中考数学复习专题汇编3
吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类一.二元一次方程组的应用(共1小题)1.(2023•吉林)2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B 种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.二.一次函数的应用(共1小题)2.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.三.反比例函数的应用(共1小题)3.(2022•吉林)密闭容器内有一定质量的气体,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)当V=10m3时,求该气体的密度ρ.四.二次函数综合题(共2小题)4.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.5.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.五.四边形综合题(共3小题)6.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.7.(2023•吉林)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形.其判定的依据是 .【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC 或CB平移,且EF始终在边BC上,当MD=MG时,延长CD,HG交于点P,得到图③.若四边形ECPH的周长为40,sin∠EFG=(∠EFG为锐角),则四边形ECPH的面积为 .8.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.六.作图—应用与设计作图(共1小题)9.(2023•吉林)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图①、图②、图③中以AB为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.七.解直角三角形的应用(共2小题)10.(2022•吉林)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC 长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE 的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)11.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O 作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°( )(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB× (填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400× (填相应的三角函数值)≈ (km)(结果取整数).八.条形统计图(共1小题)12.(2021•吉林)2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016﹣2020年快递业务量增长速度统计表年龄20162017201820192020增长速度51.4%28.0%26.6%25.3%31.2%说明:增长速度计算办法为:增长速度=×100%根据图中信息,解答下列问题:(1)2016﹣2020年快递业务量最多年份的业务量是 亿件.(2)2016﹣2020年快递业务量增长速度的中位数是 .(3)下列推断合理的是 (填序号).①因为2016﹣2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.九.折线统计图(共1小题)13.(2022•吉林)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是 %.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为 万人.(只填算式,不计算结果)(3)下列推断较为合理的是 (填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.一十.列表法与树状图法(共1小题)14.(2023•吉林)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆,某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片,请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.二元一次方程组的应用(共1小题)1.(2023•吉林)2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B 种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.【答案】每箱A种鱼价格是700元,每箱B种鱼的价格300元.【解答】解:设每箱A种鱼的价格每箱x元,B种鱼的价格每箱y元,由题意得,,解得,答:每箱A种鱼价格是700元,每箱B种鱼的价格300元.二.一次函数的应用(共1小题)2.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.【答案】(1)0.5,40.(2)y=x+15(40≤x≤100).(3)5万人.【解答】解:(1)乙地接种速度为40÷80=0.5(万人/天),0.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,25),(100,40)代入解析式得:,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=×80+15=35,40﹣35=5(万人).三.反比例函数的应用(共1小题)3.(2022•吉林)密闭容器内有一定质量的气体,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)当V=10m3时,求该气体的密度ρ.【答案】(1)ρ=;(2)该气体的密度为1kg/m3.【解答】解:(1)设ρ=,将(4,2.5)代入ρ=得2.5=,解得k=10,∴ρ=.(2)将V=10代入ρ=得ρ=1.∴该气体的密度为1kg/m3.四.二次函数综合题(共2小题)4.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.【答案】(1)y=x2+x﹣.(2)y最小值为﹣2,y最大值为.(3)①m<.②﹣2≤m<,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ与图象有2个交点.