初二数学第三次月考试卷

合集下载

初二数学第三次月考考试试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

初二数学第三次月考考试试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

初二数学第三次月考考试试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------第一学期初二数学第三次月考考试试卷制卷人:朱国生校对人:王永春一、精心填一填(每小题2分,计16分)1.单项式的和为.2.已知直线y=2x+1.则直线与y轴交点A的坐标是_____________.3.若多项式是一个完全平方式,则=__________.4.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为________________,自变量x的取值范围是_________.5.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的频率是______。

6.如图,∠AEP=∠AFP=90°, AE=AF,则AP____∠EAF(填“平分”或“不平分”).第6题第7题第8题7.如图:∠ABC中,AD∠BC,CE∠AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使∠AEH∠∠CEB.8.在上图的日历中,任意圈出一竖列上相邻的三个数,设中间的一个数为a,则这三个数之和为________(用含a的代数式表示)。

二、细心选一选(每小题3分,计27分)9.下列计算正确的是()A(ab2)3=ab6 B(3xy)3=9x3y3C (-2a2)2= -4a4D(-x)2·(-x)= -x310.下列单项式中与为同类项的是().A.B.C.D.11.下列说法中,错误的是().A.线段有两条对称轴B.直角有一条对称轴C.等边三角形有三条对称轴D.任何直角三角形都没有对称轴12.现往一塑料圆柱形杯子(重量忽略不计)中匀速注水,已知10秒钟能注满杯子,之后注入的水会溢出,下列四个图象中,能反映从注水开始,15秒内时间t与杯中注水深度P 的图象是( ).13.如图,∠ABC中,∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于().A.50°B.45°C.30°D.20°第13题第14题14.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为().A.10米B.30米C.25米D.15米15.如图是某校初一年学生到校方式的条形统计图,根据图形可得出步行人数占总人数的()A.60%;B.50%;C.30%;D.20%.16.已知点在函数的图象上,则的大小关系为().A. B. C. D.17、从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的左侧,则这样的在序数组(p,q)共有()(A)12组(B)6组(C)5组(D)3组三、认真算一算(18、19题3分,20题4分,21题6分,共16分)∠、∠、∠、(6分)其中.21.(6分)已知a是绝对值等于2的负数,b是最小的正整数,c的倒数的相反数是-2.求代数式的值。

八年级数学第三次月考试题.doc

八年级数学第三次月考试题.doc

八年级数学第三次月考试题木试卷分第【卷和笫II 卷两部分。

考试时间90分钟,满分120分I (客观卷)24分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格 内,每小题2分,共24分)9•点〃到x 轴的距离为3,到y 的距离为4,则点“的坐标为A 、(3,4)B 、(4,3)C 、(4,3), (-4,3)D 、(4,3), (-4,3)(一4, 一3), (4, -3)§、(呦)300 300•200 —200—X100 1 1100■ 1 'l1 2 C3 &) 01 2 3 AsKh )到y 轴的距离是3,那么点戶的坐标为A 、(-4,3)氏(-3-4)C 、(-3,4)2.估算届(课差小于0.1)的大小是A 、8B. 8.3C. & 8♦ (3,-4)D 、8.0〜& 1+ 2上,则刃与刃的大小关系是4、 A 、乃yi 二乃一次函数y=kx^b 图象如图,则C^ y\<y 2D 、不能比较5.6.A 、 A>0, b>0 C 、 ZKO, b>0B 、 A>0, ZKO/I将△力比的三个顶点坐标的横处标乘以-1,纵他标不变,则所得图形为原图的关系是A 、关于x 轴对称B 、关于y 轴对称C 、关于原点对称D 、将原图的;r 轴的负方向平移了了 1个单位下列汽I 7 8•的徽标中,是中心对称图形的是1. 点戶在第二象限,户到x 轴的距离是4,3. 已知点(-4, yJ, (2, yj 都在直线y = ~x10. 下列四边形小,对我相等且互相垂直平分的是A 、平行四边形B 、正方形C 、等腰梯形D 、矩形11. 四边形/磁的对角线M 、BD 交于点、0,设有以下判断:①AB= BC ;②ZDAB=90° ;③BO= DO ; AO= CO ;④矩形肋⑵ ⑤菱形肋C"⑥正方形肋他 则下列推理中不正确的是 A 、①④n ⑥B 、①③n ⑤C 、①②n ⑥D 、②③n ④二、填空题(每空3分,共30分)13. -丄的立方根是 _________________814. 点P (3, Q 与点、Q (b, 2)关于y 轴对称,则沪 ______ , X ________ 15.在平而直角乂标系中,点(-1,龙+1) —定在第 ________ 象限。

人教版2022-2023学年八年级数学第三次月考测试题(附答案)

人教版2022-2023学年八年级数学第三次月考测试题(附答案)

