二次函数全章导学案(史上最全)(最新整理)

合集下载

二次函数导学案

二次函数导学案

二次函数复习导学案(1)一、知识点回顾1.一般地,形如,(,,a b c a 是常数,且)的函数为二次函数。

2.二次函数c bx ax y ++=2的顶点坐标是: ;对称轴是:.; (1)当0a >时,开口向;当0a <时,开口; (2)a 、b 共同决定坐标轴的位置:即左右;(3)二次函数c bx ax y ++=2与x 轴交点个数由ac b 42-决定,当ac b 42-0,与x 轴有两个交点;当ac b 42-0,与x 轴有1个交点;当ac b 42-0,与x 轴无交点;(3)二次函数c bx ax y ++=2与y 轴的交点坐标为:;(4)二次函数c bx ax y ++=2,当0a >时,,y 随着x 的增大而增大;, y 随着x 的增大而减小.3.二次函数图象的平移规律:左右,上下。

二、基础知识扫描 1.2(1)31mmy m x x -=+-+是二次函数,则m 的值为______________.2.抛物线342+-=x x y 与x 轴的交点坐标是,与y 轴的交点坐标是.3.抛物线()242y x =-与y 轴的交点坐标是_______,与x 轴的交点坐标为________. 4.已知抛物线122-+=x kx y 与x 轴有两个交点,则k 的取值范围是_________. 5. 抛物线24y x =-向左平移3个单位后,得到的抛物线的表达式为______________.6.将抛物线()2123y x =--向右平移1个单位后,得到的抛物线解析式为__________. 7.请写出一个开口向上,并且与y 轴交于点(0,-2)的抛物线的表达式_________. 8.如图,这个二次函数图象的表达式可能是.(只写出一个).9.将抛物线y=2x 2向上平移3个单位长度得到的抛物线表达式是.10.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式:_____________. 11.将二次函数245y x x =-+化为2()y x h k =-+的形式,那么=h k +.12.将函数y =x 2−2x + 3写成()2y a x h k =-+的形式为.13.在学习二次函数的图象时,小米通过向上(或向下)平移y =ax 2的图象,得到y =ax 2+c 的图象;向左(或向右)平移y =ax 2的图象,得到y =a (x ﹣h )2的图象.小米经过探究发现一次函数的图象也应该具有类似的性质.请你思考小米的探究,直接写出一次函数y =2x +3的图象向左平移4个单位长度,得到的函数图象的解析式为 .14.已知某函数图象经过点(-1,1),且当x >0时,y 随x 的增大而增大.请你写出一个..满足条件的函数解析式:y =.15.已知二次函数m x x y ++=2的图象过点(1,2),则m 的值为________________.三、复习导学例1 已知二次函数y=ax 2+bx+c 的图象经过A (-1,-1)、B (0,2)、C (1,3),求这个二次函数的表达式。

人教版数学九年级上册第22章《二次函数》全章导学案

人教版数学九年级上册第22章《二次函数》全章导学案

22.1.4 二次函数y ax2bx c 的图象学习目标:1. 能经过配方把二次函数y ax 2bx c 化成 y a( x h)2 + k 的形式,进而确立张口方向、对称轴和极点坐标。

2.熟记二次函数y ax 2bx c 的极点坐标公式;3.会画二次函数一般式学习要点:掌握二次函数y ax 2bx c 的图象.y ax2bx c 的图象和性质.学习难点:运用二次函数y ax2bx c 的图象和性质解决实质问题 .学习方法:问题式五步教课法 .学习过程一、出示目标二、预习检测1. 抛物线y2;对称轴是直2 x 31的极点坐标是线;当 x =时 y 有最值是;当 x时,y 随x的增大而增大;当x时, y 随x的增大而减小。

2.二次函数分析式 y a(x h)2 +k 中,很简单确立抛物线的极点坐标为,所以这类形式被称作二次函数的极点式。

三、怀疑互动:(1)你能直接出函数y x22 x 2的像的称和点坐?(2)你有法解决( 1)?解:y x22x 2 的点坐是,称是.(3)像我能够把一个一般形式的二次函数用的方法化点式进而直接获得它的像性 .(4)用配方法把以下二次函数化成点式:① y x 22x 2② y 1 x22x 5③2y ax2bx c(5):二次函数的一般形式y ax 2bx c 能够用配方法化成点式:,所以抛物y ax2bx c 的点坐是;称是,(6)用点坐和称公式也能够直接求出抛物的点坐和称,种方法叫做公式法。

