西安80坐标系

合集下载

1980西安坐标系

1980西安坐标系

1980西安坐标--1980年国家大地坐标系我国最初覆盖全国的坐标系是1954年北京坐标系,采用了克拉索夫椭球元素(a=6378245m,α=1/298.3)。

1954年北京坐标系的建立方法是,依照1953年我国东北边境内若干三角点与前苏联境内的大地控制网联接,将其坐标延伸到我国,并在北京市建立了名义上的坐标原点,并定名为1954年北京坐标系。

以后经分区域局部平差,扩展、加密而遍及全国。

因此,1954年北京坐标系,实际上是前苏联1942年坐标系,原点不在北京,而在前苏联的普尔科沃。

几十年来,我国按1954年北京坐标系建立了全国大地控制网,完成了覆盖全国的各种比例尺地形图,满足了经济、国防建设的需要。

由于各种原因,1954年北京坐标系存在如下主要缺点和问题:(1)克拉索夫斯基椭球体长半轴(a=6378245m)比1975年国际大地测量与地球物理联合会推荐的更精确地球椭球长半轴(a=63781 40m)大105m;(2)1954年北京坐标系所对应的参考椭球面与我国大地水准面存在着自西向东递增的系统性倾斜,高程异常(大地高与海拔高之差)最大为+65m(全国范围平均为29m),且出现在我国东部沿海经济发达地区。

(3)提供的大地点坐标,未经整体平差,是分级、分区域的局部平差结果。

使点位之间(特别是分别位于不同平差区域的点位)的兼容性较差,影响了坐标系本身的精度。

针对1954年北京坐标系的缺点和问题,1978年我国决定建立新的国家大地坐标系,该坐标系统取名为1980年国家大地坐标系。

大地坐标系原点设在处于我国中心位置的陕西省泾阳县永乐镇,它位于西安市西北方向约30km处,简称西安原点。

该坐标系的主要优点是:(1)地球椭球体元素,采用1975年国际大地测量与地球物理联合会推荐的更精确的参数,其中主要参数为:长半轴a=6378140m;短半轴b=6356755.29;扁率α=1:298.257。

(2)椭球定位以我国范围高程异常值平方和最小为原则求解参数,椭球面与我国大地水准面获得了较好的吻合。

1980西安坐标系统与2000国家大地坐标系转换研究

1980西安坐标系统与2000国家大地坐标系转换研究

1980西安坐标系统与2000国家大地坐标系转换研究一、引言中国地图测绘系统的建立始于1954年,随着国家发展和技术进步,地图测绘系统也在不断更新和完善。

1980年西安坐标系统作为中国国家标准地理坐标系统,被广泛应用于地图测绘和地理信息系统中。

随着国家大地坐标系的建立和普及,需要对1980西安坐标系统进行与2000国家大地坐标系之间的转换和对比研究,以适应国家大地测量的需要。

本文旨在研究1980西安坐标系统与2000国家大地坐标系的转换方法,提供技术支持和指导。

二、1980西安坐标系统与2000国家大地坐标系简介1980西安坐标系统是中国国家标准的地理坐标系统,其椭球参数采用的是Krasovsky 1940椭球,在此基础上建立了西安80坐标系统。

这个坐标系统在中国大陆范围内广泛应用,为地图测绘和地理信息系统提供了重要的支持。

随着国家大地坐标系的建立,2000国家大地坐标系成为中国国家标准的地理坐标系统,其椭球参数采用的是GRS-80椭球,并且建立了相应的大地坐标系。

2000国家大地坐标系的建立是为了适应国家工程测量、地理信息系统等领域的需要,提供更准确的地理坐标数据。

研究1980西安坐标系统与2000国家大地坐标系的转换方法,对于提升测绘地理信息系统的精度和可靠性具有重要意义。

三、1980西安坐标系统与2000国家大地坐标系转换方法1. 参数转换法1980西安坐标系统与2000国家大地坐标系之间的转换方法之一是参数转换法。

参数转换法是指通过计算坐标系统的参数之间的差异,来实现坐标系之间的转换。

在这种方法中,需要对两种坐标系统的椭球参数、投影参数进行精确计算,以确定坐标转换的数学模型和方法。

通过参数转换法可以实现两种坐标系统之间的坐标转换,适用范围广,精度高,但是计算复杂度较大,需要高精度的计算和测量设备。

3. 数据转换法数据转换法是指通过测量设备和软件工具,来实现两种坐标系统之间的坐标转换。

在这种方法中,需要通过全球定位系统(GPS)或者测绘仪器进行实地测量和观测,得到相应的坐标数据,然后利用地图测绘软件进行数据处理和转换。

北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法方法一:使用大地坐标系进行坐标转换大地坐标系是一种用来描述地球表面上任意点位置的坐标系统。