2022-2023学年八年级数学第三次月考测试题(附答案)一、选择题(共30分)1.下列运算正确的是()A.a3•a4=a12B.(a3)3=a6C.a4÷a3=a D.a3+a4=a72.计算(a2b)3的结果是()A.a2b3B.3a2b C.a6b3D.a8b33.计算22019×(﹣)2020的值是()A.﹣1B.C.﹣D.14.下列各式中与a﹣b﹣c的值相等的是()A.a﹣(b﹣c)B.a+(b﹣c)C.(a﹣b)﹣(﹣c)D.(a﹣b)+(﹣c)5.设a m=2,a n=6,则a2m+n=()A.18B.20C.22D.246.(5a﹣4b)(____)=25a2﹣16b2括号内应填()A.5a﹣4b B.5a+4b C.﹣5a+4b D.﹣5a﹣4b7.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后用剩余的部分剪开后拼成一个长方形,上述操作能验证的等式是()A.a2+ab=a(a+b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)8.已知x﹣y=﹣4,则多项式的值为()A.4B.6C.8D.109.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)10.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.4B.3C.2D.1二、填空题(共24分)11.计算:(π﹣2)0=.12.4mn3和6m2n的公因式是.13.已知a+b=5,ab=3,则a2+b2=.14.计算:512﹣102×49+492=.15.若x2+mx+16是完全平方式,则m=.16.已知a2+a﹣1=0,求a3+2a2+2022的值为.17.已知a2=a+1,b2=b+1,且a≠b,则a4+b4值为.三、解答题(共46分)18.计算下列各式:(1)(15m2n﹣10mn2)÷5mn;(2)﹣2a2•(ab2﹣5ab3).19.因式分解(1)2x2﹣18y2;(2)(x+4)(x+2)+1.20.先化简,再求值:x(x+3y)﹣(x﹣2y)2+4y2,其中x=﹣4,y=.21.设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?请说明理由.22.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC =BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示出长方形ACDF的面积S,并探求a,b,c之间的等量关系(需要化简)(2)请运用(1)中得到的结论,解决下列问题:①求当c=5,a=3时,求S的值;②当c﹣b=8,a=12时,求S的值.23.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值,并求出这个最小值.参考答案一、选择题(共30分)1.解:A.a3•a4=a3+4=a7,因此选项A不符合题意;B.(a3)3=a3×3=a9,因此选项B不符合题意;C.a4÷a3=a4﹣3=a,因此选项C符合题意;D.a3与a4不是同类项,不能合并,因此选项D不符合题意;故选:C.2.解:(a2b)3=a6b3,故选:C.3.解:22019×(﹣)2020的=22019×(﹣)2019×(﹣)=[2×(﹣)]2019×(﹣)=﹣1×(﹣)=故选:B.4.解:A选项,a﹣(b﹣c)=a﹣b+c,故A选项不符合题意;B选项,a+(b﹣c)=a+b﹣c,故B选项不符合题意;C选项,(a﹣b)﹣(﹣c)=a﹣b+c,故C选项不符合题意;D选项,(a﹣b)+(﹣c)=a﹣b﹣c,故D选项符合题意;故选:D.5.解:∵a m=2,a n=6,∴a2m+n=(a m)2×a n=4×6=24,故选:D.6.解:∵(5a﹣4b)(5a+4b)=25a2﹣16b2,∴括号内应填(5a+4b),故选:B.7.解:左图,涂色部分的面积为a2﹣b2,拼成右图的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故选:D.8.解:=(x2﹣2xy+y2)=(x﹣y)2.当x﹣y=﹣4时,原式=×(﹣4)2=16=8.故选:C.9.解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选:C.10.解:法一:a2+b2+c2﹣ab﹣bc﹣ac,=a(a﹣b)+b(b﹣c)+c(c﹣a),又由a=x+20,b=x+19,c=x+21,得(a﹣b)=x+20﹣x﹣19=1,同理得:(b﹣c)=﹣2,(c﹣a)=1,所以原式=a﹣2b+c=x+20﹣2(x+19)+x+21=3.故选B.法二:a2+b2+c2﹣ab﹣bc﹣ac,=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac),=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],=×(1+1+4)=3.故选:B.二、填空题(共24分)11.解:(π﹣2)0=1,故答案为:1.12.解:4mn3﹣6m2n=2mn(2n2﹣3m).则提出的公因式是:2mn.故答案为:2mn.13.解:把知a+b=5两边平方,可得:a2+2ab+b2=25,把ab=3代入得:a2+b2=25﹣6=19,故答案为:19.14.解:512﹣102×49+492=(51﹣49)2=4,故答案为:4.15.解:∵x2+mx+16是完全平方式,∴m=±8.故答案为:±8.16.解:∵a2+a﹣1=0,∴a2=1﹣a,∴a3+2a2+2022=a(1﹣a)+2a2+2022=a2+a+2022=a2+a+1+2021=2021,故答案为:2021.17.解:a2=a+1①,b2=b+1②,①﹣②,得a2﹣b2=a﹣b,(a+b)(a﹣b)﹣(a﹣b)=0,(a﹣b)(a+b﹣1)=0,因为a≠b,所以a+b﹣1=0,即a+b=1③,①+②,得a2+b2=a+b+2,a2+b2=3④,③平方,得a2+b2+2ab=1⑤,⑤﹣④,得2ab=﹣2,ab=﹣1,a4+b4=(a2+b2)2﹣2(ab)2=32﹣2×(﹣1)2=9﹣2=7.三、解答题(共46分)18.解:(1)原式=15m2n÷5mn﹣10mn2÷5mn =3m﹣2n;(2)原式=﹣2a3b2+10a3b3.19.解:(1)2x2﹣18y2;=2(x2﹣9y2)=2(x+3y)(x﹣3y);(2)(x+4)(x+2)+1=x2+2x+4x+8+1=x2+6x+9=(x+3)2.20.解:原式=x2+3xy﹣(x2﹣4xy+4y2)+4y2=x2+3xy﹣x2+4xy﹣4y2+4y2=7xy,当x=﹣4,y=时,原式=7×(﹣4)×=﹣14.21.解:(n+7)2﹣(n﹣3)2=n2+14n+49﹣(n2﹣6n+9)=20n+40=20(n+2),∴(n+7)2﹣(n﹣3)2的值一定能被20整除.22.解:(1)由题意,得方法一:S1=b(a+b)=ab+b2方法二:S2=ab+ab+(b﹣a)(b+a)+c2,=ab+b2﹣a2+c2.S1=S2,∴ab+b2=ab+b2﹣a2+c2,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2.(2)∵a2+b2=c2.且c=5,a=3,∴b=4,∴S=3×4+16=28.答:S的值为28.②∵a2+b2=c2,∴a2=c2﹣b2=(c+b)(c﹣b).又∵c﹣b=8,a=12,∴c+b=18,∴b=5,∴S=ab+b2=12×5+52=85.23.解:(1)m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).故答案为(m+1)(m﹣5);(2)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;(3)∵a2﹣2ab+2b2﹣2a﹣4b+27=a2﹣2a(b+1)+(b+1)2+(b﹣3)2+17=(a﹣b﹣1)2+(b﹣3)2+17,∴当a=4,b=3时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值17.。