用公式法写出以下抛物的张口方向、称及点坐。

① y 2x 23x 4② y2x 2x 2③ yx 24x四、达用描点法画出 y 1 x2 2 x 1的像 .(1)点坐2;(2)列表:点坐填在;(列表一般以称中心,称取.)x⋯⋯y1 x2 2x 1 ⋯2(3)描点,并 :6 y5 4 3 21 x7654321O1 2 312 3 4(4) 察:① 象有最点,即x =,y 有最是;② x,y 随 x 的增大而增大;xy 随x 的增大而减小。

部编版人教初中数学九年级上册《第二十二章(二次函数)全章导学案》最新精品优秀整章每课导学单

部编版人教初中数学九年级上册《第二十二章(二次函数)全章导学案》最新精品优秀整章每课导学单

最新精品部编版人教初中九年级数学上册第二十二章二次函数优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y=-x2,y=-12x2和y=-2x2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1填空:(1)函数y=(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y=x2,y=12x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.解:(1)抛物线,(0,0),y轴,向上;(2)根据抛物线y=ax2中,a的值来判断,在x轴上方开口小的抛物线为y=x2,开口大的为y=12x2,在x轴下方的为y=-2x2.点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2已知函数y=(m+2)xm2+m-4是关于x的二次函数.(1)求满足条件的m的值;(2)m为何值时,抛物线有最低点?求这个最低点;当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值为多少?当x为何值时,y随x的增大而减小?。

二次函数自学导学案(全章)

二次函数自学导学案(全章)

二次函数自学导学案(全章)第一课一、什么是二次函数?提出问题:某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。

设售价降低x元时的利润为y。

请用含x的代数式表示y。

并求出自变量x的取值范围。

观察思考:以上解析式中含有几个自变量?它们都是几次多项式?二次函数定义:形如____________________________________的函数叫做x的二次函数,___叫做二次函数的系数,___叫做一次项的系数,___叫作常数项.练习: 1.下列函数中,哪些是二次函数?(1)y=5x+1 (2)y=4x2-1(3)y=2x3-3x2 (4)y=5x4-3x+1二、二次函数的图像和性质:问题:画函数图像分为那几个步骤?(一)二次函数y=ax2(a≠0)的图象和性质:做一做,画一画:在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?请观察所画图像回答:函数y=ax2(a≠0)的图象是一条________,它的对称轴是___________,顶点坐标是______.当a>O时,抛物线y=ax2开口向__,在对称轴的左边(当x<0时),曲线自左向右_____,函数值y随x的增大而_____;在对称轴的右边(当x>0时),曲线自左向右_____,函数值y随x的增大而_____;当x=0时,函数值y=ax2取得最__值,最__值是_____.当a<O时,抛物线y=ax2开口向__,在对称轴的左边(当x<0时),曲线自左向右_____,函数值y随x的增大而_____;在对称轴的右边(当x>0时),曲线自左向右_____,函数值y随x的增大而_____;当x=0时,函数值y=ax2取得最__值,最__值是_____.练习:1、分别说出函数y=4x2与y=-3x2的开口方向、对称轴、顶点坐标、增减性和最值。

二次函数导学案全章(完整资料).doc

二次函数导学案全章(完整资料).doc

【最新整理,下载后即可编辑】二次函数导学案26.1 二次函数及其图像 26.1.1 二次函数【学习目标】1. 了解二次函数的有关概念.2. 会确定二次函数关系式中各项的系数。

3. 确定实际问题中二次函数的关系式。

【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。

【学习过程】 一、知识链接:1.若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2. 形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数; 二、自主学习:1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。

分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .2.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是 。

4.观察上述函数函数关系有哪些共同之处?。

5.归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。

其中x 是自变量,a 是__________,b 是___________,c 是_____________.三、合作交流:(1)二次项系数a 为什么不等于0? 答: 。

(2)一次项系数b 和常数项c 可以为0吗? 答: . 四、跟踪练习1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x =-+;⑥()221y x x =+-.这六个式子中二次函数有 。

初中数学二次函数全章导学案(史上最全)

初中数学二次函数全章导学案(史上最全)

