直角坐标系中,点A在函数y=(k<0,x<0)的图象上,过点A作AB∥y轴交x轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是3,则k=.13.如图,AB是⊙O的直径,BD是弦,过点A的切线交BD延长线于点C.若AB=AC=4,则图中阴影部分图形的面积和是.14.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是.三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.16.(6分)在一个不透明的盒子中只装有2个白色围棋子和1个黑色围棋子,围棋子除颜色外其余均相同.从这个盒子中随机地摸出1个围棋子,记下颜色后放回,搅匀后再随机地摸出1个围棋子记下颜色.请用画树状图(或列表)的方法,求两次摸出的围棋子颜色都是白色的概率.17.(6分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?18.(7分)如图,在矩形ABCD中,点E、F分别在边BC、AD上,连结DE、EF.四边形CDFE沿EF折叠后得到四边形C′D′FE,点D的对称点D′与点B重合.求证:四边形BEDF 是菱形.19.(7分)在某市开展的“美丽春城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成如下不完整的统计图表:某校七年级部分同学的劳动时间频数分布表劳动时间(时)频数0.5 121 301.5 m2 18合计100(1)求m的值,并补全频数分布直方图.(2)被调查同学劳动时间的中位数是小时.(3)求被调查同学的平均劳动时间.20.(7分)如图,在热气球上A处测得一栋大楼顶部B的俯角为23°,测得这栋大楼底部C的俯角为45°.已知热气球A处距地面的高度为180m,求这栋大楼的高度(精确到1m).参考数据:sin23°=0.39,cos23°=0.92,tan23°=0.42.21.(8分)甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达目的地.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车行驶的速度.(2)求甲车到达B地后y与x之间的函数关系式.(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间.22.(9分)猜想:如图①,在▱ABCD中,点O是对角线AC的中点,过点O的直线分别交AD、BC于点E、F.若▱ABCD的面积是10,则四边形CDEF的面积是.探究:如图②,在菱形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F.若AC=4,BD=8,求四边形ABFE的面积.应用:如图③,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连结AD.若AC=4,,则△ABD的面积是.23.(10分)如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B 重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.2018年吉林省长春市朝阳区中考数学二模试卷参考答案与试题解析一、选择题(本大题共8道小题,每小题3分,共24分)1.的绝对值是()A.B.C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.据某市旅游局统计,今年“春节”长假期间,旅游总收入达到855000000元,将855000000这个数字用科学记数法表示为()A.8.55×107B.0.855×109C.8.55×108D.85.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:855000000=8.55×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形是正方体表面积展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、无法围成立方体,故此选项错误;B、无法围成立方体,故此选项错误;C、无法围成立方体,故此选项错误;D、可以围成立方体,故此选项正确.故选:D.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况,)判断也可.4.把不等式2x+2≥0在数轴上表示出来,则正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式2x+2≥0得,x≥﹣1,在数轴上表示为:.故选C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.5.如图,AB∥CD,且∠1=115°,∠A=75°,则∠E的度数是()A.30° B.50° C.40° D.60°【考点】平行线的性质;三角形的外角性质.【专题】计算题;压轴题.【分析】由AB∥CD,∠A=75°可以得到∠ECD=∠A=75°,而∠1=115°,再利用三角形外角的性质即可求出∠E.【解答】解:∵AB∥CD,∠A=75°,∴∠ECD=∠A=75°,∵∠1=115°,∴∠E=∠1﹣∠ECD=40°.故选C.【点评】本题应用的知识点为:两直线平行,同位角相等;三角形的一个外角等于和它不相邻的两个内角的和.6.如图,AB是半圆O的直径,点C在半圆周上,连结AC,∠BAC=30°,点P是线段AB上任意一点,若AB=4,则CP的长不可能为()A.3 B.2 C.D.1【考点】圆周角定理.【分析】连接BC,由圆周角定理得出∠ACB=90°,由∠BAC=30°得出BC=AB=2,求出AC= BC=2,当CP⊥AB时,CP最小,当P与A重合时,CP最大,求出CP的取值范围即可.【解答】解:连接BC,如图所示:∵AB是半圆O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=2,∴AC=BC=2,当CP⊥AB时,CP最小=AC=;当P与A重合时,CP最大=AC=2;∴≤CP≤2,∴CP的长不可能为1;故选:D.【点评】本题考查了圆周角定理、含30°角的直角三角形的性质、勾股定理;熟练掌握圆周角定理,求出CP的取值范围是解决问题的关键.7.如图,在平面直角坐标系中,Rt△OAB的顶点A、B的坐标分别是(2,0),(2,4),将△OAB绕点O逆时针方向旋转90°,得到△OA′B′,函数y=(x<0)的图象过A′B′的中点C,则k的值为()A.4 B.﹣4 C.8 D.﹣8【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】根据旋转的性质,旋转不改变图形的大小和形状,所得图形与原图形全等求得A′的坐标(0,2),B′的坐标是(﹣4,2),进而求得中点C的坐标,然后根据待定系数法剪开求得k的值.【解答】解:∵点A、B的坐标分别是(2,0),(2,4),∴OA=2,AB=4,∵△A′B′O≌△ABO,∵B(2,4),∴A′的坐标为(0,2),B′的坐标是(﹣4,2)∴A′B′的中点C(﹣2,2),∵函数y=(x<0)的图象过A′B′的中点C,∴k=﹣2×2=﹣4,故选B.【点评】本题考查了坐标与图形的变化﹣旋转,反比例函数图形上点的坐标特征,根据旋转的性质得出A′、B′的坐标是解题的关键.8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点B与原点O重合,顶点A、C 分别在y轴、x轴的正半轴上,将Rt△ABC沿直线y=2x向上平移得到Rt△A′B′C′,纵坐标为4,若AB=BC=3,则点A′的坐标为()A.(3,7) B.(2,7) C.(3,5) D.(2,5)【考点】坐标与图形变化-平移.【分析】根据直线解析式求出点B′的横坐标,再根据平移变换只改变图形的位置不改变图形的形状与大小确定出点A′的横坐标与纵坐标,然后写出即可.【解答】解:∵纵坐标为4,∴2x=4,解得x=2,所以,点B′的坐标为(2,4),∵Rt△ABC沿直线y=2x向上平移得到Rt△A′B′C′,AB=BC=3,∴A′的横坐标为2,纵坐标为4+3=7,∴点A′的坐标为(2,7).故选B.【点评】本题考查了坐标于图形变化﹣平移,一次函数图象上点的坐标特征,难点在于读懂题目信息并求出点B′的坐标.二、填空题9.计算:=2.【考点】二次根式的乘除法.【分析】根据二次根式的乘法,即可解答.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的乘法,解决本题的关键是熟记根式的乘法.10.一元二次方程x2﹣3x+1=0的根的判别式的值是5.【考点】根的判别式.【分析】根据根的判别式等于b2﹣4ac,代入求值即可.【解答】解:∵a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5,故答案为:5.【点评】本题考查了根的判别式,熟记根的判别式的公式△=b2﹣4ac.11.如图,在△ABC中,∠ACB=90°,将△ABC绕着点C顺时针旋转90°得到△A′B′C.若∠A=25°.则∠AB′A′的度数是115度.【考点】旋转的性质.【分析】根据旋转的性质可得∠A′B′C=∠B=65°,继而可得∠A′B′C的领补角∠AB′A′的度数.【解答】解:在△ABC中,∵∠ACB=90°,∠A=25°,∴∠B=65°,又∵△A′B′C是由△ABC绕着点C顺时针旋转90°得到,∴∠A′B′C=∠B=65°,∴∠AB′A′=180°﹣∠A′B′C=115°,故答案为:115.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,点A 在函数y=(k <0,x <0)的图象上,过点A 作AB ∥y 轴交x 轴于点B ,点C 在y 轴上,连结AC 、BC .若△ABC 的面积是3,则k= ﹣6 .【考点】反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.【分析】设点A 的坐标为(m ,),由点A 的坐标结合△ABC 的面积即可得出k 的值.【解答】解:设点A 的坐标为(m ,).∵S △ABC =AB •OB=×(﹣m )=3,∴k=﹣6.故答案为:﹣6.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出点A 的横纵坐标之积.本题属于基础题,难度不大,解决该题型题目时,用点A 的坐标来表示三角形的面积是关键.13.如图,AB 是⊙O 的直径,BD 是弦,过点A 的切线交BD 延长线于点C .若AB=AC=4,则图中阴影部分图形的面积和是 8﹣2π .【考点】扇形面积的计算;切线的性质.【分析】连接OD ,根据圆周角定理求出∠AOD 的度数,再由S 阴影=(S △ABC ﹣S 扇形AOD ﹣S △BOD )+(S 扇形BOD ﹣S △BOD )即可得出结论.【解答】解:连接OD ,∵AB 为⊙O 的直径,AC 为切线,AB=AC=4,∴∠BAC=90°,OA=OB=2,∠ABC=45°,∴∠AOD=90°,△BOD 是等腰直角三角形,∴S 阴影=(S △ABC ﹣S 扇形AOD ﹣S △BOD )+(S 扇形BOD ﹣S △BOD )=(×4×4﹣﹣×2×2)﹣(﹣×2×2)=8﹣π﹣2﹣(π﹣2)=6﹣π﹣π+2=8﹣2π.故答案为:8﹣2π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.14.在平面直角坐标系中,抛物线y=ax 2+bx +c (a ,b ,c 是常数,a >0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax 2+bx +c=0的一个根x 1的取值范围是2<x 1<3,则它的另一个根x 2的取值范围是 ﹣1<x 2<0 .【考点】图象法求一元二次方程的近似根;抛物线与x 轴的交点.【分析】利用对称轴及二次函数的图象性质,可以把图象与x 轴另一个交点的取值范围确定.【解答】解:由图象可知x=2时,y <0;x=3时,y >0;由于直线x=1是它的对称轴,则由二次函数图象的对称性可知:x=0时,y<0;x=﹣1时,y>0;所以另一个根x2的取值范围为﹣1<x2<0.故答案为:﹣1<x2<0.【点评】本题考查了图象法求一元二次方程的近似根,根据图象信息确定出图象与x轴交点的位置是解题的关键.三、解答题(本大题10小题,共78分)15.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2﹣b2﹣4a2+a2b=a2b﹣b2,当a=﹣,b=2时,原式=﹣4=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.在一个不透明的盒子中只装有2个白色围棋子和1个黑色围棋子,围棋子除颜色外其余均相同.从这个盒子中随机地摸出1个围棋子,记下颜色后放回,搅匀后再随机地摸出1个围棋子记下颜色.请用画树状图(或列表)的方法,求两次摸出的围棋子颜色都是白色的概率.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次摸出的围棋子颜色都是白色的情况,再利用概率公式即可求得答案.【解答】解:列表得:白2 黑第一次第二次白1白1 (白1,白1)(白2,白1)(黑,白1)白2 (白1,白2)(白2,白2)(黑,白2)黑(白1,黑)(白2,黑)(黑,黑)∵共有9种等可能的结果,两次摸出的围棋子颜色都是白色的有4种情况,∴P(两次摸出的围棋子颜色都是白色)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?【考点】分式方程的应用.【分析】求的是原计划的工效,工作总量为600,一定是根据工作时间来列等量关系,本题的关键描述语是:共用7天完成了任务,等量关系为:100个零件用的时间+500个零件的时间=7.【解答】解:设该厂原来每天加工x个零件,(1分)由题意得:(5分)解得x=50(6分)经检验:x=50是原分式方程的解(7分)答:该厂原来每天加工50个零件.(8分)【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.