【解答】解:(1)将A(0,﹣),点B(1,)代入y=x2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)2﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣2,∵2﹣(﹣)>﹣﹣(﹣2),∴当x=2时,y取最大值22+2﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,当﹣3m+1>0时,PQ=﹣3m+1,PQ的长度随m的增大而减小,当﹣3m+1<0时,PQ=3m﹣1,PQ的长度随m增大而增大,∴﹣3m+1>0满足题意,解得m<.②∵0<PQ≤7,∴0<﹣3m+1≤7,解得﹣2≤m<,如图,当m=﹣时,点P在最低点,PQ与图象有1交点,m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,∴﹣<m<﹣时,PQ与图象有2个交点,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ与图象有2个交点.5.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.【答案】(1)y=﹣x2+2x+1;(2);(3)点P与点Q的纵坐标的差为1或8;(4)或.【解答】解:(1)∵抛物线y=﹣x2+2x+c经过点A(0,1),∴c=1,∴抛物线解析式为y=﹣x2+2x+1;(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴顶点坐标为(1,2),∵点Q与此抛物线的顶点重合,点Q的横坐标为2m,∴2m=1,解得:;(3)①AQ∥x轴时,点A,Q关于对称轴x=1对称,x Q=2m=2,∴m=1,则﹣12+2×1+1=2﹣22+2×2+1=1,∴P(1,2),Q(2,1),∴点P与点Q的纵坐标的差为2﹣1=1;②当AP∥x轴时,则A,P关于直线x=1对称,x P=m=2,x Q=2m=4,则﹣42+2×4+1=﹣7,∴P(2,1),Q(4,﹣7);∴点P与点Q的纵坐标的差为1﹣(﹣7)=8;综上所述,点P与点Q的纵坐标的差为1或8;(4)①如图所示,当P,Q都在对称轴x=1的左侧时,则0<2m<1,∴0<m,∵P(m,﹣m2+2m+1),∴Q(2m,﹣4m2+4m+1),∴=﹣m2+2m,h2=y Q﹣y A=﹣4m2+4m+1﹣1=﹣4m2+4m,∴h2﹣h1=﹣4m2+4m+m2﹣2m=m,解得:或m=0(舍去);②当P,Q在对称轴两侧或其中一点在对称轴上时,则2m≥1,m≤1,即,则h2=2﹣1=1,∴1+m2﹣2m=m 1,解得:(舍去)或(舍);③当点P在x=1的右侧且在直线y=0 方时,即1<m<2,∵h1=2﹣1=1,,∵4m2﹣4m+1﹣1=m,解得:或m=0(舍去);④当p在直线y=1上或下方时,即m≥2,,∴4m2﹣4m+1﹣(m2﹣2m+1)=m,解得:m=1(舍去)或m=0(舍去),综上所述,或.五.四边形综合题(共3小题)6.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)1cm.(2)(x﹣3).(3)y=.【解答】解:(1)如图,在Rt△PDQ中,AD=cm,∠PQD=60°,∴tan60°==,∴DQ=AD=1cm.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤2时,点P在AB上,作PM⊥CD于点M,PQ交AB于点E,作EN⊥CD 于点N,同(1)可得MQ=AD=1cm.∴DQ=DM+MQ=AP+MQ=(x+1)cm,当x+1=3时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠BDC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=(x+1)cm,∴y=DQ•EN=(x+1)×(x+1)=(x+1)2=x2+x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2)cm,∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=(x2﹣2x+2)cm2,∴y=S△DEQ﹣S△CQF=x2+x+﹣(x2﹣2x+2)=(﹣x2+ x﹣)cm2(2<x≤3).当3<x≤4时,点P在BC上,如图,∵CP=CB﹣BP=﹣(x﹣3)=(4﹣x)cm,∴y=DC•CP=×3(4﹣x)=6﹣x(3<x≤4).综上所述,y=7.(2023•吉林)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形.其判定的依据是 两组对边分别相平行的四边形是平行四边形 .【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC或CB平移,且EF始终在边BC上,当MD=MG时,延长CD,HG交于点P,得到图③.若四边形ECPH的周长为40,sin∠EFG=(∠EFG为锐角),则四边形ECPH的面积为 80 .【答案】【操作发现】两组对边分别相平行的四边形是平行四边形;【探究提升】见解析;【结论应用】80.【解答】【操作发现】解:如图①,四边形EFMN总是平行四边形.其判定的依据是两组对边分别相平行的四边形是平行四边形;故答案为:两组对边分别相平行的四边形是平行四边形;【探究提升】证明:∵四边形纸条ABCD和EFGH是平行四边形,∴MN∥EF,EN∥FM,∴四边形EFMN是平行四边形,∵∠B=∠FEH,∴AB∥NF,∵AN∥BE,∴四边形ABEN是平行四边形,∴AB=EN,∵AB=EF,∴EN=EM,∴▱EFMN是菱形;【结论应用】解:∵将平行四边形纸条EFGH沿BC或CB平移,∴四边形GFCP是平行四边形,∴PG=CF,PG∥CF,∵DM∥CF,∴DM∥PG,∴四边形PDMG是平行四边形,∵MD=MG,∴四边形PDMG是菱形,∴PG=PD,由【探究提升】知▱EFMN是菱形,∴FM=EF,∴EF=CD,∴CE=CP,∴四边形ECPH是菱形,∵四边形ECPH的周长为40,∴HE=PC=10,∴FG=HE=10,过G作GQ⊥BC于Q,∵sin∠EFG==,∴GQ=8,∴四边形ECPH的面积为CE•GQ=10×8=80.故答案为:80.8.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.【答案】(1)a;(2)四边形ADFC是菱形,理由见解答;(3)45°或135°.【解答】解:(1)如图①,在Rt△ABC中,∠ACB=90°,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=×90°=45°;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.六.作图—应用与设计作图(共1小题)9.(2023•吉林)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图①、图②、图③中以AB为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.