在大地坐标系中,地球被近似看作一个椭球体,通过经度和纬度来确定其中一点的位置。

下面是北京54坐标与西安80坐标相互转换的步骤:1.将北京54坐标转换为大地坐标系的经纬度坐标:-首先,将北京54坐标转换为北京54平面坐标系的坐标值。

-然后,利用北京54平面坐标系到大地坐标系的转换公式,将北京54平面坐标系的坐标值转换为大地坐标系的经纬度坐标。

2.将大地坐标系的经纬度坐标转换为西安80平面坐标系的坐标值:-利用大地坐标系到西安80平面坐标系的转换公式,将经纬度坐标转换为西安80平面坐标系的坐标值。

3.将西安80平面坐标系的坐标值转换为西安80经纬度坐标:-利用西安80平面坐标系到大地坐标系的转换公式,将西安80平面坐标系的坐标值转换为西安80经纬度坐标。

4.将西安80经纬度坐标转换为北京54平面坐标系的坐标值:-利用大地坐标系到北京54平面坐标系的转换公式,将西安80经纬度坐标转换为北京54平面坐标系的坐标值。

方法二:使用投影坐标系进行坐标转换投影坐标系是一种用来将三维地球表面映射到平面上的坐标系统。

在投影坐标系中,地球被投影到一个平面上,通过平面坐标来表示地球上其中一点的位置。

下面是北京54坐标与西安80坐标相互转换的步骤:1.将北京54坐标转换为投影坐标系的坐标值:-利用北京54平面坐标系到投影坐标系的转换公式,将北京54平面坐标系的坐标值转换为投影坐标系的坐标值。

2.将投影坐标系的坐标值转换为西安80平面坐标系的坐标值:-利用投影坐标系到西安80平面坐标系的转换公式,将投影坐标系的坐标值转换为西安80平面坐标系的坐标值。

3.将西安80平面坐标系的坐标值转换为北京54平面坐标系的坐标值:-利用西安80平面坐标系到北京54平面坐标系的转换公式,将西安80平面坐标系的坐标值转换为北京54平面坐标系的坐标值。

“北京54坐标系”转“西安80坐标系”的操作步骤

“北京54坐标系”转“西安80坐标系”的操作步骤

“北京54坐标系”转“西安80坐标系”首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。

下面我们来讲解“北京54坐标系”转“西安80坐标系”的转换方法和步骤。

一、数据说明北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。

若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。

二、“北京54坐标系”转“西安80坐标系”的操作步骤启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1所示:图11、单击“投影转换”“单下“S坐标系转换”“令,系统弹出“转换坐标值”“话框,如图2所示:图2⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“西安80坐标系”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z),如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;然后单击“确定”按钮;图32、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;图4在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。

我国三大常用坐标系区别(北京54、西安80和WGS-84)

我国三大常用坐标系区别(北京54、西安80和WGS-84)

我国三大常用坐标系区别(北京54、西安80和WGS-84)北京, 西安, 坐标系我国三大常用坐标系区别(北京54、西安80和WGS-84)Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84)1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。

1985国家高程基准和西安80坐标系

1985国家高程基准和西安80坐标系

在我国的地理测量领域,1985年国家高程基准和西安80坐标系是两个非常重要的概念。

这两个概念不仅在地图制图、工程测量等领域有着广泛的应用,而且对于国家的基础设施建设和国土资源管理也具有重要意义。

本文将对1985年国家高程基准和西安80坐标系进行详细介绍,以便读者对这两个概念有一个清晰的了解。

1. 背景介绍1985年国家高程基准是我国规定的唯一高程基准。

1985年国家高程基准的确定,是为了逐步实现高程基准的统一。

1985年国家高程基准的制定,对于保证工程建设、地理信息系统建设、资源环境监测、国土资源管理等领域中的高程测量数据的质量和一致性,对于推动我国地球物理、天文地球测量、大地测量和测量科学技术的进步,提高地球物理领域的专业技术水平和地理信息科学的应用水平,都至关重要。