如图,在矩形ABCD中,点E、F分别在边BC、AD上,连结DE、EF.四边形CDFE 沿EF折叠后得到四边形C′D′FE,点D的对称点D′与点B重合.求证:四边形BEDF是菱形.【考点】矩形的性质;菱形的判定;翻折变换(折叠问题).【分析】根据矩形的性质得出AD∥BC,求出∠DFE=∠BEF,根据折叠得出∠BFE=∠DFE,求出∠BFE=∠BEF,推出BE=BF,推出BF=DF=BE=DE,根据菱形的判定得出即可.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DFE=∠BEF,∵EF为折痕,∴BF=DF,BE=DE,∠BFE=∠DFE,∴∠BFE=∠BEF,∴BE=BF,∴BF=DF=BE=DE,∴四边形BEDF是菱形.【点评】本题考查了矩形的性质,菱形的判定,折叠的性质的应用,能求出BF=DF=BE=DE 是解此题的关键,注意:四条边都相等的四边形是菱形.19.在某市开展的“美丽春城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成如下不完整的统计图表:某校七年级部分同学的劳动时间频数分布表劳动时间(时)频数0.5 121 301.5 m2 18合计100(1)求m的值,并补全频数分布直方图.(2)被调查同学劳动时间的中位数是 1.5小时.(3)求被调查同学的平均劳动时间.【考点】频数(率)分布直方图;频数(率)分布表;中位数.【分析】(1)利用总人数减去其它组的人数求得m的值,进而补全直方图;(2)根据中位数的定义求解;(3)利用加权平均数公式即可求解.【解答】解:(1)m=100﹣12﹣30﹣18=40.如图.;(2)同学劳动时间的中位数是1.5小时,故答案是:1.5;(3)被调查同学的平均劳动时间为(小时).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,在热气球上A处测得一栋大楼顶部B的俯角为23°,测得这栋大楼底部C的俯角为45°.已知热气球A处距地面的高度为180m,求这栋大楼的高度(精确到1m).参考数据:sin23°=0.39,cos23°=0.92,tan23°=0.42.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过P作PC⊥AB,垂足为C,进而求出DC的长,利用tan23°=,得BD的长,即可得出答案.【解答】解:过点A作直线BC的垂线,垂足为点D,由题意,得∠CAD=45°,∠BAD=23°,CD=180,∴∠CAD=∠ACD=45°,∴CD=AD=180,在Rt△ABD中,∠BDA=90°,∴BD=0.42×180=75.6,∴BC=CD﹣BD=180﹣75.6=104.4≈104m,答:这栋大楼的高约为104m.【点评】此题主要考查了解直角三角形的应用,根据题意正确构造直角三角形是解题关键.21.甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达目的地.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车行驶的速度.(2)求甲车到达B地后y与x之间的函数关系式.(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间.【考点】一次函数的应用.【分析】(1)甲车的速度是180÷1.8,即可解答;(2)先求出乙车的速度是180﹣100=80km/h.a=180÷80=2.25,利用待定系数法即可求出函数解析式;(3)当y=160时,求出x的值,即可解答.【解答】解:(1)甲车的速度是180÷1.8=100km/h.(2)乙车的速度是180﹣100=80km/h.a=180÷80=2.25.设y与x之间的函数关系式为y=kx+b.由题意,得解得,则y=80x.(3)当y=160时,80x=160,解得:x=2.答:乙车行驶的时间是2小时.【点评】本题考查了一次函数的应用,解决本题的关键是准确识图并获取信息.22.猜想:如图①,在▱ABCD中,点O是对角线AC的中点,过点O的直线分别交AD、BC于点E、F.若▱ABCD的面积是10,则四边形CDEF的面积是5.探究:如图②,在菱形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F.若AC=4,BD=8,求四边形ABFE的面积.应用:如图③,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连结AD.若AC=4,,则△ABD的面积是12.【考点】四边形综合题.【分析】猜想:首先根据平行四边形的性质可得AD∥BC,OA=OC.根据平行线的性质可得∠EAO=∠FCO,∠AEO=∠CFO,进而可根据AAS定理证明△AEO≌△CFO,再根据全等三角形的性质可得结论;探究:根据菱形的性质得到AD∥BC,AO=CO,BO=BD=4,根据全等三角形的判定定理得到△AOE≌△COF,由于AC⊥BD,于是得到结果;应用:延长AC到E使CE=AC=4,根据全等三角形的判定定理得到△ABC≌△CDE,由全等三角形的性质得到∠E=∠BAC=90°,根据勾股定理得到DE==3,即可得到结论.【解答】解:猜想:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AEO≌△CFO,=▱ABCD的面积=5;∴四边形CDEF的面积=S△ACD故答案为:5;探究:∵四边形ABCD是菱形,∴AD∥BC,AO=CO,BO=BD=4,∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE于△COF中,,∴△AOE ≌△COF ,∵AC ⊥BD ,∴.应用:延长AC 到E 使CE=AC=4,在△ABC 与△CDE 中,, ∴△ABC ≌△CDE ,∴∠E=∠BAC=90°,∴DE==3, ∴S △ABD =S △ADE =AE •DE=×8×3=12.故答案为:12.【点评】本题考查了全等三角形的判定和性质,平行四边形的性质,菱形的性质,图形面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.23.(10分)(2016•长春二模)如图,△ABC 是等边三角形,AB=6cm ,D 为边AB 中点.动点P 、Q 在边AB 上同时从点D 出发,点P 沿D →A 以1cm/s 的速度向终点A 运动.点Q 沿D →B →D 以2cm/s 的速度运动,回到点D 停止.以PQ 为边在AB 上方作等边三角形PQN .将△PQN 绕QN 的中点旋转180°得到△MNQ .设四边形PQMN 与△ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(0<t <3).(1)当点N 落在边BC 上时,求t 的值.(2)当点N 到点A 、B 的距离相等时,求t 的值.(3)当点Q 沿D →B 运动时,求S 与t 之间的函数表达式.(4)设四边形PQMN 的边MN 、MQ 与边BC 的交点分别是E 、F ,直接写出四边形PEMF 与四边形PQMN 的面积比为2:3时t 的值.【考点】几何变换综合题.【分析】(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN 的面积表达式后,即可求出t的值.【解答】解:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N 到点A 、B 的距离相等时,t=2;(3)由题意知:此时,PD=t ,DQ=2t当点M 在BC 边上时,∴MN=BQ∵PQ=MN=3t ,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当时, S △PNQ =PQ 2=t 2;∴S=S 菱形PQMN =2S △PNQ =t 2, 如图②,当时,设MN 、MQ 与边BC 的交点分别是E 、F ,∵MN=PQ=3t ,NE=BQ=3﹣2t ,∴ME=MN ﹣NE=PQ ﹣BQ=5t ﹣3,∵△EMF 是等边三角形,∴S △EMF =ME 2=(5t ﹣3)2.;(4)MN 、MQ 与边BC 的交点分别是E 、F ,此时,<t <, t=1或.【点评】本题考查等边三角形与菱形的性质,涉及到等边三角形的性质与面积公式,平行四边形和菱形的性质与面积公式,解方程等知识,综合程度较高,需要学生将各知识点灵活结合.24.(12分)(2016•长春二模)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=﹣m+4(用含m的代数式表示),点C的纵坐标是﹣m2﹣m+4(用含m 的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.【考点】二次函数综合题.【分析】(1)根据二次函数的解析式写出顶点P的坐标(m,n),又因为点p在直线y=﹣x+4上,将p点坐标代入可求出n,将二次函数化成一般式后得出点C的纵坐标,并将其化成含m的代数式;(2)当点P在矩形BCDE的边DE上,且在第一象限时,由CD=2可知,点P的横坐标为2,可求得纵坐标为2,则P(2,2),得出抛物线对应的函数表达式;(3)根据坐标表示出边BC的长,由矩形周长公式表示出d;(4)首先点B与C不能重合,因此点B不会在抛物线上,则分两类情况讨论:①点C、D 在抛物线上时;②点C、E在抛物线上时;由(1)的结论计算出m的值.【解答】解:(1)y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴P(m,n),∵点P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为:﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形BCDE是矩形,∴DE∥y轴.∵CD=2,∴当x=2时,y=2.∴DE与AB的交点坐标为(2,2).∴当点P在矩形BCDE的边DE上时,抛物线的顶点P坐标为(2,2).∴抛物线对应的函数表达式为.(3)∵直线y=﹣x+4与y轴交于点B,∴点B的坐标是(0,4).当点B与点C重合时,.解得m1=0,m2=﹣3.i)当m<﹣3或m>0时,如图①、②,..ii)当﹣3<m<0时,如图③,..(4)如图④⑤,点C、D在抛物线上时,由CD=2可知对称轴为:x=±1,即m=±1;如图⑥⑦,点C、E在抛物线上时,由B(0,4)和CD=2得:E(﹣2,4)则4=﹣(﹣2﹣m)2+(﹣m+4),解得:、.综上所述:m=1、m=﹣1、、.【点评】本题是二次函数与一次函数及矩形的综合题,考查了函数与两坐标的交点坐标,考查了二次函数的顶点式和矩形的性质,本题的解题思路为:利用点B的坐标和矩形的边长CD=2可以表示出点E的坐标或列式计算.。
2018年吉林省长春市中考数学试卷(含答案与解析)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前吉林省长春市2018年初中学业水平考试数 学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.15-的绝对值是 ( )A .15-B .15C .5-D .52.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2 500 000 000元,2 500 000 000这个数用科学记数法表示为( )A .100.2510⨯B .102.510⨯C .92.510⨯D .82510⨯ 3.下列立体图形中,主视图是圆的是( )ABCD 4.不等式360x -≥的解集在数轴上表示正确的是( )ABCD5.如图,在ABC △中,CD 平分ACB ∠交AB 于点D ,过点D 作DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠的大小为 ( )A .44︒B .40︒C .39︒D .38︒6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺7.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sin α米B .800tan α米C .800sin α米D .800tan α米 8.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数0k y x x=(>)的图象上,若2AB =,则k 的值为 ( )A .4B.C .2D毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)二、填空题(本大题共6小题,每小题3分,共18分) 9..(填“>”、“=”或“<”) 10.计算:23•a a = .11.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,3、(),3n ,若直线2y x =与线段AB 有公共点,则n 的值可以为 .(写出一个即可)12.如图,在ABC △中,AB AC =.以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若32A ∠=︒,则CDB ∠的大小为 度.13.如图,在ABCD 中,7AD=,AB =60B ∠=︒.E 是边BC 上任意一点,沿AE 剪开,将ABE △沿BC 方向平移到DCF △的位置,得到四边形AEFD ,则四边形AEFD 周长的最小值为 .14.如图,在平面直角坐标系中,抛物线2y x mx =+交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A '恰好落在抛物线上.过点A '作x 轴的平行线交抛物线于另一点C .若点A '的横坐标为1,则A C '的长为 .三、解答题(本大题共10小题,共78分)15.(本小题满分6分)先化简,再求值:22111x x x -+--,其中1x =.16.(本小题满分6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为1A 、2A ,图案为“蝴蝶”的卡片记为B ).17.(本小题满分6分)图①、图②均是88⨯的正方形网格,每个小正方形的顶点称为格点,线段OM 、ON 的端点均在格点上.