二次函数导学案26.1.1二次函数(第一课时)一.预习检测案一般地,形如____________________________的函数,叫做二次函数。

其中x是________,a是__________,b是___________,c是_____________.二.合作探究案:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。

问题2: n边形的对角线数d与边数n之间有怎样的关系?提示:多边形有n条边,则有几个顶点?从一个顶点出发,可以连几条对角线?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有的形式。

问题5:什么是二次函数?形如。

问题6:函数y=ax²+bx+c,当a、b、c满足什么条件时,(1)它是二次函数?(2)它是一次函数?(3)它是正比例函数?例1: 关于x的函数mmxmy-+=2)1(是二次函数, 求m的值.注意:二次函数的二次项系数必须是的数。

三.达标测评案:1.下列函数中,哪些是二次函数?(1)y=3x-1; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y =x-2+x.2.若函数y=(a-1)x2+2x+a2-1是二次函数,则( )A.a=1B.a=±1C.a≠1D.a≠-13.一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s=5t2+2t,则当t=4秒时,该物体所经过的路程为A.28米B.48米C.68米D.88米4.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.5.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。

二次函数导学案全章

二次函数导学案全章

第6 课时主备人:唐学民审核人:薛磊【学习目标】1.了解二次函数的有关概念.2.会确定二次函数关系式中各项的系数。

3.确定实际问题中二次函数的关系式。

【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。

【学习过程】一、知识链接:1.若在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的,x叫做。

2.形如y __________ (k 0) 的函数是一次函数,当_________________ 0时,它是函数;二、自主学习:1.用16m长的篱笆围成长方形圈养小兔,圈的面积y( m2)与长方形的长x(m)之间的函数关系式为。

分析:在这个问题中,可设长方形生物园的长为x米,则宽为米,如果将面积记为y平方米,那么y与x之间的函数关系式为y=整理为y=.2.n支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m与球队数n之间的关系式_________________________ .3.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积S与它的半径r之间的函数关系式是。

4.观察上述函数函数关系有哪些共同之处?5.归纳:一般地,形如,(a,b,^常数,且a)的函数为二次函数。

其中x是自变量,a是_______ ,b 是____ ,c 是___________ .三、合作交流:(1)二次项系数a为什么不等于0?答(2)—次项系数b和常数项c可以为0吗?答四、跟踪练习在图(3)中描点,并连线1. 思考:图(1)和图 答2.91归 纳9由 图 象 可次 函图次、的 路 线即 抛 出* 路 3即Z4 3 2 1,O 2> 3 \ 41(2)中的连线正确吗?为什么?连线中我们应该注意什么?10-9 -8 -7|y 8-■的凋象t 是 数 物体所经过的路线 曲线,它的形状类似 主条曲线叫做线;一 球时汝这 --3--2亠(2)5 4 3 2 12X •这六个式子中二次函数有。

(导学案)1.1二次函数

(导学案)1.1二次函数

第一章二次函数1.1二次函数【教学目标】知识与技能1.探索并归纳二次函数的概念,熟练掌握二次函数的一般形式及自变量的取值范围。

2.能够表示简单变量之间的二次函数关系。

过程与方法:通过用二次函数表示变量之间关系的体验过程,增强对函数的感性认识,培养学生分析问题,解决问题的能力。

情感态度价值观:通过学生之间的交流合作的过程,培养学生的合作意识,体验与他人交流合作的重要性。

【教学重难点】重点:建立二次函数数学模型和理解二次函数概念。

难点:建立二次函数数学模型。

【导学过程】【情景导入】我们已知道,可以建立数学模型一次函数y=kx+b(k≠0)来刻画直线,反比例函数y=k/x(k≠0)来刻画双曲线,那么像前面所看到的曲线,我们又该建立一个什么样的数学模型来刻画它们呢?要刻画它,我们今天还需要学习一种新的函数关系———二次函数.【新知探究】探究一、植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段和篱笆墙围成一个矩形植物园。