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,点到x轴的距离为()A.4B.3C.D.2.下列图形中,具有稳定性的是()A. B. C. D.3.一次函数的值随x的增大而减小;则点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,≌,点B,E,C,F共线,已知,,则的度数为()A.B.C.D.5.如图,在平面直角坐标系,线段AB的两个端点坐标依次为,,将线段AB向右平移5个单位,再向上平移1个单位,得到对应线段CD,则四边形ABDC的面积为()A. B. C.15 D.186.一次函数中,当时,则函数y的取值范围为()A. B. C. D.7.下列条件能确定的形状与大小的是()A.,,B.,C.,,D.,,8.如图是一个不规则的“五角星”,已知,,,,则的度数为()A.B.C.D.9.同一平面直角坐标系中,一次函数与为常数的图象可能是()A. B. C. D.10.在中,,点D是BC边的中点,过点B作于点E,点F是DA延长线上一点,已知,下列结论不一定正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

11.把命题“全等三角形对应边的高相等”改写成“如果那么”的形式是______.12.在平面直角坐标系中,已知点和,且轴,则a的值为______.13.某数学兴趣小组利用全等三角形的知识测试某小河的宽度,如图,点A,B,C是小河两边的三点,在河边AB下方选择一点,使得,,若测得米,的面积为30平方米,则点C到AB的距离为______米.14.已知一次函数为常数且若该一次函数图象经过点,则______;当时,函数y有最大值11,则a的值为______.三、解答题:本题共9小题,共90分。

解答应写出文字说明,证明过程或演算步骤。

八年级下第三次月考数学试卷(解析版)

八年级下第三次月考数学试卷(解析版)