【答案】见解答.【解答】解:如图:图①△ABC即为所求锐角三角形;图②△ABD即为所求直角三角形;图③△ABCF为所求钝角三角形.七.解直角三角形的应用(共2小题)10.(2022•吉林)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC 长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE 的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【答案】点A到CD的距离AE的长度约88cm.【解答】解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.11.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°( 两直线平行,内错角相等 )(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB× cos B (填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400× 0.72 (填相应的三角函数值)≈ 27648 (km)(结果取整数).【答案】两直线平行,内错角相等;cos B;0.72;27648.【解答】解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角函数值)≈27648(km)(结果取整数).故答案为:两直线平行,内错角相等;cos B;0.72;27648.八.条形统计图(共1小题)12.(2021•吉林)2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016﹣2020年快递业务量增长速度统计表年龄20162017201820192020增长速度51.4%28.0%26.6%25.3%31.2%说明:增长速度计算办法为:增长速度=×100%根据图中信息,解答下列问题:(1)2016﹣2020年快递业务量最多年份的业务量是 833.6 亿件.(2)2016﹣2020年快递业务量增长速度的中位数是 28.0% .(3)下列推断合理的是 ② (填序号).①因为2016﹣2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.【答案】(1)833.6;(2)28.0%;(3)②.【解答】解:(1)由2016﹣2020年快递业务量统计图可知,2020年的快递业务量最多是833.6亿件,故答案为:833.6;(2)将2016﹣2020年快递业务量增长速度从小到大排列处在中间位置的一个数是28.0%,因此中位数是28.0%,故答案为:28.0%;(3)①2016﹣2019年快递业务量的增长速度下降,并不能说明快递业务量下降,而业务量也在增长,只是增长的速度没有那么快,因此①不正确;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上,因此②正确;故答案为:②.九.折线统计图(共1小题)13.(2022•吉林)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是 62.71 %.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为 141260×64.72% 万人.(只填算式,不计算结果)(3)下列推断较为合理的是 ① (填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.【答案】(1)62.71;(2)141260×64.72%;(3)①.【解答】解:(1)∵2017﹣2021年年末,全国常住人口城镇化率分别为60.24%,61.50%,62.71%,63.89%,64.72%,∴中为数是62.71%,故答案为:62.71.(2)∵2021年年末城镇化率为64.72%,∴常住人口为141260×64.72%(万人),故答案为:141260×64.72%.(3)∵2017﹣2021年年末,全国常住人口城镇化率逐年上升,∴估计2022年年末全国常住人口城镇化率高于64.72%.故答案为:①.一十.列表法与树状图法(共1小题)14.(2023•吉林)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆,某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片,请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.第31页(共31页)【答案】.【解答】解:根据题意列表如下:AB C AAA BA CA BAB BBCB C AC BC CC共有9种等可能结果,其中甲、乙两位选手演讲的主题人物是同一位航天员有3情况,∴甲、乙两位选手演讲的主题人物是同一位航天员的概率为:=.。
中考数学试题分类分析汇编专题3:方程(组)和不定式(组)

中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。
某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。
【考点】一元一次方程的应用。
【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。
故选B 。
2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。
故选B 。
3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。
当二次项系数a=1时,一次项系数b=-5,常数项c=6。
故选B 。
4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。
广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共1小题)1.(2023•广东)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.二.分式的化简求值(共1小题)2.(2022•广东)先化简,再求值:a+,其中a=5.三.分式方程的应用(共1小题)3.(2023•广东)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.四.解一元一次不等式组(共2小题)4.(2021•广东)解不等式组.5.(2022•广东)解不等式组:.五.函数的表示方法(共1小题)6.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x (kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.六.反比例函数与一次函数的交点问题(共1小题)7.(2021•广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.