如下图所示,已知篱笆墙的总长度为100m。

大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化. 解:设与围墙相邻的每一面墙的长度都为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积S为1)学生阅读审题,独立思考,自主探索.设与围墙相邻的每一面墙的长都为xm,则与围墙相对的一面墙的长为(100-2x)m,于是矩形植物园的面积S=x(100-2x),即S=-2x2+100x.(2)学生合作讨论x的取值范围.由x>0,100-2x>0,得0<x<50.(3)概括.由上述(1)、(2)可得关系式S=-2x2+100x,0<x<50,有了这个关系式,我们对植物园的面积S随着砌法的不同而变化的情况就了如指掌了.S=-2x2+100x,0<x<50 ①①式表示植物园的面积S与围墙相邻的一面篱笆墙长度x之间的关系,而且对于X的每一个取值,S都有唯一确定的值与它对应,即S是X的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 3.将抛物线 y=- (x-1)2 向右平移 2 个单位后,得到的抛物线解析式为____________.
3 4.抛物线 y=2 (x+3)2 的开口___________;顶点坐标为____________;对称轴是_________;
当 x>-3 时,y______________;当 x=-3 时,y 有_______值是_________. 26.1.3 二次函数 y=a(x-h)2+k 的图象与性质(第五课时)
对称,开口大小_______________. 2.当 a>0 时,a 越大,抛物线的开口越___________;
当 a<0 时,|a| 越大,抛物线的开口越_________; 因此,|a| 越大,抛物线的开口越________,反之,|a| 越小,抛物线的开口越________.
图象(草 开口方 顶 对称 有最高或最
5.抛物线 y=x2 与它的对称轴的交点( , )叫做抛物线 y=x2 的_________. 因此,抛物线与对称轴的交点叫做抛物线的_____________.
6.抛物线 y=x2 有____________点(填“最高”或“最低”) .
二.合作探究案: 1
例 1 在同一直角坐标系中,画出函数 y= x2,y=x2,y=2x2 的图象. 2
2
1)2-
1 y=- (x+1)2-1 …
2
1. …
5
总结知识点: 1、填表(a>0)
y=ax2 y=ax2+k y=a (x-h)2 y=a (x-h)2+k 开口方向
2
-4
函数
1 y=- (x+1)2
2 1 y=- (x-1)2 2
开口方向
顶点
对称轴 最值
4 -2 -4 -6 -8
增减性
1
1
1
①抛物线 y=- (x+1)2 ,y=- x2,y=- (x-1)2 的形状大小____________.
2
2
2
1
1
②把抛物线 y=- x2 向左平移_______个单位,就得到抛物线 y=- (x+1)2 ;
导学案
6、n 支球队参加比赛,每两支之间进行一场比赛。写出比赛的场数 m 与球队数 n 之间的关系式。
26.1.1 二次函数(第一课时)
一.预习检测案 一般地,形如____________________________的函数,叫做二次函数。其中 x 是________,a
是__________,b 是___________,c 是_____________. 二.合作探究案: 问题 1: 正方体的六个面是全等的正方形,如果正方形的棱长为 x,表面积为 y,写出 y 与 x 的关系。
26.1.2 二次函数 y=ax2 的图象与性质(第二课时)
一.预习检测案: 画二次函数 y=x2 的图象. 【提示:画图象的一般步骤:①列表;②描点;③连线(用平滑曲线).】
问题 4:观察以上三个问题所写出来的三个函数关系式有什么特点?
小组交流、讨论得出结论:经化简后都具有
的形式。
问题 5:什么是二次函数?
一.预习检测案: 1
画出函数 y=- (x+1)2-1 的图象,指出它的开口方向.对称轴及顶点.最值.增减性. 2
二.合作探究案
1 2.把抛物线 y=- x2 向____平移_____个单位,再向____平移_______个单位,就得到抛物线 y=
2
1
- (x+
x
… -4 -3 -2 -1 0 1 2 …
2.将二次函数 y=5x2-3 向上平移 7 个单位后所得到的抛物线解析式为_________________.
3.写出一个顶点坐标为(0,-3),开口方向与抛物线 y=-x2 方向相反,形状相同的抛物线解析式____.
1
1
4.抛物线 y=- x2-2 可由抛物线 y=- x2+3 向___________平移_________个单位得到的.
-8
1 归纳:抛物线 y=-x2,y=- x2, y=-2x2 的二次项系数 a______0,顶点都是________, 对称轴是
2 ___________,顶点是抛物线的最________点(填“高”或“低”) .
总结:抛物线 y=ax2 的性质 1.抛物线 y=x2 与 y=-x2 关于________对称,因此,抛物线 y=ax2 与 y=-ax2 关于_______
就得到抛物线 y=x2+1;把抛物线 y=x2 向_______平移______个单位,就得到抛物线 y=x2-1.
3.抛物线 y=x2,y=x2-1 与 y=x2+1 的形状_____________.
3
二.合作探究案:
1.
y=ax2
y=ax2+k
开口方向
顶点
对称轴
有最高(低)点
最值
a>0 时,当 x=______时,y 有最____值为________; a<0 时,当 x=______时,y 有最____值为________.
1
1
画出二次函数 y=- (x+1)2,y- (x-1)2的图象,并考虑它们的开口方向.对称轴.顶点以及最
2
2
值.增减性.
x
… -4 -3 -2 -1 0 1 2 3 4