在图①、图②给定的网格中以OM 、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求: (1)所画的两个四边形均是轴对称图形. (2)所画的两个四边形不全等.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)18.(本小题满分7分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润. (1)求每套课桌椅的成本; (2)求商店获得的利润.19.(本小题满分7分)如图,AB 是O 的直径,AC 切O 于点A ,BC 交O 于点D .已知O 的半径为6,40C ∠=︒. (1)求B ∠的度数.(2)求AD 的长.(结果保留π)20.(本小题满分7分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下: 20 21 19 16 27 18 31 29 21 22 25 20 19 22 35 33 19 17 18 29 18 35 22 15 18 18 31 31 19 22 整理上面数据,得到条形统计图:根据以上信息,解答下列问题:(1)上表中众数m 的值为 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”) (3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________21.(本小题满分8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3 5.5x≤≤时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(本小题满分9分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF BE⊥交BC于点F.易证ABF BCE≌.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG BE⊥交BC于点F,交AD于点G.(1)求证:BE FG=.(2)连结CM,若1CM=,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG BE⊥交AD于点G,连结EG、MG.若3CM=,则四边形GMCE的面积为.数学试卷第7页(共32页)数学试卷第8页(共32页)数学试卷 第9页(共32页) 数学试卷 第10页(共32页)23.(本小题满分10分)如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,4AB =,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD AC ⊥于点D (点P 不与点A 、B 重合),作60DPQ ∠=︒,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒. (1)用含t 的代数式表示线段DC 的长; (2)当点Q 与点C 重合时,求t 的值;(3)设PDQ △与ABC 重叠部分图形的面积为S ,求S 与t 之间的函数关系式; (4)当线段PQ 的垂直平分线经过ABC △一边中点时,直接写出t 的值.24.(本小题满分12分)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD y ⊥轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数2112y x mx =-++(0x ≥)的图象记为1G ,函数2112y x mx =---(0x <)的图象记为2G ,其中m 是常数,图象1G 、2G 合起来得到的图象记为G .设矩形ABCD 的周长为L . (1)当点A 的横坐标为1-时,求m 的值; (2)求L 与m 之间的函数关系式;(3)当2G 与矩形ABCD 恰好有两个公共点时,求L 的值; (4)设G 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,直接写出L 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________62.【答案】C【解析】2500000000用科学记数法表示为92.510⨯. 【考点】科学记数法的表示方法. 3.【答案】D【解析】A .圆锥的主视图是三角形,故A 不符合题意; B .圆柱的主视图是矩形,故B 错误; C .圆台的主视图是梯形,故C 错误; D .球的主视图是圆,故D 正确.【考点】简单几何体的三视图,熟记常见几何体的三视图是解题关键. 4.【答案】B【解析】360362x x x ≥≥≥﹣,,,在数轴上表示为,故选:B .【考点】解一元一次不等式和在数轴上表示不等式的解集. 5.【答案】 C 【解析】5448180544878A B ACB ∠=︒∠=︒∴∠=︒-︒-︒=︒,,,CD 平分ACB ∠交AB 于点D ,178=392DCB ∴∠=⨯︒︒,39DE BC CDE DCB ∴∠=∠=︒∥,,故选:C .7 / 16【考点】三角形内角和问题. 6.【答案】B【解析】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,1.5150.5x ∴=,解得45x =(尺). 【考点】相似三角形的应用. 7.【答案】D【解析】解:在Rt ABC 中,90800CAB B AC α∠=︒∠==,,米,ACtan ABα∴=, 800tan tan AC AB αα∴==. 故选:D .【考点】解直角三角形的应用. 8.【答案】A【解析】解:作BD AC ⊥于D ,如图,ABC 为等腰直角三角形,AC ∴==,BD AD CD ∴== AC x ⊥轴,C∴,把C 代入ky x=得4k ==. 故选:A .8【考点】反比例函数图象上点的坐标特征. 9.【答案】>【解析】解:23910=<,3>,故答案为:>.【考点】实数的大小比较和算术平方根的应用. 10.【答案】5a【解析】解:23235•a a a a +==. 故答案为:5a .【考点】同底数的幂的乘法的运算法则. 11.【答案】2【解析】解:∵直线2y x =与线段AB 有公共点,23n ∴≥,32n ∴≥.故答案为:2.【考点】一次函数图象上点的坐标特征. 12.【答案】37 【解析】解:32741372AB AC A ABC ACB BC DC CDB CBD ACB =∠=︒∴∠=∠=︒=∴∠=∠=∠=︒,,,又,.故答案为:37.【考点】等腰三角形的性质,三角形外角的性质. 13.【答案】20【解析】解:当AE BC ⊥时,四边形AEFD 的周长最小, ∵AE BC ⊥,AB =60B ∠=︒.∴3AE BE ==,∵ABE 沿BC 方向平移到DCF 的位置, ∴7EF BC AD ===,9 / 16∴四边形AEFD 周长的最小值为:14620+=, 故答案为:20. 【考点】平移的性质. 14.【答案】3【解析】解:当0y =时,20x mx +=,解得120x x m ==-,,则,0A m (-),∵点A 关于点B 的对称点为A ',点A '的横坐标为1, ∴点A 的坐标为10(-,), ∴抛物线解析式为2y x x =+,当1x =时,22y x x =+=,则1,2A '(),当2y =时,22x x +=,解得1221x x =-=,,则2,1C (-),∴A C '的长为123-=(-). 故答案为3.【考点】二次函数图象上点的坐标特征. 15.【解析】解:()()2222111211111111x x x x x x x x x x x -+---+=--=-+-=-=+当1x时,原式11+= 【考点】分式的化简求值.由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果, 所以抽出的两张卡片上的图案都是“金鱼”的概率为49.10【考点】列表法和树状图法. 17.【答案】解:如图所示:【考点】作图——轴对称变换,以及全等三角形的判定. 18.【答案】解:(1)设每套课桌椅的成本为x 元, 根据题意得:601006072100372x x ⨯-=⨯-()-, 解得:82x =.答:每套课桌椅的成本为82元. (2)60100821080⨯-=()(元). 答:商店获得的利润为1080元. 【考点】一元一次方程的应用. 19.【答案】解:(1)∵AC 切O 于点A ,904050BAC C B ∠=︒∠=︒∴∠=︒,,;(2)连接OD , 502100B AOD B ∠=︒∴∠=∠=︒,,∴AD 的长为100610=1803ππ⨯.【考点】切线的性质、圆周角定理、弧长公式等知识点. 20.【答案】解:(1)由图可得, 众数m 的值为18,11 / 16故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)1+1+2+3+1+2300=10030⨯(名), 答:该部门生产能手有100名工人.【考点】条形统计图、用样本估计总体、加权平均数、中位数和众数.21.【答案】解:(1)每分钟向储存罐内注入的水泥量为1535÷=分钟;(2)设0y kx b k =+≠()把()3,15,()5.5,25代入15=225 5.5k b k b +⎧⎨=+⎩,解得43k b =⎧⎨=⎩∴当3 5.5x ≤≤时,y 与x 之间的函数关系式为43y x =+(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为541-=立方米;只打开输出口前,水泥输出量为5.53 2.5-=立方米,之后达到总量8立方米需输出8 2.5 5.5-=立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5 5.511+=分钟故答案为:1,11.【考点】一次函数的图象性质以及在实际问题中比例系数k 代表的意义.22.【答案】解:感知:∵四边形ABCD 是正方形,909090AB BC BCE ABC ABE CBE AF BE ABE BAF BAF CBE ∴=∠=∠=︒∴∠+∠=︒⊥∴∠+∠=︒∴∠=∠,,,,,,在ABF 和BCE 中,90BAF CBE AB BC ABC BCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,ABF BCE ASA ∴≌(); 探究:(1)如图②,过点G 作GP BC ⊥于P ,∵四边形ABCD 是正方形,∴90AB BC A ABC =∠=∠=︒,,∴四边形ABPG 是矩形,∴PG AB =,∴PG BC =,同感知的方法得,PGF CBE ∠=∠,在PGF 和CBE 中,90PGF CBE PG BC PFG ECB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,PGF CBE ASA BE FG ∴∴=≌(),,(2)由(1)知,FG BE =,连接CM ,∵90BCE ∠=︒,点M 是BE 的中点,222BE CM FG ∴==∴=,,故答案为:2.应用:同探究(2)得,226BE ME CM ===,∴3ME =,同探究(1)得,6CG BE ==,∵BE CG ⊥, ∴1163922CEGM S CG ME =⨯=⨯⨯=四边形, 故答案为9.【考点】正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质.23.【答案】解:(1)在Rt ABC 中,304A AB ∠=︒=,,13 / 1690AC PD AC ADP CDP ∴=⊥∴∠=∠=︒,,在Rt ADP 中,2AP t =,202DP t AD APcosA t CD AC AD t ∴====∴==,﹣<<); (2)在Rt PDQ 中,∵60DPC ∠=︒,30PQD A PA PQ PD AC AD DQ ∴∠=︒=∠∴=⊥∴=,,,,∵点Q 和点C 重合,21AD DQ AC t ∴+=∴⨯=∴=,;(3)当01t ≤<时,21122PDQ S SDQ DP t ==⨯=⨯=; 当12t <<时,如图2,21CQ AQ AC AD AC t =-=-=--),在Rt CEQ 中,30CQE ∠=︒,∴•121CE CQ tan CQE t t =∠=-=)(﹣),∴)()21112122PDQ ECQ S S S t t t ==⨯-⨯-⨯-=+--,∴())220112t S t <≤=⎨⎪+-<<⎪⎩;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,11190222230PGF PG PQ AP t AF AB A AQP ∴∠=︒=====∠=∠=︒,,,,60302222212FPG PFG PF PG t AP PF t t t ∴∠=︒∴∠=︒∴==∴+=+=∴=,,,,; 当PQ 的垂直平分线过AC 的中点M 时,如图4,11190222QMN AN AC QM PQ AP t ∴∠=︒=====,, 在Rt NMQ中,cos30MQ NQ ==︒,34AN NQ AQ t +==∴=,, 当PQ 的垂直平分线过BC 的中点时,如图5,111302260301BF BC PE PQ t H ABC BFH H BH BF ∴====∠=︒∠=︒∴∠=︒=∠∴==,,,,,,在Rt PEH 中,22PH PE t ==,22554AH AP PH AB BH t t t ∴=+=+∴+=∴=,,,即:当线段PQ 的垂直平分线经过ABC △一边中点时,t 的值为12秒或34秒或54秒.15 / 16【考点】等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质.24.【答案】解:(1)由题意()()()0,11,11,1E A B -,,把()1,1B 代入2112y x mx =-++中,得到1112m =-++, ∴12m =. (2)∵抛物线1G 的对称轴1m x m =-=-, ∴2AE ED m ==,∵矩形ABCD 的对称中心为坐标原点O ,4284AD BC m AB CD L m ∴====∴=+,,.(3)∵当2G 与矩形ABCD 恰好有两个公共点,∴抛物线2G 的顶点21,12M m m ⎛⎫-- ⎪⎝⎭在线段AE 上, ∴21112m -=, ∴2m =或2-(舍弃),∴82420L =⨯+=.(4)①当最高点是抛物线1G 的顶点21,12N m m ⎛⎫+ ⎪⎝⎭时, 若213122m +=,解得1m =或1-(舍弃), 若21192m +=时,4m =或4-(舍弃), 又∵2m ≤,观察图象可知满足条件的m 的值为12m ≤≤,②当()2,21m -是最高点时,321922m m⎧≤-≤⎪⎨⎪≤⎩,解得25m ≤≤,综上所述,15m ≤≤,∴1244L ≤≤.【考点】二次函数综合题、矩形的性质、待定系数法、不等式组等知识.。