七.全等三角形的判定与性质(共1小题)8.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.八.圆内接四边形的性质(共1小题)9.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.九.解直角三角形(共1小题)10.(2021•广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.一十.解直角三角形的应用(共1小题)11.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)一十一.条形统计图(共1小题)12.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?一十二.众数(共1小题)13.(2021•广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.一十三.方差(共1小题)14.(2023•广东)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= ;b= ;c= ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•广东)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【答案】(1)6.(2)y=2x+1.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.二.分式的化简求值(共1小题)2.(2022•广东)先化简,再求值:a+,其中a=5.【答案】2a+1,11.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.三.分式方程的应用(共1小题)3.(2023•广东)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.【答案】乙骑自行车的速度为12km/h.【解答】解:设乙步行的速度为xkm/h,则甲骑自行车的速度为1.2xkm/h,根据题意得﹣=,解得x=12.经检验,x=12是原分式方程的解,答:乙骑自行车的速度为12km/h.四.解一元一次不等式组(共2小题)4.(2021•广东)解不等式组.【答案】见试题解答内容【解答】解:解不等式2x﹣4>3(x﹣2),得:x<2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x<2.5.(2022•广东)解不等式组:.【答案】1<x<2.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.五.函数的表示方法(共1小题)6.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x (kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【答案】(1)y与x的函数关系式为y=2x+15(x≥0);(2)所挂物体的质量为2.5kg.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15(x≥0);(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.六.反比例函数与一次函数的交点问题(共1小题)7.(2021•广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.【答案】(1)m=4;(2)k=2或k=6.【解答】解:(1)∵P(1,m)为反比例函数y=图象上一点,∴代入得m==4,∴m=4;(2)令y=0,即kx+b=0,∴x=﹣,A(﹣,0),令x=0,y=b,∴B(0,b),∵PA=2AB,由图象得,可分为以下两种情况:①B在y轴正半轴时,b>0,∵PA=2AB,过P作PH⊥x轴交x轴于点H,又B1O⊥A1H,∠PA1O=∠B1A1O,∴△A1OB1∽△A1HP,∴,∴B1O=PH=4×=2,∴b=2,∴A1O=OH=1,∴|﹣|=1,∴k=2;②B在y轴负半轴时,b<0,过P作PQ⊥y轴,∵PQ⊥B2Q,A2O⊥B2Q,∠A2B2O=∠PB2Q,∴△A2OB2∽△PQB2,∴,∴AO=|﹣|=PQ=,B2O=B2Q=OQ=|b|=2,∴b=﹣2,∴k=6,综上,k=2或k=6.七.全等三角形的判定与性质(共1小题)8.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【答案】证明见解答过程.【解答】证明:∵PD⊥OA,PE⊥OB,∴∠ODP=∠OEP=90°,∵∠AOC=∠BOC,∴∠DOP=∠EOP,在△OPD和△OPE中,,∴△OPD≌△OPE(AAS).八.圆内接四边形的性质(共1小题)9.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【答案】(1)等腰直角三角形,证明见解答过程;(2).【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.九.解直角三角形(共1小题)10.(2021•广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.【答案】(1)1;(2).【解答】解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB===2.∴tan∠ABC===.一十.解直角三角形的应用(共1小题)11.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【答案】A、B的距离大约是15.3m.【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.一十一.条形统计图(共1小题)12.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)图形见解析;(2)众数为:4万元,中位数为:5万元,平均数为:7万元;(3)根据(2)中结果应确定销售目标为7,激励大部分销售人员达到平均销售额.(答案不唯一).【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4(万元),中位数为:5(万元),平均数为:=7(万元),(3)应确定销售目标为7万元,激励大部分的销售人员达到平均销售额.一十二.众数(共1小题)13.(2021•广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.【答案】见试题解答内容【解答】解:(1)由统计图中90分对应的人数最多,因此这组数据的众数应该是90分,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90分,平均数是:=90.5(分);(2)根据题意得:600×=450(人),答:估计该年级获优秀等级的学生人数是450人.一十三.方差(共1小题)14.(2023•广东)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表12345678910实验序号15321516341821143520 A线路所用时间25292325272631283024 B线路所用时间根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= 19 ;b= 26.8 ;c= 25 ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25.(2)选择B路线更优.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.。