八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。

人教版八年级下册数学第三次月考试题含答案

人教版八年级下册数学第三次月考试题含答案

人教版八年级下册数学第三次月考试卷一、单选题1.下列各式中,运算正确的是()A =﹣2B C 4D .22.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=4,b=2,c=3C .a=4,b=2,c=5D .a=4,b=5,c=33.函数y=2x ﹣5的图象经过()A .第一、三、四象限B .第一、二、四象限C .第二、三、四象限D .第一、二、三象限4.要得到函数y =2x +3的图象,只需将函数y =2x 的图象()A .向左平移3个单位B .向右平移3个单位C .向下平移3个单位D .向上平移3个单位5.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为()A .2B .4C .6D .86.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是A .12y y =B .12y y <C .12>y y D .不能确定7.如图,已知:函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是()A .x >﹣5B .x >﹣2C .x >﹣3D .x <﹣285﹣x ,则x 的取值范围是()A .为任意实数B .0≤x≤5C .x≥5D .x≤59.在△ABC 中,AB=15,AC=13,高AD=12,则BC 等于()A .14B .4C .14或4D .9或510.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于x 的函数max{3,21}y x x =+可表示为()A .3y x =B .21y x =+C .3(1)21(1)x x y x x <⎧=⎨+≥⎩D .21(1)3(1)x x y x x +<⎧=⎨≥⎩二、填空题11x 的取值范围是______.12.计算.13.如图,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,并分别找出AC 和BC 的中点M ,N ,如果测得MM=20m ,那么A ,B 两点间的距离是_____.14.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为__.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x =a ﹣b 的解是x =3;④当x >3时,y 1<y 2中.则正确的序号有_____.三、解答题17.计算(1271245;(212753533.18.如图所示的一块地,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.19.画出y =2x ﹣4的图象,确定x 取何值时,(1)y >0;(2)y <﹣4.20.如图,一次函数y =ax +b 的图象与正比例函数y =kx 的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)求△MOP的面积.21.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.22.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元) A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.23.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)求证:DH⊥CE;(2)如图2,EF ⊥CE ,FH ⊥AO ,垂足为点H ,T 为FC 的中点.①求证:FH =AH ;②FO =5,TO =E 的坐标.24.如图(1),在平面直角坐标系中,直线y x m =-+交y 轴于点A ,交x 轴于点B ,点C 坐标为,02m ⎛⎫⎪⎝⎭,作点C 关于直线AB 的对称点F ,连接BF 和OF ,OF 交AC 于点E ,交AB于点M .(1)求证:OF AC ⊥.(2)如图(2),连接CF 交AB 于点H ,求证:32AH CF =.(3)如图(3),若2m =,G 为x 轴负半轴上一动点,连接MG ,过点M 作GM 的垂线交FB 的延长线于点D ,GB-BD 的值是否为定值?若是,求其值;若不是,求其取值范围.参考答案1.C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断.【详解】解:A =2,故原题计算错误;B=,故原题计算错误;C 4,故原题计算正确;D 、2和故选:C .【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.2.D 【详解】试题分析:A .∵2221253+=≠,∴不能构成直角三角形,故本选项错误;B .∵22223134+=≠,∴不能构成直角三角形,故本选项错误;C .∵22224205+=≠,∴不能构成直角三角形,故本选项错误;D .∵22234255+==,∴能构成直角三角形,故本选项正确.故选D .考点:勾股定理的逆定理.3.A 【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b=-5<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.D【分析】平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.5.B【分析】已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.【详解】∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120°∴∠AOB=60°∴△AOB是等边三角形∴OA=OB=AB=2∴AC=2OA=4故选:B【点睛】本题考查了矩形的基本性质,等边三角形的判定和性质.6.C根据()()12223,,2,P y P y -是一次函数y=-x-1的图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.【详解】∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2,∴12>y y .故选C 【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数7.B 【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:∵函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是x >﹣2,故选B .【点睛】本题主要考查了根据两直线的交点坐标解不等式,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x ==-=-,∴5-x≥0,解得:x≤5,故选D .本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.9.C【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-B D.【详解】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为DC-BD=9-5=4.故BC长为14或4.【点睛】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.D 【分析】由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.【详解】当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .【点睛】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.11.x≥-2【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.12.【详解】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=点睛:本题主要考查二次根式的加减,比较简单.13.40m .【分析】根据三角形中位线定理:三角形的中位线平行第三边,且等于第三边的一半,那么第三边应等于中位线长的2倍.【详解】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=12AB,∴AB=2MN=2×20=40(m).【点睛】本题考查三角形中位线定理.14.110°.【详解】根据平行四边形的性质可得AB∥CD,根据平行线的性质可得∠1=∠CAB=20°,因BE⊥AB,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.15.【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD==故本题答案为:【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.16.