2018年长春市中考数学试卷及答案解析(word版)

2018年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A. B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3=.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m 是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.2018年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为2.(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20.【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为3.【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为2.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9.【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×=t,∴CD=AC﹣AD=2﹣t(0<t<2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD +DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=2(t ﹣1)×=2(t ﹣1),∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2,∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t ,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m 是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。
2018年吉林省长春市南关区中考数学二模试卷

2018年吉林省长春市南关区中考数学二模试卷一、选择题(本大题共8小题,共24.0分)1.实数-2的绝对值是()A. 2B.C.D. -22.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A. 1×10-15B. 0.1×10-14C. 0.01×10-13D. 0.01×10-123.下列四个几何体,正视图与其它三个不同的几何体是()A. B. C. D.4.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为()A. 0<a<1B. l<a<2C. 2<a<3D. 3<a<45.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A. 6B. 8C. 10D. 126.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A. 130°B. 120°C. 110°D. 100°7.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A. B. C. D.8.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是()A. -8B. -4C. 4D. 8二、填空题(本大题共6小题,共18.0分)9.正十二边形每个内角的度数为______.10.不等式5-2x<1的解集为______.11.计算-=______.12.不解方程,判断方程2x2+3x-2=0的根的情况是______.13.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=______.14.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则的值为______.三、计算题(本大题共2小题,共14.0分)15.先化简,+•,其中x=.16.数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.()该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?四、解答题(本大题共8小题,共64.0分)17.如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.18.某船的载重为260吨,容积为1000m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨体积为2m3,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙).19.如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.20.据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.【参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25】21.为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.22.如图,AD是△ABC的中线,过点C作直线CF∥AD.【问题】如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.【探究】如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.【应用】在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM 的面积为1,直接写出四边形ABPE的面积.23.如图,在△ABC中,∠C90°,BC=4,AC=3.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设点AP=x,△PMN与△ABC重合部分图形的周长为y.(1)AB=______.(2)当点N在边BC上时,x=______.(3)求y与x之间的函数关系式.(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.24.如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴l上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧)点A′和点A关于点P对称;过A′作直线m⊥l,又分别过点B、C作BE⊥m和CD⊥m,垂足为E、D.在这里我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.(1)直接写出抛物线y=x2的焦点坐标以及直径的长.(2)求抛物线y=的焦点坐标以及直径的长.(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.(4)①已知抛物线y=ax2+bx+c(a≠0)的焦点矩形的面积为2,求a的值.②直接写出抛物线y=x2-x+的焦点矩形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.2018年吉林省长春市南关区中考数学二模试卷答案和解析【答案】1. A2. A3. C4. C5. B6. D7. D8. B9. 150°10. x>211. 112. 有两个不相等的实数根13.14.15. 解:====当时,=.16. 11由表可知共有种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)=.18. 解:设这艘船装甲货物x吨,装乙货物y吨,根据题意,得.解得.答:这艘船装甲货物80吨,装乙货物180吨.19. (1)证明:连结OD.如图,∵CD与⊙O相切于点D,∴OD⊥CD,∴∠2+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠1+∠2=90°,∴∠1=∠BDC,∵OA=OD,∴∠1=∠A,∴∠BDC=∠A;(2)解:在Rt△ODC中,∵∠C=45°,∴OC=OD=,∴AC=OA+OC=1+.20. 解:∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.47.∵限高杆顶端到桥面的距离DF为2.47米,小于客车高2.5米,∴客车不能通过限高杆.21. 解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.22. 【问题】证明:如图①∵DG∥AB,∴∠1=∠2,∠B=∠4,∵CF∥AD,∴∠2=∠3,∴∠1=∠3,∵AD是△ABC的中线,∴BD=DC,∴△ABD≌△EDC,∴AB=DE.(或证明四边形ABDE是平行四边形,从而得到AB=DE.)【探究】四边形ABPE是平行四边形.方法一:如图②,证明:过点D作DN∥PE交直线CF于点N,∵CF∥AD,∴四边形PDNE是平行四边形,∴PE=DN,∵由问题结论可得AB=DN,∴PE=AB,∴四边形ABPE是平行四边形.方法二:如图③,证明:延长BP交直线CF于点N,∵PG∥AB,∴∠1=∠2,∠5=∠4,∵CF∥AD,∴∠2=∠3,∴∠1=∠3,∵AD是△ABC的中线,CF∥AD,∴BP=PN,∴△ABP≌△EPN,∴AB=PE,∴四边形ABPE是平行四边形.【应用】如图④,延长BP交CF于H.由上面可知,四边形ABPE是平行四边形,∴AE∥BH,∴PA∥EH,∴四边形APHE是平行四边形,∴PA=EH,∵BD=DC,DP∥CH,∴BP=PH,∴CH=2PD,∵AP=PD,∴EC=3PA,∵PA∥EC,∴==,∴S△AEM=3S△APM=3,∴S△ABP=S△APE=4,∴S平行四边形ABPE=8.23. 524. 解:(1)∵抛物线,∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,∴抛物线的焦点坐标为(0,1),将y=1代入,得x1=-2,x2=2,∴此抛物线的直径是:2-(-2)=4;(2)∵=,∴此抛物线的焦点的横坐标是:3,纵坐标是:2+=3,∴焦点坐标为(3,3),将y=3代入y═,得,解得,x1=5,x2=1,∴此抛物线的直径时5-1=4;(3)∵焦点A(h,),∴,解得,,,∴直径为:==,解得,,即a的值是;(4)①由(3)得,BC=,又CD=A'A=所以,解得,;②当或时,1个公共点,当≤1或5≤时,2个公共点,理由:由(2)知抛,物线的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x2-2mx+m2+1=(x-m)2+1过B(1,3)时,或m=1+(舍去),过C (5,3)时,m=5-(舍去)或,∴当或时,1个公共点;当≤1或5≤时,2个公共点.由图可知,公共点个数随m的变化关系为当时,无公共点;当时,1个公共点;当≤1时,2个公共点;当1<m<5时,3个公共点;当5≤时,2个公共点;当时,1个公共点;当时,无公共点;由上可得,当或时,1个公共点;当≤1或5≤时,2个公共点.【解析】1. 解:实数-2的绝对值是2,故选:A.根据负数的绝对值是它的相反数,可得答案.本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.2. 解:把0.000 000 000 000001这个数用科学记数法表示为1×10-15.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3. 解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C.根据主视图的定义逐一判别即可得.本题主要考查简单几何体的三视图,解题的关键是掌握主视图的定义.4. 解:∵一个正方形花坛的面积为7m2,其边长为am,∴a=,∴2<<3,则a的取值范围为:2<a<3.故选:C.直接利用正方形的性质结合估算无理数大小的方法得出答案.此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.5. 解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线得到边AB上的高是解题的关键.6. 解:∵∠B+∠D=180°,∴∠D=180°-130°=50°,∴∠AOC=2∠D=100°.故选:D.先根据圆内接四边形的性质得到∠D=180°-∠B=50°,然后根据圆周角定理求∠AOC.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.7. 解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D.依据注水量V(升)与水深h(厘米)的函数关系图象,可得水深与注水量之间成正比例关系,即随着水的深度变高,需要的注水量也是均匀升高,进而得到水瓶的形状.本题主要考查函数的图象的知识点,需注意容器的水平截面是均匀的,注水量也将随着水深均匀增多.8. 解:作EH⊥OA于H,连接AE.∵BD=AD,∴S△ABE=2S△BDE=2,∵四边形AHEB,四边形ECOH都是矩形,BE=EC,∴S矩形ABEH=S矩形ECHO=2S△ABE=4,∴|k|=4,∵k<0,∴k=-4,故选:B.