江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类

江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类一.实数的运算(共1小题)1.(2023•宿迁)计算:.二.分式的混合运算(共1小题)2.(2023•镇江)(1)计算:﹣4sin45°+()0;(2)化简:(1﹣)÷.三.分式的化简求值(共1小题)3.(2023•宿迁)先化简,再求值:,其中.四.解一元一次不等式组(共1小题)4.(2023•常州)解不等式组,把解集在数轴上表示出来,并写出整数解.五.反比例函数图象上点的坐标特征(共1小题)5.(2023•泰州)阅读下面方框内的内容,并完成相应的任务.小丽学习了方程、不等式,函数后提出如下问题:如何求不等式x2﹣x﹣6<0的解集?通过思考,小丽得到以下3种方法:方法1 方程x2﹣x﹣6=0的两根为x1=﹣2,x2=3,可得函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出函数图象,观察该图象在x轴下方的点,其横坐标的范围是不等式x2﹣x﹣6<0的解集.方法2 不等式x2﹣x﹣6<0可变形为x2<x+6,问题转化为研究函数y=x2与y=x+6的图象关系.画出函数图象,观察发现;两图象的交点横坐标也是﹣2、3;y=x2的图象在y=x+6的图象下方的点,其横坐标的范围是该不等式的解集.方法3 当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.问题转化为研究函数y=x﹣1与y=的图象关系…任务:(1)不等式x2﹣x﹣6<0 的解集为 ;(2)3种方法都运用了 的数学思想方法(从下面选项中选1个序号即可);A.分类讨论B.转化思想C.特殊到一般D.数形结合(3)请你根据方法3的思路,画出函数图象的简图,并结合图象作出解答.六.反比例函数与一次函数的交点问题(共1小题)6.(2023•常州)在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.(1)求一次函数、反比例函数的表达式;(2)若△ABC的面积是6,求点C的坐标.七.二次函数的应用(共2小题)7.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?8.(2023•泰州)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?八.切线的性质(共2小题)9.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C ′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA 交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.10.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;(2)若⊙O的半径为2,求图中阴影部分的面积.九.切线的判定与性质(共1小题)11.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, .求证: ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.一十.作图—复杂作图(共1小题)12.(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•泰州)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A 处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)一十二.条形统计图(共2小题)14.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择 .A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表人数阅读数量(本)051252a53本及以上合计50统计表中的a= ,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.15.(2023•镇江)香醋中有一种物质,其含量不同,风味不同,各风味香醋中该种物质的含量如表:风味偏甜适中偏酸含量(mg/100ml)71.289.8110.9某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市1﹣5月份售出的香醋数量绘制成如下的条形统计图:已知1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%.(1)求出a、b的值;(2)售出的玻璃瓶装香醋中的该种物质的含量的众数为 mg/100ml,中位数为 mg/100ml;(3)根据小明绘制的条形统计图,你能获得哪些信息(写出一条即可)?一十三.中位数(共1小题)16.(2023•常州)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:(1)根据图中信息,下列说法中正确的是 (写出所有正确说法的序号);①这20名学生上学途中用时都没有超过30min;②这20名学生上学途中用时在20min以内的人数超过一半;③这20名学生放学途中用时最短为5min;④这20名学生放学途中用时的中位数为15min.(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.一十四.方差(共1小题)17.(2023•南通)某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级82838752.6八年级82849165.6注:设竞赛成绩为x(分),规定:90≤x≤100为优秀;75≤x<90为良好;60≤x<75为合格;x<60为不合格.(1)若该校八年级共有300名学生参赛,估计优秀等次的约有 人;(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.一十五.列表法与树状图法(共1小题)18.