①③④【分析】根据y 1=kx +b 和y 2=x +a 的图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.【详解】解:根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx +b =x +a 的解是x =3,正确;④当x >3时,y 1<y 2正确.故答案为:①③④.【点睛】本题主要考查了一次函数的图象性质,准确分析是解题的关键.17.(1;(2)1【分析】(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的乘法、平方差公式可以解答本题.【详解】解:(1=+;(2()53-=3﹣2=1.【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算法则是解题的关键.18.224m【分析】根据勾股定理求得AC的长,再根据勾股定理的逆定理判定ABC∆为直角三角形,从而不难求得这块地的面积.【详解】解:连接AC.4mAD=,3mCD=,AD DC⊥5mAC∴=22212513+=ACB∴∆为直角三角形21151230m22ACBS AC BC∆∴=⨯⨯=⨯⨯=,211436m22ACDS AD CD∆=⋅=⨯⨯=,∴这块地的面积230624m ACB ACD S S ∆∆=-=-=.【点睛】本题考查了学生对勾股定理及其逆定理的理解及运用能力,解题的关键是掌握勾股定理的知识.19.图见解析;(1)2x >;(2)0x <【分析】求出函数图象与两坐标轴的交点,利用两点法作出图象即可;(1)根据函数图象在x 轴上方的部分,y >0,直接写出即可;(2)根据函数图象在y 轴左方的部分,y <﹣4,直接写出即可.【详解】解:当x =0时,y =﹣4;当y =0时,2x ﹣4=0,解得x =2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)当x >2时,y >0;(2)当x <0时y <﹣4.【点睛】本题主要考查了一次函数的图象性质,准确计算是解题的关键.20.(1),22y x y x ==-;(2)1【分析】(1)将(1,0),(0,﹣2)代入y =ax +b 解出一次函数的解析式,然后将x =2代入求得M 的纵坐标,再代入正比例函数y =kx 解出即可;(2)利用三角形的面积公式计算即可.【详解】解:(1)一次函数y=ax+b的图象经过点(1,0),(0,﹣2),∴2a bb+=⎧⎨=-⎩,解得22ab=⎧⎨=-⎩,故一次函数的解析式为:y=2x﹣2,将x=2代入y=2x﹣2得,y=2,∴M(2,2),将M(2,2)代入y=kx,解得:k=1,所以正比例函数解析式为:y=x;(2)由(1)可知:OP=1,M(2,2)∴△MOP的面积为112=1 2⨯⨯.【点睛】本题主要考查求一次函数解析式,关键是根据待定系数法求解函数表达式,然后根据点的坐标得到线段的长,进而求解面积.21.(1)证明见解析;(2)【分析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.【详解】()1证明:CE//OD,DE//OC,∴四边形OCED是平行四边形,矩形ABCD,AC BD∴=,1OC AC2=,1OD BD2=,OC OD∴=,∴四边形OCED是菱形;()2在矩形ABCD中,ABC90∠=,BAC30∠= ,AC4=,BC 2∴=,AB DC ∴==连接OE ,交CD 于点F ,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==,OE 2OF 2∴==,OCED 11S OE CD 222∴=⨯⨯=⨯⨯=菱形【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.22.(1)A 种商品的单价为20元,B 种商品的单价为15元;(2)当a=8时所花钱数最少,即购买A 商品8件,B 商品4件.【分析】(1)列二元一次方程组,用代入法或加减法解方程即可;(2)将题目转化为一元一次不等式,利用一元一次不等式解即可.【详解】解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得:255365x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩,答:A 种商品的单价为20元,B 种商品的单价为15元;(2)设第三次购买商品A 种a 件,则购买B 种商品()12a -件,根据题意可得:()212a a - ,得:812a,()2015125180m a a a =+-=+ ∴当8a =时所花钱数最少,即购买A 商品8件,B 商品4件.【点睛】本题考查了二元一次方程组的解法以及不等式的相关知识,解题的关键是掌握消元思想与解二元一次方程组的方法步骤.23.(1)见解析;(2)①见解析;②()4,7E .【分析】(1)证明△HAD ≌△EDC (SAS ),可得∠ADH =∠DCE ,从而得结论;(2)①如图2,作辅助线,构建三角形全等,证明△GFE ≌△DEC (AAS ),得EG =DC =AD ,根据等式的性质可得FH =AG =DE =AH ;②作辅助线,构建直角三角形,设AG =x ,AE =y ,则ED =FG =OM =x ,则GD =MC =2x +y ,得△OTN 是等腰直角三角形,则ON =TN =2,由此可得x 和y 的值,可得结论.【详解】证明:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠DAH =∠EDC =90°,∵AH =DE ,∴△HAD ≌△EDC (SAS ),∴∠ADH =∠DCE ,∵∠ADH +∠HDC =∠DCE +∠HDC =90°,∴∴∠DFC =90°,∴CE ⊥DH ;(2)①如图2,过F 作FG ⊥AD ,交DA 的延长线于G ,∵FH⊥AO,∴∠G=∠GAH=∠AHF=90°,∴四边形AGFH是矩形,∴FG=AH=DE,∵∠G=∠D=90°,∠GEF=∠DCE,∴△GFE≌△DEC(AAS),∴EG=DC=AD,∴EG﹣AE=AD﹣AE,∴AG=DE=FH=AH;②如图3所示,延长GF交x轴于M,过T作TN⊥OC于N,∴FM⊥MC,∴TN∥FM,∵T是FC的中点,∴N是MC的中点,∴TN=12 FM,设AG=x,AE=y,则ED=FG=OM=x,∴GD=MC=2x+y,∵N是MC的中点,∴MN =12MC =x +12y =OM +ON ,∴ON =12y ,∵TN =12FM =12y ,∴ON =TN ,∵∠ONT =90°,OT =,∴ON =TN =2,∴FM =2TN =4,Rt △FMO 中,OF =5,∴OM =3,∴GM =FM +GF =4+3=7,∴E (4,7).【点睛】本题主要考查正方形的性质、全等三角形的性质与判定及等腰三角形的性质,关键是根据正方形的性质得到三角形的全等,然后根据题意得到线段的长进而转换为点的坐标.24.(1)见解析;(2)见解析;(3)是,43【分析】(1)先求出A ,B 的坐标,再通过对称得到FB=BC 且垂直x 轴,从而证Rt △OAC ≌Rt △FOB ,得到OF ⊥AC .(2)利用勾股定理和等腰直角三角形的性质分别求出BA ,BF ,BH 即可.(3)过M 点作MN ⊥x 轴于N 点,MH ⊥DF 于H 点,证明直角△MEN ≌直角△MDH .【详解】(1)证明 由y x m =-+得(0,),A m (,0)B m ,,OA OB ∴=45OAB OBA ︒∠=∠=.C F ,关于AB 对称,,BC BF ∴=45OBA ABF ︒∠=∠=,90FBO ︒∴∠=.又,0,2m C ⎛⎫⎪⎝⎭ OC BC BF ∴==.Rt Rt ,OAC BOF ∴≅ FOB OAC ∴∠=∠.90,OAC ACO ︒∠+∠= 90FOB ACO ︒∴∠+∠=,90OEC ︒∴∠=,即OF AC ⊥.(2)证明: 在Rt BCF 中,2mBC BF ==,,CF ∴=BH =,在Rt OAB 中,,OA OB m ==AB ∴=,,44AH m m ∴=32AH CF ∴=.(3)解:GB-BD 的值是定值,定值等于43.2,m = ∴直线AB 的解析式为2y x =-+,点F 的坐标为(2,1),直线OF 的解析式为12y x =.解方程组212y x y x =-+⎧⎪⎨=⎪⎩得4323x y ⎧=⎪⎪⎨⎪=⎪⎩,42,33M ⎛⎫∴ ⎪⎝⎭.过点M 作MN x ⊥轴于点N ,MH DF ⊥于点H,如图90,FBO ︒∠= 45,OBA ︒∠=21∴四边形MNBH 是正方形,2,3MN BH MH ∴===,MN BH ∥NMD MDH ∴∠=∠.又,GM MD ⊥ 18090MGN MNG GMN GMN ︒︒∴∠=-∠-∠=-∠,90NMD GMD GMN GMN ︒∠=∠-∠=-∠,MGN NMD MDH ∴∠=∠=∠.在MGN 和MDH 中,MGN MDH MNG MHD MN MH ∠=∠⎧⎪∠=∠⎨⎪=⎩,,MGN MDH ∴≅ GN DH ∴=.GB BD GN BN BD ∴-=+-DH BH BD =+-423BH ==.综上所述,GB-BD 的值为定值43.【点睛】本题主要考查了一次函数的性质,能求与X 轴Y 轴的交点坐标;解题关键是学会构建三角形全等,掌握全等三角形的性质;合理使用勾股定理进行计算.。