作EH⊥OA于H,连接AE.想办法求出矩形ECOH的面积即可解决问题;本题考查反比例函数的性质、矩形的判定和性质、三角形中线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.9. 解:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°-30°=150°.故答案为:150°.首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.本题考查了多边形的计算,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.10. 解:5-2x<1,-2x<1-5,-2x<-4,x>2.故答案为x>2.移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式的应用,注意:解一元一次不等式和解一元一次方程类似:去分母、去括号、移项、合并同类项、系数化成1,但是不等式的两边都乘以或除以同一个负数,不等号的方向要改变.11. 解:原式=3-2=1.故答案为:1原式利用平方根及立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12. 解:∵a=2,b=3,c=-2,∴△=b2-4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13. 解:∵∠ACB=90°,点F是AD的中点,∴CF=AD=1,∵DE⊥AB,∴∠AED=90°,∴EF=AD=1,∴CF=EF,∵∠CFE=90°,∴CE===,故答案为:根据直角三角形的性质得到CF=AD=1,EF=AD=1,求得CF=EF,根据勾股定理即可得到结论.本题考查了直角三角形的性质,等腰直角三角形的判定,勾股定理,正确的识别图形是解题的关键.14. 解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==a,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故答案为:.可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.本题考查了抛物线上点的计算,考查了三角形面积的计算,本题中求得点E、F、D的坐标是解题的关键.15. 根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.16. 解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式y=kx+b,∵图象经过点(7,115.2)、(11,129.6),则,解得.即直线AB所对应的函数表达式:y=3.6x+90;(3)设直线CD所对应的函数表达式为:y=mx+n,,得,即直线CD所对应的函数表达式为:y=6.4x+58.8,把x=18代入y=6.4x+58.8得y=174,即该市18岁男生年龄组的平均身高大约是174cm左右.(1)根据图象可以解答本题;(2)根据函数图象中的数据可以求得直线AB的函数解析式;(3)根据函数图象中的数据可以求得直线CD的函数解析式,求得市18岁男生年龄组的平均身高大约是多少.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.17. 首先根据题意列出表格,然后由表格求得所有等可能的结果与牌面上的数字和是偶数的情况,再利用概率公式求解即可求得答案.此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18. 通过理解题意可知本题存在两个等量关系,即甲种货物的总质量+乙种货物的总质量=260吨,甲种货物所占的总体积+乙种货物所占的总体积=1000立方米,根据这两个等量关系可列出方程组.考查了二元一次方程组的应用和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意题中最大限度地利用船载重量和容积.19. (1)连结OD.如图,利用切线的性质得∠2+∠BDC=90°,利用圆周角定理得到∠1+∠2=90°,则∠1=∠BDC,加上∠1=∠A,所以∠BDC=∠A;(2)先利用等腰直角三角形的性质得OC=OD=,锐角计算OA+OC即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.20. 先求出∠EDF=∠ABC=14°,再解Rt△EDF,得出DF=DE•cos∠EDF=2.55×cos14°≈2.47.根据限高杆顶端到桥面的距离DF为2.47米,小于客车高2.5米,即可说明客车不能通过限高杆.此题考查了解直角三角形的应用-坡度坡角问题,解题的关键是把实际问题转化为解直角三角形问题.21. (1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.22. 【问题】如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,只要证明△ABD≌△EDC即可;【探究】如图②,四边形ABPE是平行四边形,方法一,过点D作DN∥PE交直线CF 于点N,只要证明四边形PDNE是平行四边形,推出PE=DN,由问题结论可得AB=DN,推出PE=AB,推出四边形ABPE是平行四边形;方法二,如图③中,延长BP交直线CF于点N,只要证明△ABP≌△EPN,即可解决问题;【应用】如图④,延长BP交CF于H.想办法求出△AEM的面积即可解决问题;本题考查四边形综合题、全等三角形的判定和性质、平行线的性质、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.23. 解:(1)在Rt△ABC中,AB===5,故答案为5.(2)如图1中,∵PA∥MN,PN∥AM,∴四边形PAMN是平行四边形,∴MN=PA=x,AM=PN==x,当点N在BC上时,sin A==,=,∴x=.(3)①当0≤t≤时,如图1,,,∴y=PN+MN+PM=x+x+x=4x.②当<t<时,如图2,y=4x-EN-NF+EF==,EN=PN-PE==,∴.③当≤t≤5时,如图3,y=PM+PE+EM==,∴.(4)如图4中,当点G是AC中点时,满足条件∵PN∥AG∴,∴,∴如图5中,当点D是AB中点时,满足条件.∵MN∥AD∴,∴,∴综上所述,满足条件的x的值为或.(1)理由勾股定理计算即可解决问题;(2)当点N在BC上时,根据sin A==,构建方程即可解决问题;(3)分三种情形分别求解即可解决问题;(4)分两种情形:①如图4中,当点G是AC中点时,满足条件;②如图5中,当点D 是AB中点时,满足条件.理由平常穿分线段成比例定理,构建方程即可解决问题;本题考查三角形综合题、平行四边形的判定和性质、平行线分线段成比例定理、锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.24. (1)根据题意可以求得抛物线y=x2的焦点坐标以及直径的长;(2)根据题意可以求得抛物线y=的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)2+k(a≠0)的直径为,可以求得a的值;(4)①根据题意和抛物线y=ax2+bx+c(a≠0)的焦点矩形的面积为2,可以求得a的值;②根据(2)中的结果和图形可以求得抛物线y=x2-x+的焦点矩形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.本题是一道二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.。
2018年吉林省长春市中考数学模拟试卷(二)-普通用卷

2018年吉林省长春市中考数学模拟试卷(二)副标题一、选择题(本大题共8小题,共24.0分)1.如图,在数轴上点M表示的数可能是A. B. C. D.2.正方形网格中的图形 ~ 如图所示,其中图、图中的阴影三角形都有一个角是的直角三角形,图、图中阴影三角形都是有一个角是的锐角三角形,以上图形能围成正三棱柱的图形是A. 和B. 和C. 和D.3.2016年“十一”期间,长春市净月潭国家森林公园累计接待游客万人次,将万这个数据用科学记数法表示正确的是A. B. C. D.4.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是A. B. C. D.5.如图,在中,点D在边BA的延长线上,的平分线和的平分线相交于点M,若,,则的大小为A. B. C. D.6.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则等于A. 2B. 3C. 4D. 无法确定7.如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为A.B.C.D.8.函数m都是常数且的图象如上图,如果时,,那么时,函数值A.B.C.D.二、填空题(本大题共6小题,共18.0分)9.一个矩形的面积为,若一边长为a,则另一边长为______.10.3月12日某班50名学生到郊外植树,平均每人植树a棵,则该班一共植树______棵11.将一张矩形纸片折叠成如图所示的图形,若,则______cm.12.正方形网格中,如图放置,则的值为______.13.如图,在平面直角坐标系中,点A在直线上,过点A作y轴的平行线交直线于点B,点AB均在第一象限,以AB为边向右作正方形ABCD,若,则点C的坐标为______.14.已知A,B,C是反比例函数图象上的三个整点即横、纵坐标均为整数的点,分别以这些点向横轴或纵轴作垂线段,由垂线段为边作出三个正方形,再以正方形的边长为直径作两个半圆,组成如图所示的阴影部分,则阴影部分的面积总和是______用含的代数式表示三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:,其中.四、解答题(本大题共9小题,共72.0分)16.一个不透明的袋子里有三个小球,上面分别标有数字3,,5,每个小球除所标数字不同外其余均相同,小文先从袋子里随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,请用画树状图或列表的方法,求小文的两次摸出小球上的数字都是正数的概率.17.一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为,在高速路上行驶的速度为,汽车从A地到B地一共行驶了,普通公路和高速公路各是多少km?18.如图,BD是▱ABCD的对角线,点E、F在BD上,请你添加一个条件,使四边形AECF是平行四边形,并证明你的结论.19.如图,有一热气球到达A处时,仪器显示其正前方一高楼顶部B的仰角是,与楼的水平距离AC为12米,为了安全飞越高楼,气球应至少再上升多少米?结果精确到米【参考数据:,,】20.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况选项:和同学亲友聊天;学习;购物;游戏;其它,端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表部分信息未给出:根据以上信息解答下列问题:______,______,______.求本次参与调查的总人数,并补全条形统计图.若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.21.某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内包括9天将所租汽车归还租赁费用元随时间天的变化图象为折线,如图所示.当租赁时间不超过3天时,求每日租金.当时,求y与x的函数解析式.甲、乙两人租赁该款汽车各一辆,两人租赁时间一共为9天,甲租的天数少于3天,乙比甲多支付费用720元请问乙租这款汽车多长时间?22.【操作与发现】如图1,中,请你以MN为一边,在MN的同侧构造一个与全等的三角形,画出图形,并简要说明构造的方法;【借鉴与应用】参考你画图构造全等三角形的方法解决下面问题:如图2,在四边形ABCD中,,,求证:.23.如图,在中,,,,点P从点A出发以每秒2个单位的速度沿AB向终点B运动,过点P作AB的垂线交折线于点Q,当点Q不和的顶点重合时,以PQ为边作等边三角形PQM,使点M和点C 在直线PQ的同侧,设点P的运动时间为秒.求等边三角形PQM的边长用含t的代数式表示.当点M落在的边上时,求t的值.设与重合部分图形的面积为S,求S与t的函数关系式.作直线CM,设点P、Q关于直线CM的对称点分别为、,直接写出时t的值.24.在平面直角坐标系中,对于点和点给出如下定义:若则称点Q为点P的限变点.例如:点的限变点的坐标是,点的限变点的坐标是.点的限变点的坐标是______.若点P在函数图象上,某限变点Q在函数M的图象上,则函数M的函数值y随x的增大而增大时自变量x的取值范围是______.若点P在函数的图象上,其限变点Q的纵坐标的取值范围是,求k的取值范围.已知点,,连结AB,点P在函数的图象上,请直接写出点P的限变点Q所在函数的图象与线段AB有且只有两个交点时m 的取值范围.答案和解析【答案】1. C2. A3. B4. C5. C6. B7. C8. C9.10. 50a11. 612.13.14.15. 解:,,,,当时,原式.16. 解:画树形图得:由树形图可知:小文两次摸出的小球所标数字都是正数的概率.17. 解:设普通公路长为,高速公路长为.根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.18. 解:添加,如图,假设AC与BD交于点O,四边形ABCD是平行四边形,,,,,,四边形AECF是平行四边形.19. 解:在中,,即米,答:气球应至少再上升约米.20. ;10;2021. 解:由函数图象,得元;设BC的解析式为,由函数图象,得,解得:,与x之间的函数关系式为:;设乙租这款车天,就有甲租用的时间为天,由题意,得甲的租金为,乙的租金为,,解得:.答:乙租这款汽车的时间是7天.22. 【操作与发现】如图1,作,截取,连接PM,则为所作.【借鉴与应用】证明:构建≌ ,如图2,,,,,,点在BC的延长线上,,,,.23. 