(2023•南通)有同型号的A,B两把锁和同型号的a,b,c三把钥匙,其中a钥匙只能打开A锁,b钥匙只能打开B锁,c钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•宿迁)计算:.【答案】0.【解答】解:原式=,=0.二.分式的混合运算(共1小题)2.(2023•镇江)(1)计算:﹣4sin45°+()0;(2)化简:(1﹣)÷.【答案】(1)1;(2).【解答】解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)原式=×=.三.分式的化简求值(共1小题)3.(2023•宿迁)先化简,再求值:,其中.【答案】x﹣1;.【解答】解:===x﹣1,当时,原式=.四.解一元一次不等式组(共1小题)4.(2023•常州)解不等式组,把解集在数轴上表示出来,并写出整数解.【答案】﹣1<x≤2,数轴见解答,整数解是:0,1,2.【解答】解:,解不等式①得,x≤2,解不等式②得,x>﹣1,∴不等式组的解集是﹣1<x≤2,在数轴上表示为,∴不等式组的整数解是:0,1,2.五.反比例函数图象上点的坐标特征(共1小题)5.(2023•泰州)阅读下面方框内的内容,并完成相应的任务.小丽学习了方程、不等式,函数后提出如下问题:如何求不等式x2﹣x﹣6<0的解集?通过思考,小丽得到以下3种方法:方法1 方程x2﹣x﹣6=0的两根为x1=﹣2,x2=3,可得函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出函数图象,观察该图象在x轴下方的点,其横坐标的范围是不等式x2﹣x﹣6<0的解集.方法2 不等式x2﹣x﹣6<0可变形为x2<x+6,问题转化为研究函数y=x2与y=x+6的图象关系.画出函数图象,观察发现;两图象的交点横坐标也是﹣2、3;y=x2的图象在y=x+6的图象下方的点,其横坐标的范围是该不等式的解集.方法3 当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.问题转化为研究函数y=x﹣1与y=的图象关系…任务:(1)不等式x2﹣x﹣6<0 的解集为 ﹣2<x<3 ;(2)3种方法都运用了 D 的数学思想方法(从下面选项中选1个序号即可);A.分类讨论B.转化思想C.特殊到一般D.数形结合(3)请你根据方法3的思路,画出函数图象的简图,并结合图象作出解答.【答案】(1)﹣2<x<3;(2)D;(3)见解答.【解答】解:(1)解方程x2﹣x﹣6=0,得x1=﹣2,x2=3,∴函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出二次函数y=x2﹣x﹣6的大致图象(如图所示),由图象可知:当﹣2<x<3时函数图象位于x轴下方,此时y<0,即x2﹣x﹣6<0.所以不等式x2﹣x﹣6<0的解集为:﹣2<x<3.故答案为:﹣2<x<3;(2)上述3种方法都运用了数形结合思想,故答案为:D;(3)当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.画出函数y=x﹣1和函数y=的大致图象如图:当x>0时,不等式x﹣1<的解集为0<x<3;当x<0时,不等式x﹣1>的解集为﹣2<x<0,∵当x=0时,不等式x2﹣x﹣6<0一定成立,∴不等式x2﹣x﹣6<0的解集为:﹣2<x<3.六.反比例函数与一次函数的交点问题(共1小题)6.(2023•常州)在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.(1)求一次函数、反比例函数的表达式;(2)若△ABC的面积是6,求点C的坐标.【答案】(1)反比例函数解析式为y=;一次函数的解析为y=﹣x+6.(2)C(0,0)或(0,12).【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴m=2×4=8,∴反比例函数解析式为y=;又∵点B(4,n)在y=上,∴n=2,∴点B的坐标为(4,2),把A(2,4)和B(4,2)两点的坐标代入一次函数y=kx+b得,解得,∴一次函数的解析为y=﹣x+6.(2)对于一次函数y=﹣x+6,令x=0,则y=6,即D(0,6),根据题意得:S△ABC=S△BCD﹣S△ACD==6,解得:CD=6,∴OC=0或12,∴C(0,0)或(0,12).七.二次函数的应用(共2小题)7.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?【答案】(1)A种商品的销售单价为30元,B种商品的销售单价为24元;(2)m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.【解答】解:(1)设A种商品的销售单价为a元,B种商品的销售单价为b元,由题意可得:,解得,答:A种商品的销售单价为30元,B种商品的销售单价为24元;(2)设利润为w元,由题意可得:w=(30﹣m﹣20)(40+10m)+(24﹣20)(40+10m)=﹣10(m﹣5)2+810,∵A种商品售价不低于B种商品售价,∴30﹣m≥24,解得m≤6,∴当m=5时,w取得最大值,此时w=810,答:m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.8.(2023•泰州)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?【答案】(1)当一次性销售800千克时利润为16000元;(2)一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)当一次性销售为1300或1700或1768千克时利润为22100元.【解答】解:(1)根据题意,当x=800时,y=800×(50﹣30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50﹣30﹣0.01(x﹣1000)=﹣0.01x+30,∴y=x(﹣0.01x+30)=﹣0.01x2+30x=﹣0.01(x2﹣3000x)=﹣0.01(x﹣1500)2+22500,∵﹣0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)①当一次性销售量在1000~1750kg之间时,利润为22100元,∴﹣0.01(x﹣1500)2+22500=22100,解得x1=1700,x2=1300;②当一次性销售不低于1750千克时,均以某一固定价格销售,设此时函数解析式为y=kx,由(2)知,当x=1750时,y=﹣0.01(1750﹣1500)2+22500=21875,∴B(1750,21875),把B的坐标代入解析式得:21875=1750k,解得k=12.5,∴当一次性销售不低于1750千克时函数解析式为y=12.5x,当y=22100时,则22100=12.5x,解得x=1768综上所述,当一次性销售为1300或1700或1768千克时利润为22100元.八.切线的性质(共2小题)9.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C ′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA 交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.