1980年西安坐标系与1954年北京坐标系如何转换
京 54 坐标系和西安80 坐标系之间的转换

一、数据说明北京54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。
若得七参数就需要在一个地区提供3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。
二、“北京54 坐标系”转“西安80 坐标系”的操作步骤启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示:1、单击“投影转换”“单下“S坐标系转换”“令,系统弹出“转换坐标值”“话框,如图2所示:图2⑴、在“输入”一栏中,坐标系设置为“北京54 坐标系”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“西安80 坐标系”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入北京54 坐标系下一个公共点的(x、y、z),如图2 所示;⑸、在“输出”一栏中,输入西安80 坐标系下对应的公共点的(x、y、z),如图2 所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3 个公共点对坐标自动计算出7个参数,如图3 所示,将其记录下来;然后单击“确定”按钮;图32、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4 所示;图4在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54 坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4 所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。
北京54坐标系与西安80坐标系转换的探讨

标更加符 合相似 变换的特征 。
关键 词 : 北京5 4 坐标 ;坐标转换 ;相似 变换 ;数据探 测法 中 图分类 号 :T B 2 文 献标 识码 : A 文章 编号 :1 6 7 1 —7 5 9 7( 2 0 1 3 )0 1 1 0 1 6 9 - 0 2
北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法方法一:使用大地坐标系进行坐标转换大地坐标系是一种用来描述地球表面上任意点位置的坐标系统。
在大地坐标系中,地球被近似看作一个椭球体,通过经度和纬度来确定其中一点的位置。
下面是北京54坐标与西安80坐标相互转换的步骤:1.将北京54坐标转换为大地坐标系的经纬度坐标:-首先,将北京54坐标转换为北京54平面坐标系的坐标值。
-然后,利用北京54平面坐标系到大地坐标系的转换公式,将北京54平面坐标系的坐标值转换为大地坐标系的经纬度坐标。
2.将大地坐标系的经纬度坐标转换为西安80平面坐标系的坐标值:-利用大地坐标系到西安80平面坐标系的转换公式,将经纬度坐标转换为西安80平面坐标系的坐标值。
3.将西安80平面坐标系的坐标值转换为西安80经纬度坐标:-利用西安80平面坐标系到大地坐标系的转换公式,将西安80平面坐标系的坐标值转换为西安80经纬度坐标。
4.将西安80经纬度坐标转换为北京54平面坐标系的坐标值:-利用大地坐标系到北京54平面坐标系的转换公式,将西安80经纬度坐标转换为北京54平面坐标系的坐标值。
方法二:使用投影坐标系进行坐标转换投影坐标系是一种用来将三维地球表面映射到平面上的坐标系统。
在投影坐标系中,地球被投影到一个平面上,通过平面坐标来表示地球上其中一点的位置。
下面是北京54坐标与西安80坐标相互转换的步骤:1.将北京54坐标转换为投影坐标系的坐标值:-利用北京54平面坐标系到投影坐标系的转换公式,将北京54平面坐标系的坐标值转换为投影坐标系的坐标值。
2.将投影坐标系的坐标值转换为西安80平面坐标系的坐标值:-利用投影坐标系到西安80平面坐标系的转换公式,将投影坐标系的坐标值转换为西安80平面坐标系的坐标值。
3.将西安80平面坐标系的坐标值转换为北京54平面坐标系的坐标值:-利用西安80平面坐标系到北京54平面坐标系的转换公式,将西安80平面坐标系的坐标值转换为北京54平面坐标系的坐标值。
“北京54坐标系”转“西安80坐标系”的转换方法和步骤

“北京54坐标系”转“西安80坐标系”的转换方法和步骤“北京54坐标系”和“西安80坐标系”是中国两个常用的大地坐标系,它们分别以北京和西安为基准点建立起来的。
如果需要将一个点的坐标从“北京54坐标系”转换到“西安80坐标系”,可以按照以下步骤进行转换:步骤一:了解北京54坐标系和西安80坐标系的基本参数要进行坐标转换,首先需要了解两个坐标系的基本参数,包括椭球体参数和坐标变换参数。
北京54坐标系和西安80坐标系之间的坐标变换参数是一个七参数的转换模型,包括三个平移参数(ΔX,ΔY,ΔZ),三个旋转参数(Rx,Ry,Rz),以及一个尺度参数M。
步骤二:进行椭球面上的坐标转换将北京54坐标系的椭球面上的坐标转换为西安80坐标系的椭球面上的坐标。
这里主要涉及到椭球面上的经纬度转换。
1.将北京54坐标系的经度L转换为弧度单位λ:λ=(L-λ0)×π/180,其中,L为北京54坐标系下的经度,λ0为北京54坐标系的中央子午线经度。
2.使用以下公式将λ转换为西安80坐标系下的经度L1:L1 = λ - ΔL + ΔL×sin(2λ) + ΔB×sin(4λ) +ΔB2×sin(6λ) + ΔB3×sin(8λ) + ΔB4×sin(10λ)其中,ΔL为经度的差异,ΔB为纬度的差异。
3.使用以下公式将北京54坐标系下的纬度B转换为西安80坐标系下的纬度B1:B1 = B - ΔL×cos(2B) - ΔL2×cos(4B) - ΔL3×cos(6B) -ΔL4×cos(8B)其中,ΔL为经度的差异。
步骤三:进行三维平面上的坐标转换将椭球面上的坐标转换为地球上的实际坐标。
这里主要涉及到三维平面上的坐标转换。
1.假设在北京54坐标系下,特定点的XYZ坐标为(X,Y,Z)。
2.使用以下公式将北京54坐标系下的XYZ坐标转换为西安80坐标系下的XYZ坐标(X1,Y1,Z1):X1=X+MZ+RzY-RyZ+ΔXY1=Y-RzX+MY+RxZ+ΔYZ1=Z+RyX-RxY+MZ+ΔZ其中,ΔX、ΔY、ΔZ为平移参数,Rx、Ry、Rz为旋转参数,M为尺度参数。
北京54和西安80坐标系说明及转换