解:由题意得:,中,,,,,当Q与C重合时,如图1,,,,即,,当Q在边AC上时,如图2,即,,;当Q在边BC上时,如图3,即,中,,,,;当M落在AC上时,如图4,,,,,,,,,,,;分三种情况:当时,Q在AC上,如图2,与重合部分图形是等边,,当时,Q在BC上,如图5,与重合部分图形是四边形PEDQ,由得:,,,,,,,四边形,,;当时,Q在BC上,如图4,与重合部分图形是等边,;综上所述,S 与t 的函数关系式为:.分两种情况:当Q 在AC 上时,如图6,,延长PQ 、交CM 于同一点D , , , , , ,,,,由对称得:, ,中, , , , ,,;当Q 在BC 上时,如图7,当时,在AB 上,连接,,并延长、QP ,交CM 上同一点为E ,,易得 ≌,, 由 知:,,由得:,解得;则时t 的值为 秒或秒24. ; 或【解析】1. 解;点M 表示的数大于 且小于 ,A 、 ,故A 错误;B 、 ,故B 错误;C 、 ,故C 正确;D 、 ,故D 错误. 故选:C .根据数轴上点M的位置,可得点M表示的数.本题考查了数轴,数轴上点的位置关系是解题关键.2. 解:正三棱柱上、下两底面是全等的两正三角形,只有和个图形符合要求,故选:A.利用正三棱柱及其表面展开图的特点解题,正三棱柱是上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的棱柱,并且上下底面的中心连线与底面垂直,也就是侧面与底面垂直.本题考查了三棱柱表面展开图,利用上、下两底面应在侧面展开图长方形的两侧,且都是三角形得出是解题关键.3. 解:将万这个数据用科学记数法表示正确的是,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:该不等式组的解集是:.故选:C.根据不等式解集的表示方法即可判断.本题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“”空心圆点向右画折线,“”实心圆点向右画折线,“”空心圆点向左画折线,“”实心圆点向左画折线.5. 解:,,,的平分线和的平分线相交于点M,,,,故选:C.根据三角形的内角和定理列式计算即可求出,再根据角平分线的定义求出,,然后利用三角形的内角和定理求出即可.本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.6. 解:设空白出图形的面积为x,根据题意得:,,则.故选:B.设空白出的面积为x,根据题意列出关系式,相减即可求出的值.本题考查了三角形的面积;设出未知数,根据三角形的面积得出关系式是解决问题的关键.7. 解:设的度数,的度数;四边形ABCO是平行四边形,;,;而,,解得:,,,故选:C.设的度数,的度数,由题意可得,求出即可解决问题.该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.8. 解:抛物线的对称轴,时,,,关系图象可知:时,函数值,故选:C.由题意抛物线的对称轴,观察图象可知,,由此即可解决问题.本题考查二次函数与x轴的交点,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.9. 解:,另一边长为,故答案为:.根据矩形的面积和已知边长,利用多项式除以单项式的法则计算即可求出另一边长.本题主要考查多项式除以单项式的法则;熟练掌握多项式除以单项式的法则是解决问题的关键.10. 解:每人植树a棵,名学生植树50a棵,该班一共植树50a棵;故答案为:50a.先根据平均每人植树a棵,得出50名学生植树的棵树,即可得出答案.此题考查了列代数式,解题的关键是读懂题意,列出代数式,是一道基础题.11. 解:如图,延长原矩形的边,矩形的对边平行,,由翻折变换的性质得,,,,,.故答案为:6.延长原矩形的边,然后根据两直线平行,内错角相等可得,根据翻折变换的性质可得,从而得到,再根据等角对等边可得,从而得解.本题考查了翻折变换的性质,平行线的性质,等腰三角形的判定,熟记各性质是解题的关键,难点在于作出辅助线.12. 解:如图,C为OB边上的格点,连接AC,根据勾股定理,,,,所以,,所以,是直角三角形,.故答案为:.找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾计算即可得解.股定理逆定理证明是直角三角形,然后根据余弦邻边斜边本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.13. 解:设,则,,,,,四边形ABCD是正方形,轴,,轴,点C的坐标为.故答案为.根据一次函数图象上点的坐标特征可设,则,由,得出,求出x的值,得到B点坐标,再根据正方形的性质即可求出点C的坐标.本题考查了一次函数图象上点的坐标特征直线上任意一点的坐标都满足函数关系式也考查了正方形的性质以及正比例函数的性质.14. 解:,B,C是反比例函数图象上的三个整点即横、纵坐标均为整数的点,点坐标为,B点坐标为,C点坐标为,三个正方形的边长分别为1,2,1,阴影部分的面积总和故答案为由于A,B,C是反比例函数图象上的三个整点即横、纵坐标均为整数的点,利用整除性易得A点坐标为,B点坐标为,C点坐标为,则三个正方形的边长分别为1,2,1,而每个正方形内的阴影部分的面积都等于正方形的面积减去一个圆的面积,则根据正方形和圆的面积公式得到阴影部分的面积总和.本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足图象的解析式;运用正方形的性质和圆的面积公式进行计算.15. 将括号内的部分通分,再将除法转化为乘法,因式分解后约分,然后将求出的x的值代入即可解答.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上的数字都是正数的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.17. 由题意得:从A地驶往B地,前路段为普通公路,其余路段为高速公路得到:高速公路的长度普通公路长度的两倍;汽车从A地到B地一共行驶了最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数,列方程组,解答问题.本题考查了二元一次方程组的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18. 添加,证明四边形AECF的对角线互相平分即可.此题主要考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.19. 在直角三角形ABC中,利用正切值的定义求出BC的长即可.本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形.20. 解:因为调查的总人数为人,所以,,,故答案为:、10、20.由知总人数为50人,补全图形如下:人,建议:学生在假期里应该更加规范自己使用手机的情况,可以用于学习或其他有意义的事情.先根据C选项频数和频率求出总人数,再根据频率频数总数分别求解可得;根据表格中数据即可补全条形图;总人数乘以样本中D、E的频率之和即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.21. 根据函数图象由总租金租期就可以得出每天的租金;直接运用待定系数法就可以求出y与x之间的函数关系式;设乙租这款车a天,就有甲租用的时间为天,分别表示出甲乙的租金从而建立方程求出其解即可.本题考查了单价总价数量的运用,待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,解答时三个问题是递进关系,必须依次解决每个问题才能求出最后一个问题.22. 【操作与发现】如图1,理由全等三角形的判断方法“SAS”作图,先作,再截取,则可判断与全等;【借鉴与应用】构建 ≌ ,如图2,理由全等的性质得,,,再证明E点在BC的延长线上,接着证明得到,从而得到.本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了全等三角形的判定与性质.23. 分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时,根据30度的直角三角形的性质或特殊的三角函数列式可得结论;根据,列出关于t的方程即可解答;分三种情况:当时,Q在AC上,如图2,与重合部分图形是等边,当时,Q在BC上,如图5,与重合部分图形是四边形PEDQ,当时,Q在BC上,如图4,与重合部分图形是等边,根据面积公式可得结论;分两种情况:当Q在AC上时,如图6,根据,列关于t的方程可得结论;当Q在BC上时,如图7,根据,列关于t的方程可得结论.本题是三角形的综合题,考查了等边三角形的性质和判定、三角形全等的性质和判定、三角形和四边形的面积问题、勾股定理、特殊的三角函数值等知识,比较复杂,有难度,并采用了分类讨论的思想,设未知数,利用勾股定理或线段相等列方程解决问题.24. 解:,点的限变点的坐标是.设点Q的坐标为.当时,,此时y随x的增大而增大;当时,,此时y随x的增大而增大;当时,,此时y随x的增大而减小.综上可知:自变量x的取值范围是或.故答案为:;或.设点P的坐标为,当时,点Q的坐标为,,.当时,点Q的坐标为,,.,,.设点P的坐标为,则点Q的纵坐标.令,当其有实数根时,有,解得:或.当时,如图1所示.此时有,解得:;当时,如图2所示,此时不符合题意;当时,如图3所示,此时不符合题意;当时,如图4所示,此时符合题意;当时,如图5所示.此时有,解得:.综上所述:当点P的限变点Q所在函数的图象与线段AB有且只有两个交点时,m的取值范围为或或.根据限变点的定义即可求出结论;设点Q的坐标为,分、及三种情况找出y关于x的变化规律,由此即可得出结论;设点P的坐标为,找出当及两种情况找出点Q的坐标,由其纵坐标的取值范围是,即可求出k的取值范围;设点P的坐标为,则点Q的纵坐标,分、、、及五种情况,依照题意画出图形,观察图形结合二次函数图象上点的坐标特征,求出m的取值范围.本题考查了反比例函数的性质、二次函数的图象以及二次函数图象上点的坐标特征,解题的关键是:利用限变点的定义找出结论;利用反比例函数的性质求出x的取值范围;根据限变点的定义结合求出k的取值范围;依照题意画出图形,利用数形结合解决问题是解题的关键.。
吉林省长春市2018年中考数学二模试题含答案
2018 年中考第二次模拟考试数学试卷一、选择题(每题 4 分,共 40 分) 1.-2 的倒数是( )A .12-B .2C .2-D .122.如图,下列图形从正面看是三角形的是( )3.用反证法证明“若 a ⊥c ,b ⊥c ,则 a ∥b ”,第一步应假设( ) A.a ∥b B.a 与 b 垂直C.a 与 b 不平行D.a 与 b 相交4. 如图,在 Rt △ABC 中,∠C=90°,AB=13,BC=12,则下列 三角函数表示正确的是( ) A . sinA=1213 B . cosA=1213 C . tanA=512 D . tanB=1255. 用配方法解方程 x 2- 2x - 5 = 0 时,原方程应变形为( )A.(x+1) 2=6B.(x-1) 2=6C.(x+2) 2=9D.(x-2) 2=96. 已知扇形的面积为 4π,扇形的弧长是π,则该扇形半径为( ) A . 4 B . 8C . 6D . 8π7. 某汽车销售公司 2015 年盈利 1500 万元,2017 年盈利 2160 万元,且从 2015 年到 2017 年, 每年盈利的年增长率相同.设每年盈利的年增长率为 x ,根据题意,所列方程正确的是( )A.1500(1+ x)+1500(1+ x)2=2160B. 1500x+1500x 2=2160C.1500x 2=2160D.1500(1+ x)2=21608.在平面直角坐标系中,过点(-2,3)的直线 l 经过一、二、三象限。
若点 ( a ,-1),(-1,b ),(0,c )都在直线 l 上,则下列判断正确的是( ) A.c <b B.c <3 C.b <3 D.a <-29.折叠矩形 ABCD 使点 D 落在 BC 的边上点 E 处,并使折痕经过点 A 交 CD 于点F,若点 E 恰好为 BC 的中点,则 CE:CF 等于( ) A.1 B.5 :2 C.D. 2 :110.如图,直线1l :y=x-1 与直线2l :y=2x-1 交于点 P ,直线1l 与 x 轴交于 点 A.一动点 C 从点 A 出发,沿平行于 y 轴的方向向上运动,到达 直线2l 上的点 B 1,再沿平行于 x 轴的方向向右运动,到达直线1l 上的 点 A 1;再沿平行于 y 轴的方向向上运动,到达直线2l 上的点 B 2,再 沿平行于 x 轴的方向向右运动,到达直1l 上的点 A 2,…依此规律,则 动点 C 到达点 A2018 所经过的路径总长为( ) A.22018-1 B.22018-2 C.22019-1 D.22019-2 二、填空题(每题 5 分,共 30 分)11.分解因式: ma 2 + 2ma + m = .12. 点(1, y 1)、(2, y 2)在函数 y =4x-的图象上,则 y 1 y 2 (填“>”或“=”或“<”).13.如图,C ,D 是以线段 AB 为直径的⊙O 上的两点,若 CA=CD ,且∠ACD=40°,则∠CAB 的 度数为14.如图,面积为 24 的正方形 ABCD 中,有一个小正方形 EFGH ,其中 E 、F 、G 分别在 AB 、BC 、FD 上.若 BF =2,则小正方形的周长为 .15.七巧板是一种古老的中国传统智力游戏,小红利用七巧板(如图 1)拼出了一个平行四边形ABCD (如图 2),其内恰有一个空平行四边形 EFGH ,若□EFGH 的面积的为 4cm 2, 则□ABCD 的面积为 cm 2.16.如图,已知矩形 ABCD ,顶点 A,B 在反比例函数 y=kx(k>0,x>0) 的图像上,C 在 y 轴正半轴上,D 在 x 轴正半轴上,对角线 BD 交 反 比例函数图像于点 E ,连接 CE 并延长交 AB 边于点 F ,当 F 为AB 中点,k= 。
吉林省长春市中考数学二模试卷