1
y=- (x+1)2 …

2
1
y=- (x-1)2 …

2
1 先列表:描点并画图. 请在图上把抛物线 y=- 的性质: 1.二次函数 y=x2 是一条曲线,把这条曲线叫做______________. 2.二次函数 y=x2 中,二次函数 a=_______,抛物线 y=x2 的图象开口__________. 3.自变量 x 的取值范围是____________.
4.观察图象,当两点的横坐标互为相反数时,函数 y 值相等,所描出的各对应点关于________对称, 从而图象关于___________对称.
函数关系式 1
y= x2 2
开口 顶 对称
对称轴右侧的增
图象(草图)
最值
方向 点 轴
减性
y=-5 (x+3)2
y=3 (x-3)2
列表
函数 1 y=- (x+1)2-1 2
开口 顶点 对称轴 最值
方向
增减性
三.达标测评案: 1.抛物线 y=4 (x-2)2 与 y 轴的交点坐标是___________,与 x 轴的交点坐标为________. 2.把抛物线 y=3x2 向右平移 4 个单位后,得到的抛物线的表达式为____________________.
y=2x2 …

y=x2 的图象刚画过,再把它画出来.
-4
4
-2
-4 -6
-8
1 归纳:抛物线 y= x2,y=x2,y=2x2 的二次项系数 a_______0;顶点都是__________;
2 对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”) .
-4
4
-2
-4 -6
7、已知二次函数 y=x²+px+q,当 x=1 时,函数值为 4,当 x=2 时,函数值为- 5, 求这个二次函数的 解析式.
问题 2: n 边形的对角线数 d 与边数 n 之间有怎样的关系? 提示:多边形有 n 条边,则有几个顶点?从一个顶点出发,可以连几条对角线?
问题 3: 某工厂一种产品现在的年产量是 20 件,计划今后两年增加产量.如果每年都比上一年的 产量增加 x 倍,那么两年后这种产品的数量 y 将随计划所定的 x 的值而定,y 与 x 之间的关系怎样 表示?
y=-8x2
-4
2.若二次函数 y=ax2 的图象过点(1,-2),则 a 的值是___________.
3.二次函数 y=(m-1)x2 的图象开口向下,则 m____________.
4.如图,
① y=ax2
② y=bx2
③ y=cx2
④ y=dx2
比较 a、b、c、d 的大小,用“>”连接.
___________________________________
形如

问题 6:函数 y=ax²+bx+c,当 a、b、c 满足什么条件时,(1)它是二次函数?
(2)它是一次函数?
(3)它是正比例函数?
例 1: 关于 x 的函数 y (m 1) x m2 m 是二次函数, 求 m 的值.
注意:二次函数的二次项系数必须是
的数。
三.达标测评案:
1.下列函数中,哪些是二次函数?
3
3
5.抛物线 y=4x2-1 与 y 轴的交点坐标为_____________,与 x 轴的交点坐标为_________.
26.1.3 二次函数 y=a(x-h)2 的图象与性质(第四课时)
教学目标:会画二次函数 y=a(x-h)2的图象,掌握二次函数 y=a(x-h)2的性质,并要会灵活应用。
一.预习检测案:
26.1.3 二次函数 y=ax2+k 的图象与性质(第三课时)
一.预习检测案: 在同一直角坐标系中,画出二次函数 y=x2+1,y=x2-1 的图象. 解:先列表描点并画图
开口方向
顶点
对称轴 有最高(低)点 最值
y=x2
y=x2-1
y=x2+1
2.可以发现,把抛物线 y=x2 向______平移______个单位,
(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.
2.若函数 y=(a-1)x2+2x+a2-1 是二次函数,则( )
相关文档
最新文档