初二上数学第三次月考试卷

初二上数学第三次月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 2.52. 下列等式中,正确的是()A. a² + b² = (a + b)²B. a² - b² = (a + b)(a - b)C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²3. 若 a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a + b < 0D. a - b < 04. 下列函数中,一次函数是()A. y = 2x³ - 3x² + 4B. y = 3x - 2C. y = 4x + 1/xD. y = √x5. 若 a,b,c 成等差数列,且 a + b + c = 15,则 b 的值为()A. 5B. 6C. 7D. 86. 下列方程中,有唯一解的是()A. x² + 2x + 1 = 0B. x² - 2x + 1 = 0C. x² + 2x = 0D. x² - 2x = 07. 若∠A = 30°,∠B = 45°,则∠C 的度数为()A. 75°B. 90°C. 105°D. 120°8. 下列各式中,正确的是()A. a³ + b³ = (a + b)(a² - ab + b²)B. a³ - b³ = (a - b)(a² + ab + b²)C. a³ + b³ = (a + b)(a² + ab + b²)D. a³ - b³ = (a - b)(a² - ab + b²)9. 下列图形中,对称轴为直线 y = x 的是()A. 圆B. 矩形C. 等腰三角形D. 等边三角形10. 下列数列中,第 10 项为 50 的数列是()A. 2, 4, 6, 8, ...B. 3, 6, 9, 12, ...C. 5, 10, 15, 20, ...D. 4, 8, 12, 16, ...二、填空题(每题3分,共30分)11. 2 + 3 = 5,则 2 - 3 = ()12. 若 a = -3,则a² = ()13. 若 x = 2,则x² - 3x + 2 = ()14. 若 a = 3,b = -2,则(a + b)² = ()15. 若 a,b,c 成等差数列,且 a + b + c = 15,则 b = ()16. 若∠A = 30°,∠B = 45°,则∠C = ()17. 若x² - 5x + 6 = 0,则 x 的值为()18. 若a³ + b³ = (a + b)(a² - ab + b²),则a² + b² = ()19. 若a² + b² = c²,则 a,b,c 构成()20. 若 a,b,c 成等差数列,且 a + b + c = 15,则 b = ()三、解答题(每题10分,共40分)21. 简化下列各数:(1)2.5 - 1.2 + 0.3(2)-3.2 + 4.5 - 1.122. 解下列方程:(1)2x - 3 = 5(2)3x + 2 = 1123. 已知 a,b,c 成等差数列,且 a + b + c = 15,求 b 的值。