西安80坐标系是我国测绘界在1980年进行测量基准点计算平差和综合整体大地测量调查后确定的一个大地坐标系。

它是在1980年我国南北大地基础测量成果的基础上,由国家测绘局研究制定的山西省太原市偏正子午线为中央子午线的椭球面笛卡尔坐标系。

西安80坐标系被广泛应用于地理信息系统、全球定位系统、导航定位等领域。

2. 1985年国家高程基准的特点1985年国家高程基准具有以下特点:(1)高程基准标高采用广义正高。

(2)高程基准起算点采用测量学国际通用的高程起算点。

(3)高程基准点由国家测绘局认可的测绘单位实施。

3. 西安80坐标系的特点西安80坐标系的特点主要包括:(1)中央子午线经度:110度,相对于格林尼治子午线,东移73度7分,即东经110度。

(2)大地基准面:克拉索夫斯基椭球体。

(3)K0、K2有效位数: K0、K2检核记录不用特意列,必要现场计算核对。

(4)投影类型:高斯-克吕格投影。

4. 1985年国家高程基准和西安80坐标系的关系1985年国家高程基准和西安80坐标系是地理信息系统中两个非常重要的概念,它们之间存在着密切的联系。

我国三大常用坐标系区别(北京54、西安80和WGS-84)

我国三大常用坐标系区别(北京54、西安80和WGS-84)

我国三大常用坐标系区别(北京54、西安80和WGS-84)北京, 西安, 坐标系我国三大常用坐标系区别(北京54、西安80和WGS-84)Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84)1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。

80坐标系

80坐标系

80坐标系
80坐标系
西安80坐标系是指1980年西安坐标系,又简称西安大地原点。

1978年4月在西安召开全国天文大地网平差会议上建立。

为此有了1980年国家大地坐标系。

西安80坐标系,属参心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101。

1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

198 0年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。

我国在积累了30年测绘资料的基础上,采用1975年第16届国际大地测量及地球物理联合会IUGG/IAG)推荐的新的椭球体参数(长半径、地心引力常数、自转角速度等数据),椭球短轴平行于由地球质心指向1968.0地极原点的方向,首子午面平行于格林尼治平均天文台的子午面。

以陕西省西安市以北泾阳县永乐镇某点为国家大地坐标原点,通过全国天文大地网整体平差建立了全国统一的大地坐标系,即1980年国家大地坐标系,简称1980年西安原点或西安8 0坐标系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安80坐标系
1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80是为了进行全国天文大地网整体平差而建立的。

根据椭球定位的基本原理,在建立西安80坐标系时有以下先决条件:(1)大地原点在我国中部,具体地点是陕西省泾阳县永乐镇;
(2)西安80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与 Z轴垂直指向经度 0方向;Y轴与 Z、X轴成右手坐标系;
(3)椭球参数采用IUG 1975年大会推荐的参数,因而可得西安80椭球两个最常用的几何参数为:
长半轴a=6378140±5(m)
短半轴b=6356755.2882m
扁率α=1/298.257
第一偏心率平方 =0.959 第二偏心率平方=0.947
椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。

(4)多点定位;
(5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。

北京54坐标系(BJZ54)
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统 1990]。

历史
1954年北京坐标系的历史:
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

它是将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。

因此,P54可归结为:
a.属参心大地坐标系;
b.采用克拉索夫斯基椭球的两个几何参数;
c.大地原点在原苏联的普尔科沃;
d.采用多点定位法进行椭球定位;
e.高程基准为 1956年青岛验潮站求出的黄海平均海水面;
f.高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。

按我国天文水准路线推算而得。

坐标参数
椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3。

缺点
自 P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。

但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:
1、椭球参数有较大误差。

克拉索夫斯基椭球差数与现代精
确的椭球参数相比,长半轴约大109m。

2、参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。

这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。

3、几何大地测量和物理大地测量应用的参考面不统一。

我国在处理重力数据时采用赫尔默特1900~1909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。

4、定向不明确。

椭球短半轴的指向既不是国际是普遍采用的国际协议(原点)CIO(Conventional International Origin),也不是我国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH(Bureau International de I Heure)所定义的格林尼治平均天文台子午面,从而给坐标换算带来一些不便和误差。

为此,我国在1978年在西安召开了“全国天文大地网整体平差会议”,提出了建立属于我国自己的大地坐标系,即后来的1980西安坐标系。

但时至今日,北京54坐标系仍然是在我国使用最为广泛的坐标系。

(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。

相关文档
最新文档