【答案】(1)证明见解析;(2)2.【解答】(1)证明:连接AE,∵BC′与圆相切于E,∴半径AE⊥BE,∴∠BEG+∠AEG=90°,∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,DC=AB=2,∴∠BAF=90°,∴∠AGF+∠F=90°,∵AF=AE,∴∠F=∠AEG,∴∠AGF=∠BEG,∵∠AGF=∠BGE,∴∠BEG=∠BGE,∴BE=BG;(2)解:∵∠AEB=90°,AE=1,AB=2,∴sin∠ABE==,∴∠ABE=30°,由折叠的性质得到∠CBD=∠DBC′,∵∠ABC=90°,∴∠CBD=×(90°﹣30°)=30°,∴BC=CD=2.10.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;(2)若⊙O的半径为2,求图中阴影部分的面积.【答案】(1)证明过程见解答;(2)图中阴影部分的面积为﹣2.【解答】(1)证明:连接OC,∵⊙O和底边AB相切于点C,∴OC⊥AB,∵OA=OB,∠AOB=120°,∴∠AOC=∠BOC=∠AOB=60°,∵OD=OC,OC=OE,∴△ODC和△OCE都是等边三角形,∴OD=OC=DC,OC=OE=CE,∴OD=CD=CE=OE,∴四边形ODCE是菱形;(2)解:连接DE交OC于点F,∵四边形ODCE是菱形,∴OF=OC=1,DE=2DF,∠OFD=90°,在Rt△ODF中,OD=2,∴DF===,∴DE=2DF=2,∴图中阴影部分的面积=扇形ODE的面积﹣菱形ODCE的面积=﹣OC•DE=﹣×2×2=﹣2,∴图中阴影部分的面积为﹣2.九.切线的判定与性质(共1小题)11.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, ①(答案不唯一) .求证: ②(答案不唯一) ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.【答案】(1)①(答案不唯一);②(答案不唯一);证明过程见解答;(2)阴影部分的面积为.【解答】解:(1)若选择:①作为条件,②作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE与⊙O相切,求证:DE⊥AC,证明:连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠AED=180°﹣∠ODE=90°,∴DE⊥AC;若选择:②作为条件,①作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE⊥AC,求证:DE与⊙O相切,证明:连接OD,∵DE⊥AC,∴∠AED=90°,AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠ODE=180°﹣∠AED=90°,∵OD是⊙O的半径,∴DE与⊙O相切;故答案为:①(答案不唯一);②(答案不唯一);(2)连接OF,DF,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,∠BAD=30°,∴BD=AB=3,AD=BD=3,∵AD平分∠BAC,∴∠EAD=∠DAB=30°,在Rt△AED中,DE=AD=,AE=DE=,∵∠EAD=∠DAB=30°,∴∠DOB=2∠DAB=60°,∠DOF=2∠EAD=60°,∵OD=OF,∴△DOF都是等边三角形,∴∠ODF=60°,∴∠DOB=∠ODF=60°,∴DF∥AB,∴△ADF的面积=△ODF的面积,∴阴影部分的面积=△AED的面积﹣扇形DOF的面积=AE•DE﹣=××﹣=﹣=,∴阴影部分的面积为.一十.作图—复杂作图(共1小题)12.(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.【答案】(1)作图见解答过程;(2)证明见解答过程.【解答】(1)解:如图:过B作BF⊥AB,交CE于F,直线BF即为所求直线;(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵AB∥CE,∴∠ABC=∠BCF,∴∠BCF=∠ACB,∵点D在以AB为直径的圆上,∴∠ADB=90°,∴∠BDC=90°,∵BF为⊙O的切线,∴∠ABF=90°,∵AB∥CE,∴∠BFC+∠ABF=180°,∴∠BFC=90°,∴∠BDC=∠BFC,在△BCD和△BCF中,,∴△BCD≌△BCF(AAS),∴BD=BF.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•泰州)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A 处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)【答案】堤坝高为8米,山高DE为20米.【解答】解:过B作BH⊥AE于H,∵坡度i为1:0.75,∴设BH=4xm,AH=3xm,∴AB==5x=10m,∴x=2,∴AH=6m,BH=8m,过B作BF⊥CE于F,则EF=BH=8,BF=EH,设DF=am,∵α=26°35′.∴BF===2a,∴AE=6+2a,∵坡度i为1:0.75,∴CE:AE=(20+a+8):(6+2a)=1:0.75,∴a=12,∴DF=12(米),∴DE=DF+EF=12+8=20(米),答:堤坝高为8米,山高DE为20米.一十二.条形统计图(共2小题)14.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择 C .A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量人数(本)051252a3本及以上5合计50统计表中的a = 15 ,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.【答案】(1)C ;(2)15,补全条形统计图见解答;(3)320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).【解答】解:(1)下面的抽取方法中,应该选择从八年级所有学生中随机抽取50名学生,故答案为:C ;(2)由题意得,a =50﹣5﹣25﹣5=15,补全条形统计图如下:故答案为:15;(3)800×=320(人),答:八年级学生暑期课外阅读数量达到2本及以上的学生人数约为320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).15.(2023•镇江)香醋中有一种物质,其含量不同,风味不同,各风味香醋中该种物质的含量如表:风味偏甜适中偏酸含量(mg/100ml)71.289.8110.9某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市1﹣5月份售出的香醋数量绘制成如下的条形统计图:已知1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%.