人教版八年级(上)数学第三次月考试题

人教版八年级(上)数学第三次月考试题

人教版八年级(上)数学第三次月考试题(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.下列各式中,正确的是( )A.4=±2B.±9=3C.3-8=-2 D.-22=-22.(4分)2.计算(2xy)3÷(2xy2)的结果是( )A.2y B.3x2y C.4xy D.4x2y3.(4分)3.长方形的面积为4a2-6ab+2a,一边长为2a,则它的另一边长为( )A.2a-3b B.4a-6bC.2a-3b+1 D.4a-6b+24.(4分)4.等腰三角形底边长为5 cm,一腰上的中线把其周长分为两部分,差为2 cm,则腰长为( )A.7 cm B.7 cm或3 cmC.3 cm D.不确定5.(4分)5.如图,在△ABC中,AB=AC,D,E两点在BC上,且有AD=AE,BD=CE.若∠BAD=30°,∠DAE=50°,则∠BAC的度数为( )A.130°B.120°C.110°D.100°6.(4分)6.若n为大于0的整数,则(2n+1)2-(2n-1)2一定是( )A.6的倍数B.8的倍数C.12的倍数D.9的倍数7.(4分)7.下列各式能用完全平方公式分解因式的有( )①4x2-4xy-y2②x2+x+14③-1-a-14a2④m2n2+4-4mn ⑤a2-2ab+4b2⑥x2-8x+9A.1个B.2个C.3个D.4个8.(4分)8.如图,AB∥DE,AC∥DF,AC=DF,要使△ABC≌△DEF需再补充一个条件,下列条件中,不能选择的是( )A.AB=DE B.BC=EFC.EF∥BC D.∠B=∠E9.(4分)9.假设电视机屏幕为长方形,长BC=52 cm,“某个电视机屏幕大小是65 cm”的含义是长方形的对角线BD长为65 cm,如图所示,则该电视机屏幕的高CD为( )A.13 cm B.30 cmC.39 cm D.52 cm10.(4分)10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC.若△ABC的周长为12,则PD+PE+PF=( )A.12 B.8 C.4 D.3二、 填空题 (本题共计6小题,总分24分)11.(4分)11.在“We like maths”这个句子的所有字母中,字母“e”出现的频率为____. 12.(4分)12.计算:3ab 2·⎝ ⎛⎭⎪⎫-13a 2b ·2abc=____. 13.(4分)13.若31-2x 与33x -5 互为相反数,则1-x =_.14.(4分)14.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上支出100元,则在午餐上支出__元15.(4分)15.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中共有__对全等三角形.16.(4分)16.如图,折叠长方形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB ,BC 上(含端点),且AB =6 cm ,BC =10 cm ,则折痕EF 的最大值是___ cm.三、 解答题 (本题共计9小题,总分86分)17.(8分)17.计算:(1)(-1)3+|3-2|-3125+16;(2)⎝ ⎛⎭⎪⎫13x +y ⎝ ⎛⎭⎪⎫13x -y ⎝ ⎛⎭⎪⎫19x 2+y 2. 18.(8分)18.先化简,再求值 :3(x -1)2-(3x +1)(3x -1)+6x(x -1).其中x =1319.(10分)19.如图,在△ABC 中,点D ,E 分别是AC ,AB 上的点,BD 与CE 相交于点O ,给出下列三个条件:①∠1=∠2;②∠3=∠4;③BE =CD.上述三个条件中,哪两个条件可以判定△ABC 是等腰三角形,写出其中的一种情况,并加以证明.20.(10分)20.如图,小明想把一长为60 cm 、宽为40 cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm ,求图中阴影部分的面积.(2)当x =5时,求这个盒子的体积.21.(10分)21.如图,∠AOB =60°,OC 平分∠AOB ,过点C 作CD ⊥OC ,垂足为点C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由.(2)若CD =6,OD =10,直接写出OC 的长.22.(9分)22.随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图:请结合图中所给的信息解答下列问题:(1)这次统计共抽查了__名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为____.(2)将条形统计图补充完整.(3)该校共有2 500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?23.(9分)23.如图,长方形纸片ABCD的长AD=8 cm,宽AB=4 cm,将其折叠,使点D 与点B重合.(1)求证:BE=BF.(2)求折叠后DE的长.(3)求以折痕EF为边的正方形的面积.24.(10分)24.已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE.(1)DE的长为.(2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?(3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.25.(12分)25.【问题情境】如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)【问题解决】延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.【反思感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)【尝试应用】如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)【拓展延伸】如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM 交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的取值范围.(温馨提示:如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达三边关系,a2+b2=c2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~第一学期淮安市淮海中学
初二数学第三次月考试卷.12.20
命题人:张建华 审核人:丁海英 一、选择题:(每题3,共30) 1、下面的图形中,是中心对称图形的是( )
A .
B .
C .
D .
2、25的平方根是( ) A .5 B-5 C 5± D 5±.
3、下列实数
010010001.0,1.0,3
,4,8,3,323-π
….其中无理数共有( ) A .2个 B .3个 C .4个 D .5个
4、以a 、b 、c 三边长能构成直角三角形的是( )
A . a=1 ,b=2 ,c=3
B . a=32 ,b=42 , c=5
2
C .a=2,b=3,c=5
D .a=5 ,b=6,c=7
5、一次函数y=―x ―1不经过的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 6、如图,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC ⊥BD ②∠BAD=90° ③AB=BC ④AC=BD
A .①③
B .②③
C .③④
D .①②③
第6题 第7题 第8题
7.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .12cm B .10cm C . 8cm D . 6cm
8、如图,□ABCD 的顶点坐标分别是A (0,0)、B (6,0)、C (7,3),则顶点D 的坐标是 ( )A .(3,1) B .(1,3) C .(2,3) D .(3,2) 9、已知∣x -2∣+
3+y =0,则 点P (x,y )在直角坐标系中( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
A B C D
班级 初 二( ) 姓名 考号____________________
……………………………………装………………………………订………………………………线…………………………………………
10、如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有()①图1中的BC长是8cm,②图2中的M点表示第4秒时y的值为24cm2,
③图1中的CD长是4cm,④图2中的N点表示第12秒时y的值为18cm2.
A.1个B.2个C.3个D.4个
二、填空题(每题3分,共24分)
11、点A(3,-4)
到原点的距离是。