第一步:向地方测绘局(或其它地方)பைடு நூலகம்本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z);
第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来)
北京54坐标系(BJZ54)
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统 1990]。
1954年北京坐标系的历史:
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。
那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km( 经验值 ) ,这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。
北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法一、北京54坐标系、西安80坐标系及其相互关系1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来采用克拉索夫斯基椭球体其参数为长半轴为 6378245米扁率为 1。
这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合在中国东部地区大地水准面差距自西向东增加最大达+68米其椭球的长半轴与现代测定的精确值相比109米的缺陷定向不明确椭球短轴未指向国际协议原点CIO也不是中国地极原点起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。
同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的由于施测年代不同、承担单位不同不同锁段算出的成果相矛盾给用户使用带来困难。
1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80)该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球 ) 。
其主要参数为长半轴为6378140 米扁率为 1/。
IAG-1975椭球参数精度较高能更好地代表和描述地球的几何形状和物理特征。
在其椭体定位方面以我国范围内高程异常平方和最小为原则做到了与我国大地水准面较好的吻合。
此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平差和逐级控制产生的不合理影响提高了大地网的精度在上述基础上建立的1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建设的需要。
由于北京54坐标系和西安80坐标系是两种不同的大地基准面这两个椭球参数不同参心所在位置不同指向不同在高斯平面上其纵横坐标轴不重合因而同一点的坐标是不同的无论是三度带六度带还是经纬度坐标都是不同的其平面位置最大相差80米。
空间地理信息数据在“北京54坐标系”与“西安80坐标系”之间的相互转换方法

收 稿 日期 :0 0—0 21 3—1 7
仿 射变 换可 以 实 现 矢 量 数 据 的 缩放 、 曲 、 转 、 扭 旋 转 换 。这 种 方 法 最 少 需 要 3个 位 移 链 接 ( i l e n ds a met pc
Ab t a t n t e c n tu t n p o e so S,h o r i a eta s r t n i e u r n e a s f h i est f a as u c . h sp — sr c :I h o sr ci r c s f o GI t ec o d n t n f mai sr c re t c u e o e d v r i o t o r e T i a r o o b t y d
计算 , 也可 以选 择 涵 盖 待转 换 矢量 图形 数据 范 围 的一 些
“ 虚拟 ” 的点 的坐 标 , 某一 比例尺 地形 图的 图廓 点 的 坐 如 标 进行 计算 , 得两个 坐标 系下 的 同名点位 的两套坐 标 , 取 再 应用这 两套 坐标去 进行坐标 转换 。 采用这种 方法进 行坐 标 系 的 转换 , 度 取 决 于坐 标 精 转换 计算的精度 。概括起 来 , 这种方法 的基本 步骤 是 : 1 选 取 点位 , ) 应用 坐标 转换 软件 进 行 “ 京 5 北 4坐 标 系” “ 安 8 到 西 0坐 标 系 ”的 坐 标 转 换 计 算 ( 图 2所 如
第3 3卷 第 3期
2 1 年 6 月 00
测绘 与 空 间地 理 信 息
G MAT CS& S ATAL I oR EO I P 1 NF MA I E HNO OG T oN T C L Y
北京54与西安80坐标转换

北京54与西安80坐标转换
以此为例讲解两套坐标系间进行坐标转 换的方法,西安80、国家2000、地方 坐标系等之间坐标转换也与此类似。
坐标系简介
• 因技术水平、历史机缘及国家保密等原因,历史上 形成了多套坐标基准体系。
⑤在左侧文本框中,按示例格式录入数据;点击 下部的转换按钮,完成坐标转换任务。
⑥点击两个文本框内的保存按钮,存储当前数据, 以备下次提取使用。
• WGS84与国家2000近似相同,
• 一般转换时可用国家2000替代 WGS84。
• 也就是讲:北京54到WGS84转换,就 可使用【北京54到国家20ቤተ መጻሕፍቲ ባይዱ0】转换。
• 每套基准体系又分别对应大地坐标系(以经纬度来标 识各点)、空间直角坐标系、高斯平面直角坐标系 (常说的公里网)。空间直角坐标系常用于宇宙空间 科研或参数中间转换,日常生活中使用较少;常规 测量一般使用平面经纬度及公里网坐标。公里网坐 标又根据中央子午线及误差精度的不同,人为划分 为六度带、三度带和一点五度带坐标。
• 北京54与西安80的转换参数设置(其他坐标系间 转换类似)
• ①收集工作区附近一至三个点的北京54与西安80 坐标的对应值;②点击[北京54--西安80]标签;
• ③点击[根据附近已知点,新建工作区转换参数] 按钮,显示转换参数窗体;④设置已知点的个数; ⑤分别录入北京54与西安80坐标;⑥录入工作区 的名称及提示;
• 北京54、西安80及国家2000公里网间进行 转换,需要不同的地球椭球参数及当地的 点位坐标差值参数。(各省市不同)
• 当已知一个公共坐标点时,可以计算三参 数;已知两个公共坐标点时,可以计算五 参数;已知三个公共坐标点时,可以计算 七参数。