吉林省长春市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·道外模拟) 下列图形是轴对称图形而不是中心对称图形的是()A .B .C .D .2. (2分) (2019七下·长丰期中) 0.000002019用科学记数法可表示为()A . 0.2019×10﹣5B . 2.019×10﹣6C . 20.19×10﹣7D . 2019×10﹣93. (2分)下列计算正确的是()A . ﹣|﹣3|=﹣3B . 30=0C . 3﹣1=﹣3D . =±34. (2分)下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变右边的()A .B .C .D .5. (2分)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A . 甲B . 乙C . 丙D . 丁6. (2分) (2017九下·张掖期中) 下列运算正确的是()A . x2+x2=x4B . (﹣a2)3=﹣a6C . (a﹣b)2=a2﹣b2D . 3a2•2a3=6a67. (2分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A . 2πB . 4πC .D . 48. (2分)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A . 线段AE的中垂线与线段AC的中垂线的交点B . 线段AB的中垂线与线段AC的中垂线的交点C . 线段AE的中垂线与线段BC的中垂线的交点D . 线段AB的中垂线与线段BC的中垂线的交点9. (2分) (2019九上·綦江月考) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a +b>0;③-1≤a≤-;④4ac-b2>8a;(5)3a+c=0,其中正确的结论有()个A . 2B . 3C . 4D . 510. (2分)如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()A . 30°B . 15°C . 45°D . 60°二、填空题 (共6题;共6分)11. (1分)(2019·福州模拟) 计算:-1+2-1=________.12. (1分)(2020·马山模拟) 因式分解: ________.13. (1分)已知△ABC的各边长度分别为3cm,5cm,6cm,连结各边中点所构成的△DEF的周长是________ cm.14. (1分) (2016九上·宾县期中) 已知x1 , x2是方程x2+2x﹣k=0的两个实数根,则x1+x2=________.15. (1分)(2018·寮步模拟) 如图,在△ABC中,AB=AC,∠A=120°,BC=,⊙A与BC相切于点D,且交AB,AC于M、N两点,则图中阴影部分的面积是________(结果保留π).16. (1分) (2019九上·滨湖期末) 半径相等的圆内接正三角形与正方形的边长之比为________.三、解答题 (共9题;共98分)17. (10分)(2020·金牛模拟)(1)计算(π﹣2020)0+2cos30°﹣|2﹣ |﹣()﹣2;(2)解不等式组:.18. (5分)先化简,再求值:,其中x=-1.19. (17分)已知钝角△ABC,试画出:(1) AB边上的高;(2) BC边上的中线;(3)∠BAC的角平分线;(4)图中相等的线段有:________;(5)图中相等的角有:________.20. (10分) (2016九上·达州期末) 创建文明城市,人人参与,人人共建.我市各校积极参与创建活动,自发组织学生走上街头,开展文明劝导活动.某中学九(一)班为此次活动制作了大小、形状、质地等都相同的“文明劝导员”胸章和“文明监督岗”胸章若干,放入不透明的盒中,此时从盒中随机取出“文明劝导员”胸章的概率为;若班长从盒中取出“文明劝导员”胸章3只、“文明监督岗”胸章7只送给九(二)班后,这时随机取出“文明劝导员”胸章的概率为.(1)请你用所学知识计算:九(一)班制作的“文明劝导员”胸章和“文明监督岗”胸章各有多少只?(2)若小明一次从盒内剩余胸章中任取2只,问恰有“文明劝导员”胸章、“文明监督岗”胸章各1只的概率是多少?(用列表法或树状图计算)21. (5分)(2017·萍乡模拟) 放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).22. (10分) (2016八上·蕲春期中) 已知,D、E分别为等边三角形ABC边上的点,AD=CE,BD、AE交于N,BM⊥AE于M.证明:(1)∠CAE=∠ABD;(2) MN= BN.23. (15分) (2016九上·盐城开学考) 如图,反比例函数y= 的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的函数关系式;(2)求△AOB的面积;(3)我们知道,一次函数y=x﹣1的图象可以由正比例函数y=x的图象向下平移1个长度单位得到.试结合平移解决下列问题:在(1)的条件下,请你试探究:①函数y= 的图象可以由y= 的图象经过怎样的平移得到?②点P(x1 , y1)、Q (x2 , y2)在函数y= 的图象上,x1<x2 .试比较y1与y2的大小.24. (11分) (2019九上·宜兴期末) 如图,在平面直角坐标系中,点A、B的坐标分别为,,点M是AO中点,的半径为2.(1)若是直角三角形,则点P的坐标为________ 直接写出结果(2)若,则BP与有怎样的位置关系?为什么?(3)若点E的坐标为,那么上是否存在一点P,使最小,如果存在,求出这个最小值,如果不存在,简要说明理由.25. (15分)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共98分)17-1、17-2、18-1、19-1、19-2、19-3、19-4、19-5、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
2018年吉林市初中二模数学答案
吉林市2017--2018学年度初中毕业年级第二次阶段性教学质量检测数学参考答案及评分标准一、单项选择题(每小题2分,共12分)1.A2.C3.B4.C5.C6.D二、填空题(每小题3分,共24分)7.>8.)1)(1(-+a a a 9.2,1x y =⎧⎨=⎩10.1-11.8012.513.614.π6三、解答题(每小题5分,共20分)15.解:原式22144a a a -+++=(2分)54+=a .(3分)当34a =-时,原式34()5 2.4=⨯-+=(5分)16.解:设货车行驶的速度为km /h x .(1分)根据题意,得.203525+=x x (3分)解这个方程,得50=x .(4分)经检验,50=x 是原方程的解.(5分)答:货车的行驶速度是每小时50km .17.证明:在△ABC 和△DCB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,DBC ACB CB BC DCB ABC ∴△ABC ≌△.DCB (4分)∴.AB DC =(5分)18.解:(1)C .(3分)(2)1040010040⨯=(人).∴估计该校九年级男生跳绳成绩是C 等级的人数为100人.(5分)DCBA(第17题)四、解答题(每小题7分,共28分)19.解:在Rt △ABC 中,27ACB ∠=︒.∵sin ABACB AC∠=,(2分)∴ 1.510sin 270.453AB AC ===︒.(5分)∴21010010=33.3(m ).33S d AC =⋅=⨯≈(7分)答:覆盖在顶上的塑料薄膜需2333m ..评分说明:计算过程中写“=”或“≈”均不扣分.20.解:(1)13.(1分)(2)根据题意,可以画如下树状图:(3分)从树状图中可以看出,所有等可能出现的结果共有9种,小敏顺利通关的情况只有1种,∴P (小敏顺利通关)19=.(5分)(3)一.(7分)评分说明:第(2)小题中“第二题”的选项去掉A,B,C 中的任意一个皆可.第一题ab cB D A B D A B DA 第二题21.解:(1)∵)0,4(A 在m x y +-=上,∴04=+-m .∴4=m .(2分)又∵),3(n C 在4+-=x y 上,∴.143=+-=n (4分)又∵)1,3(C 在ky x=上,∴.313=⨯=k (5分)(2)设线段AB 向右平移a 个单位长度得到对应线段A B '',∵点)4,0(B ,∴)4,(a B '.将)4,(a B '代入3y x =中,得43=a ,即34BB '=.∴线段AB 扫过的面积为3434BB BO '⋅=⨯=.(7分)22.解:(1)证明:∵四边形ABCD 是平行四边形,∴CD AB =,BC AD =,AB ∥.CD ∴.AED CDE ∠=∠(1分)又∵DE 平分,ADC ∠∴.CDE ADE ∠=∠(2分)∴.AED ADE ∠=∠∴.AE AD =又∵,BC AD =∴.AE BC =(4分)∵AB AE BE =+,,CD AB =∴.CD BC BE =+(5分)(2)菱形.(7分)E DCBA(第22题)五、解答题(每小题8分,共16分)23.解:(1)(10,7500)B .(2分)(2)设线段BC 所对应的函数解析式为b kx y +=.将点500)(10,7B ,(40,0)C 代入b kx y +=中,得107500,400.k b k b +=⎧⎨+=⎩解这个方程组,得250,10000.k b =-⎧⎨=⎩(4分)∴线段BC 所对应的函数解析式为25010000(10y x =-+≤x ≤40).(6分)(3)1250.(8分)24.解:(1)(2分)(2)①正方形,正方形.(4分)②.95(6分)③由①知,四边形321C C CC 与四边形21B ABB 均为正方形.∴.421321ABC B ABB C CCC S S S ∆+=正方形正方形(7分)∴.214)(22ab c b a ⨯+=+∴.222c b a =+(8分)C 2C 1六、解答题(每小题10分,共20分)25.解:(1)当P 在CD 上时,x PD -=8;当P 在AD 上时,8-=x PD .(2分)(2)当5≤x ≤8时,如图①,点Q 与点O 重合.过点Q 作CD QM ⊥于M ,则321==BC OM .∴)8(36)8(2121x x BC PD S BPD -=⨯-=⨯=∆,)8(233)8(2121x x OM PD S QPD -=⨯-=⨯=∆.∴33(8)1222BPD QPD y S S x x ∆∆=-=-=-+.(4分)当8<x <9时,如图②,点Q 与点O 重合.过点Q 作AD QN ⊥于N ,则142ON AB ==.∴)8(48)8(2121-=⨯-=⨯=∆x x AB PD S BPD ,)8(24)8(2121-=⨯-=⨯=∆x x ON PD S QPD .∴2(8)216BPD QPD y S S x x ∆∆=-=-=-.(6分)DCBA图①N P DCBA图②当9≤x ≤14时,如图③,过点Q 作AD QH ⊥于H ,过点Q 作AB QG ⊥于G ,则4-=x AQ ,x AP -=14.∴在Rt △AQH 中,)4(54sin -=⨯∠=x AQ CAD QH ,在Rt △AQG 中,3sin (4)5QG CAB AQ x =∠⨯=-.∴511253652)4(54)14(21212-+-=-⨯-=⨯=∆x x x x QH AP S APQ ,548512)4(5382121-=-⨯⨯=⨯=∆x x QG AB S ABQ,118(14)45622ABP S AB AP x x ∆=⨯=⨯⨯-=-.∴22688855APQ ABQ ABP y S S S x x ∆∆∆=+-=-+-.(8分)综上所述,2312(58),2216(89),26888(914).55x x y x x x x x ⎧-+≤≤⎪⎪=-<<⎨⎪⎪-+-≤≤⎩(3)5≤x <8或8<x ≤9.(10分)评分说明:第(3)小题取值范围写成5≤x ≤9不扣分.H GPD CB A图③26.解:(1)将点(1,1)A -,(3,3)B -代入抛物线23y ax bx =+-中,得⎩⎨⎧=---=-+.3339,13b a b a 解得⎩⎨⎧==.1,1b a ∴抛物线的解析式为32-+=x x y .(2分)(2)∵3)-,(2m m m P +,(3分)PQ ∥y 轴交线段AB 于点Q ,且点Q 在直线y x =-上,∴(,)Q m m -.(4分)①当90APQ ∠=︒时,PA PQ =.如图①.∵1PA m =-,23PQ m m m =---+,∴213m m m m -=---+.∴12m =-,21m =(不合题意,舍去).(6②当90PAQ ∠=︒时,AP AQ =.如图②.作AE PQ ⊥于点E ,∴2PQ AE =.∵23PQ m m m =---+,1AE m =-,∴232(1)m m m m ---+=-.∴11m =-,21m =(不合题意,舍去).(8分)综上所述,当2m =-或1m =-时,△APQ 为等腰直角三角形.(3)1-<n ≤12-或1<n <3.(10分)图②P。
2018年长春市中考数学试卷及答案解析(word版)