12、已知梯形的上底长为4㎝,下底长为8
㎝,则它的中位线长等于㎝.
13、已知点P1(a,5)与P2(-4,-5)关于x轴对称,则a= ;
14、边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是
15、一次函数的图象过点(-1,0),且函数值随自变量的增大而减小,写出一个符合条件的一次函数的解析式
16、如图,在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC于点E,则EC=
17、如图坐标系中,右边的图案是由左边的图案经过平移后得到的。

左图中左、右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是;
第16题第17题第18题
18 、某人从甲地去乙地,已知摩托车行驶的路程S(千米)与行驶的时间t(小时)之间的函数关系如图。

若这辆摩托车平均每行驶1小时耗油1升。

根据图中所给的的信息,从甲地去乙地,这辆摩托车至少耗油升。

三、解答题(46分)
19、(6分)一根祝寿蜡烛长85cm,点燃时每小时缩短5cm。

图1
A F
E
D
C
G
B
H
图2
2 4 7 12
(1)请写出点燃后蜡烛的长y(cm)与蜡烛燃烧时间t(h)之间的函数关系式;(2)该蜡烛可点燃多长时间?
20、(8分)已知:如图,□ABCD中,E、F分别是AB、CD的中点.
求证:(1)△AFD≌CEB;
(2)四边形AECF是平行四边形.
21、(7分)如图,表示小王骑自行车和小李骑摩托车者沿相
同的路线由甲地到乙地行驶过程的函数图象,两地相距80千
米,请根据图象解决下列问题:
(1)l1、l2分别是谁行驶过程的函数图象?
(2)谁先出发?先出发多少时间?
谁先到达终点?先到多少时间?
(3)说出图中两线段交点的实际意义。

22、(9分)已知直线y=kx+b经过点(0,-2)和点(-2,0).
⑴求直线的解析式;
⑵在图中画出直线,并观察y>1时,x的取值范围(直接写答案);
(3)求此直线与两坐标轴围成三角形的面积;
O 1
-2 2 -1 1 2 -1 -2
23、(8分)如图是某工程队在“要致富先铺路”工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,
(1)分别求出x ≤2和x ≥2时y 与x 之间的关系式; (2)求出该公路的长度是多少米?
24、(8分)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,
设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO=FO ;
(2)当点O 运动到何处时,四边形AECF 是矩形? 并证明你的结论.
……………………………………装………………………………订………………………………
线…………
……………

……

……
…A B
C
E F M N O (第19题图)。

相关文档
最新文档