2018年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1. (3.00分)-「的绝对值是()A「丄B- C - 5D. 52. (3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A. 0.25 X 1010B. 2.5 X 1010C. 2.5 X 1011D. 25X 1012 13 143. (3.00分)下列立体图形中,主视图是圆的是()r ! 1 . 1 >丄 > A. J0 1 ? 3 B. C .-10 12 3D.-10 1235. (3.00分)如图,在△ ABC中, CD平分/ ACB交AB于点D,过点D作DE// BC 交AC于点E.若/ A=54°, / B=48°,则/ CDE的大小为(尺,1尺=10寸),则竹竿的长为()子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10 12(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影4. (3.00分)不等式3x-6>0的解集在数轴上表示正确的是(39° D .38°A.五丈B.四丈五尺C. 一丈D.五尺7. (3.00分)如图,某地修建高速公路,要从 A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A B 两地之间的距离,一架直升飞机从 A 地出发, 垂直上升800米到达C 处,在C 处观察B 地的俯角为a 则A B 两地之间的距 离为( )A 800sin 小B 800tan a *C 册米8. (3.00分)如图,在平面直角坐标系中,等腰直角三角形 ABC 勺顶点A 、B 分 别在x 轴、y 轴的正半轴上,/ ABC=90, CALx 轴,点C 在函数y 土 (x >0)的x、填空题(本大题共6小题,每小题3分,共18分) 9. (3.00 分)比较大小:k/10 3.(填 >”、=”或 N”)10. (3.00 分)计算:a 2?a 3=11. (3.00分)如图,在平面直角坐标系中,点 A 、B 的坐标分别为(1, 3)、(n.D.3),若直线y=2x 与线段AB 有公共点,则n 的值可以为 __________ .(写出一个即12. (3.00分)如图,在△ ABC 中,AB=AC 以点C 为圆心,以CB 长为半径作圆13. (3.00 分)如图,在? ABCD^,AD=7 AB=^5,/ B=60°. E 是边 BC 上任意 一点,沿AE 剪开,将△ ABE 沿BC 方向平移到△ DCF 的位置,得到四边形AEFD点A.点B 是y 轴正半轴上一点,点A 关于点B 的对称点A 恰好落在抛物线上.过 点A 作x 轴的平行线交抛物线于另一点 C.若点A'的横坐标为1,则AC 的长三、解答题(本大题共10小题,共78分)D,连结BD.若/ A=32°,则/ CDB 的大小为度.则四边形AEFD 周长的最小值为y=x 2+mx 交x 轴的负半轴于2 _15. (6.00分)先化简,再求值:,其中x= n- 1.X-l K-l16. (6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为金鱼”另外一张卡片的正面图案为蝴蝶”卡片除正面剪纸图案不同外,其余均相同•将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是金鱼”的概率.(图案为金鱼”的两张卡片分别记为A、A,图案为蝴蝶”的卡片记为B)17. (6.00分)图①、图②均是8X 8的正方形网格,每个小正方形的顶点称为格点,线段OM ON的端点均在格点上•在图①、图②给定的网格中以OM ON 为邻边各画一个四边形,使第四个顶点在格点上•要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18. (7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠•结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19. (7.00分)如图,AB是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省长春市 2018 年中考数学二模试题含答案2018 年中考第二次模拟考试数学试卷一、选择题(每题 4 分,共40 分)1. -2的倒数是(▲)A.1C.21B.2D.222.如图,下列图形从正面看是三角形的是(▲ )3. 用反证法证明“若A.a ∥ bB.a 与 b 垂直a⊥c,b ⊥ c,则a∥ b”,第一步应假设(▲与 b 不平行 D.a 与 b 相交C.a)4.如图,在 Rt△ABC 中,∠ C=90°,AB=13 , BC=12,则下列三角函数表示正确的是(▲ )1212512A . sinA=B . cosA=C . tanA=D . tanB=13131255.用配方法解方程x22x 5 0 时,原方程应变形为(▲)A.(x+1)2=6B.(x-1)2=6C.(x+2) 2=9D.(x-2)2=96.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为(▲)A . 4B . 8C . 6D . 8π7. 某汽车销售公司2015 年盈利1500 万元, 2017 年盈利年,每年盈利的年增长率相同.设每年盈利的年增长率为(▲)2160 万元,且从2015 年到2017 x,根据题意,所列方程正确的是A.1500(1+ x)+1500(1+ x)2=2160B. 1500x+1500x 2=2160C.1500x 2=2160D.1500(1+ x)2=21608.在平面直角坐系中,点(-2, 3)的直l 一、二、三象限。
若点( a , -1),( -1,b),( 0,c)都在直l 上,下列判断正确的是(▲)A.c< bB.c< 3C.b< 3D.a< -29.折叠矩形 ABCD 使点 D落在 BC 的上点 E ,并使折痕点 A 交CD 于点 F,若点 E 恰好BC 的中点 , CE:CF 等于(▲)A.3 :1B.5 : 2C. 2D. 2 : 110.如,直l1 :y=x-1 与直l2 :y=2x-1交于点 P,直l1与 x 交于点 A.一点 C 从点 A 出,沿平行于y 的方向向上运,到达直 l2上的点B1,再沿平行于x的方向向右运,到达直l1上的点 A1;再沿平行于 y 的方向向上运,到达直l2上的点B2,再沿平行于 x 的方向向右运,到达直l1上的点 A 2,⋯依此律,点 C 到达点A2018 所的路径(▲ )A.2 2018-1B.22018-2C.22019-1D.2 2019-2二、填空(每 5 分,共30 分)11. 分解因式:ma22ma m.12. 点( 1, y1)、( 2, y2)在函数 y =4y2(填“>”或“=”或的象上, y1x“ <” ).13. 如,C D是以段AB直径的⊙O上的两点,若CA=CD,且∠ACD=40°CAB ,,∠的度数14 .如图,面积为24 的正方形ABCD 中,有一个小正方形EFGH ,其中E、 F 、G 分别在6AB、BC 、FD 上.若BF=,则小正方形的周长为.215. 七巧板是一种古老的中国传统智力游戏,小红利用七巧板(如图1)拼出了一个平行四边形 ABCD (如图2),其内恰有一个空平行四边形EFGH ,若□EFGH的面积的为4cm2,则□ABCD的面积为cm2.16.如图,已知矩形kABCD ,顶点 A,B 在反比例函数 y= (k>0,x>0)x的图像上, C 在 y 轴正半轴上, D 在 x 轴正半轴上,对角线BD 交反比例函数图像于点E,连接 CE 并延长交AB 边于点 F,当 F 为AB 中点, AB= 3 2时, k=。
三、解答题:( 10+8+8+8+10+12+12+12 )17.(本题共 10 分)(1)( 5 分)计算:( 2 1)0sin 300(1)22(2)(5 分)化简: (2 +a)(2 - a) + ( a- 1) 218(本题8 分)图1,图 2 是两张相同的方格纸,方格纸中每个小正方形的边长均为1,线段 AC的两个端点均在小正方形的顶点上.( 1)如图1,点P 在小正方形的顶点上,在图 1 中作出点P 关于直线AC的对称点Q,连接 AQ 、QC、 CP、P A ,并直接写出四边形AQCP 的周长;( 2)在图 2 中画出一个以线段AC为对角线,面积为16 的矩形ABCD ,且点 B 和点D 均在小正方形的顶点上.四边形AQCP的周长=.19.(本题 8 分)已知:如图,在△ ABC 中,∠ ABC=45 0,AD 是 BC 边上的中线,过点 D 作 DE ⊥ AB于点E,DB= 3 2 .( 1)求BE 的长;3(2)若 sin∠ DAB= ,求 tan∠ CAB 的值.520.(本题8分)为满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人必须且只选报一类),并绘制统计图,其中统计图中没有标注相应人数的百分比,请根据统计图回答下列问题:( 1)求选“知识拓展”类的人数百分比;( 2)已知该校共有1800名学生,请估计选“体育特长” 和“ 艺术特长” 两类选课的学生一共有多少人?21、(本题10 分)如图,半圆O 的直径AB=10 ,有一条定长为上滑动(点C、点D分别不与点 A 、点B重合),EC⊥ CD , FD⊥ CD.6 的动弦CD点E、 F在在弧ABAB上,(1)求证: EO=OF ;(2)连接 OC,若∠ EOC=60°时,求线段 CE 的长。
22、(本题12 分)如图,为美化校园环境,乐清市某校计划在一块长120 米,宽为80 米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米。
(1 )用含a的代数式表示花圃的面积;( 2 )如果通道所占面积是整个长方形空地面积的3 ,求此时通道的宽;8( 3 )已知某园林公司建花圃、通道的造价分别为50 元/ m2和30 元 / m2,如果学校决定由该公司承建此项目,并要求修建的通道宽度不少于 5 米且不超过8 米,那么通道宽为多少米时?修建的花圃和通道的总造价最低,最低总造价为多少元?23.(本题12 分)已知:二次函数2x 轴交于点 A,B(Ay=ax +2ax﹣4(a≠0)的图象与点在 B 点的左侧),与 y 轴交于点C,△ ABC 的面积为12.( 1)求二次函数图象的对称轴与它的解析式;( 2)点 D 在 y 轴上,当 S △AOD = 2S △BOC时,求点 D 的坐标;( 3)点 D 的坐标为(﹣ 2 ,1 ),点P 在二次函数图象上,∠ADP为锐角,且tan ∠ ADP=2 ,求点 P 的横坐标. ( 直接写出结果 )24.(本题12分)如图,在平面直角坐标系中,矩形OABC的四个顶点坐标分别为A 4 0B43C03G是对角线AC的中点,动直线MN平行O( 0,0),(,),(,),(,),于AC 且交矩形 OABC 的一组邻边于 E、 F,交 y 轴、 x 轴于 M 、N .设点 M 的坐标为( 0, t).( 1)当t=2 时求△EFG 的面积S;( 2)当△EFG 为直角三角形时,求t 的值;EF的对称点G′恰好落在矩形OABC的一条边所在直线上时,直接( 3)当点G 关于直线写出t 的值.2018 年中考第二次模拟考试数学参考答案2018.05一、 :ACCAB BDDAD二、填空5 611. m(a+1)212. <13.20014.15.3212三、解答 :17. (本 10 分)(1)原式 =1-0.5-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分=-5.5 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分5( 2)原式 =4 -a 2+ a 2- 2a+1 ⋯⋯⋯⋯⋯⋯⋯3 分=5 - 2a ⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯5 分18. (本 8 分 )CA图 1 D四形 AQCP 的周=85(1)画 2 分,填空 2 分19. (本8 分 )∴ BE=3⋯⋯3( 1)解:∵DE⊥ AB∠B=45°∴∠ B=∠ BDE=45°∵BD= 3 2分3( 2)解:作CG⊥ AB 于 G,∵ DE⊥ AB ,sin∠DAB=,DE=35A ∴AD=5 , AE=4∵ BE=3∴ AB=7∵AD是BC上的中∴ BC=2BD=G 62∴BG=CG=6 ∴AG=1CG∴tan∠ CAB==6AG20. (本 8 分)54o3( 1)==15%⋯⋯4 分(2)1800360 20E⋯⋯ 5 分CBDo o96 +120=1080 (人)⋯⋯4分36021.【解答】( 1)明:点 O 作 OH⊥ CD 于 H,如所示:CH=DH ,⋯⋯⋯⋯( 2 分)∵EC ⊥CD , FD ⊥ CD, OH ⊥CD ,∴ EC ∥OH ∥ FD ,⋯⋯⋯⋯⋯⋯( 2 分)(1分)∵ CH=DH ,∴EO=FO;⋯⋯⋯⋯⋯⋯(2)点 E 作 EM⊥ OC 于点M∵ CH=HD=3 , OC=5M 在 Rt△COH 中∴ OH=4H∵OH ∥ CE ∴△CME∽△OHC⋯(2分)∴EM:CM: CE=3:4:5EM=3a、CM=4a、 CE=5a, OM=5-4a又∵∠ EOC=6011∴∠ MEO=3011∴EM= 3 OM⋯⋯⋯( 2 分)(5-4a)∴ 3a=3⋯⋯(1 分)20 5 310025 3a CE131322.参考答案:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯每空 2 分共 4 分23. 解:( 1 )该二次函数的对称轴是:直线x=﹣=﹣1;( 2 分)∵当 x=0 时, y= ﹣4 ,∴ C( 0 ,﹣ 4 ),∴ OC =4 ,连接AC , BC ,∵S△ABC=AB ?OC =12 , AB =6 ,∵A 、B 关于直线x=﹣1 对称,∴ A(﹣ 4, 0), B (2,0),把B( 2, 0)代入y=ax2+2ax ﹣4 中得:4a+4a﹣4=0 , a=,∴二次函数的解析式为:y=x2 +x﹣4 ;( 2 分)( 2 )∵∠ BOC =∠ AOD =90 °,且OB =2 , OC =OA =4 ,4 2∴S △BOC==4. ∵S△AOD= 2S△BOC =8∵OA =4,∴OD=4∴D1(0,4)或D 2( 0,﹣ 4 )2( 3 )如图2,过 D 作 DF ⊥x 轴于F,分两种情况:①当点P 在直线AD 的下方时,由(1)得: A(﹣ 4, 0),∵D(﹣ 2, 1 ),∴ AF =2 , DF =1 ,=2,在 Rt△ADF 中,∠AFD=90°,得 tan∠ADF=延长DF 交抛物线于P1,则 P 1就是所求,∴ P1(﹣ 2,﹣ 4 );②当点P 在直线AD的上方时,延长P 1A 至点G,使得AG =AP 1,连接DG ,作GH ⊥ x 轴于H ,∴△ GHA ≌△P1FA ,∴HA =AF,GH =P1F,∵ A(﹣ 4, 0 ), P1(﹣ 2 ,﹣ 4 ),∴G(﹣6,4),易得DG的解析式为:y=﹣x﹣,在△ ADP 1中, DA =,DP1=5,AP1=2,∴,∴∠ DAP 1=90 °,∴DA ⊥ GP 1,∴ DG= DP1,∴∠ ADG =∠ ADP 1,∴tan ∠ADG = tan ∠ADP 1=2 ,设 DG 与抛物线的交点为P2,则P 2点为所求,设P2( x,+x﹣ 4),代入DG的解析式中,﹣x﹣= +x﹣4,解得x=,∵ P2点在第二象限,∴ P2点的横坐标为x=(舍正)综上, P 点的横坐标为﹣ 2 或.( 2 分)24.。