(1)求出a、b的值;(2)售出的玻璃瓶装香醋中的该种物质的含量的众数为 110.9 mg/100ml,中位数为 89.8 mg/100ml;(3)根据小明绘制的条形统计图,你能获得哪些信息(写出一条即可)?【答案】(1)18,20;(2)110.9,89.8;(3)人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).【解答】解:(1)∵1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%,∴售出“偏酸”的香醋的数量为150×40%=60(瓶).∴a+42=60,解得a=18.∵15+b+17+38+a+42=150,即130+b=150,解得b=20.综上,a=18,b=20.(2)售出的玻璃瓶装香醋的数量为20+38+42=100(瓶).其中:风味偏甜的有20瓶,风味适中的有38瓶,风味偏酸的有42瓶,∵售出的风味偏酸的数量最多,风味适中的数量居中,∴售出的玻璃瓶装香醋中的该种物质的含量的众数为110.9mg/100ml,中位数为89.8mg/100ml.故答案为:110.9,89.8.(3)根据小明绘制的条形统计图可知,人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).一十三.中位数(共1小题)16.(2023•常州)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:(1)根据图中信息,下列说法中正确的是 ①②③ (写出所有正确说法的序号);①这20名学生上学途中用时都没有超过30min;②这20名学生上学途中用时在20min以内的人数超过一半;③这20名学生放学途中用时最短为5min;④这20名学生放学途中用时的中位数为15min.(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.【答案】(1)①②③;(2)20;(3)直线的解析式为:y=x;这条直线可近似反映学生上学途中用时和放学途中用时一样.【解答】解:(1)根据在坐标系中点的位置,可知:这20名学生上学途中用时最长的时间为30min,故①说法正确;这20名学生上学途中用时在20min以内的人数为:17人,超过一半,故②说法正确;这20名学生放学途中用时最段的时间为5min,故③说法正确;这20名学生放学途中用时的中位数是用时第10和第11的两名学生用时的平均数,在图中,用时第10和第11的两名学生的用时均小于15min,故这20名学生放学途中用时的中位数为也小于15min,即④说法错误;故答案为:①②③.(2)根据图中信息可知,上学途中用时超过25min的学生有1人,故该校八年级学生上学途中用时超过25min的人数为400×120=20(人).(3)如图:设直线的解析式为:y=kx+b,根据图象可得,直线经过点(10,10),(7,7),将(10,10),(7,7)代入y=kx+b,得:,解得:,故直线的解析式为:y=x;则这条直线可近似反映学生上学途中用时和放学途中用时一样.一十四.方差(共1小题)17.(2023•南通)某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级82838752.6八年级82849165.6注:设竞赛成绩为x(分),规定:90≤x≤100为优秀;75≤x<90为良好;60≤x<75为合格;x<60为不合格.(1)若该校八年级共有300名学生参赛,估计优秀等次的约有 90 人;(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.【答案】(1)90;(2)八年级成绩较好,理由见解析.【解答】解:(1)若该校八年级共有300名学生参赛,估计优秀等次的约有300×=90(人),故答案为:90;(2)八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).一十五.列表法与树状图法(共1小题)18.(2023•南通)有同型号的A,B两把锁和同型号的a,b,c三把钥匙,其中a钥匙只能打开A锁,b钥匙只能打开B锁,c钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.【答案】(1);(2).【解答】解:(1)∵有同型号的a,b,c三把钥匙,∴从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于,故答案为:;(2)画树状图如下:共有6种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有2种,即Aa、Bb,∴取出的钥匙恰好能打开取出的锁的概率为=.。
2022广东深圳中考数学试卷分类解析汇编专项3-方程(组)和不等式

2022广东深圳中考数学试卷分类解析汇编专项3-方程(组)和不等式专题3:方程(组)和不等式(组)一、选择题1. (深圳2003年5分)下列命题正确的是【 】A 、3x -7>0的解集为x>73B 、关于x 的方程ax=b 的解是x=ab C 、9的平方根是3 D 、(12+)与(12-)互为倒数【答案】D 。
【考点】命题与定理,解一元一次不等式,一元一次方程的定义,平方根的定义,倒数的概念。
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案:A 、3x -7>0的解集为x >73,错误; B 、关于x 的方程ax=b 的解是x=a b 需加条件a≠0,错误; C 、9的平方根是±3,错误;D 、∵(12+)12-)=2-1=1,∴依照倒数的概念,(12+)与(12-)互为倒数,正确。
故选D 。
2.(深圳2004年3分)不等式组⎩⎨⎧≤-≥+12x 01x 的解集在数轴上的表示正确的是【 】A BC D【答案】D 。
-1-1-1-1【考点】解一元一次不等式组,在数轴上表示不等式的解集。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
由第一个不等式得x≥-1,由第二个不等式得x≤3,∴不等式组的解集为-1≤x≤3。
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,假如数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段确实是不等式组的解集.有几个就要几个。
在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
故选D 。
3.(深圳2005年3分)方程x 2 = 2x 的解是【 】A 、x=2B 、x 1=2-,x 2= 0C 、x 1=2,x 2=0D 、x = 0【答案】C 。
2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。
初中中考数学专题03 分式与二次根式(原卷版)

2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题03 分式与二次根式一、选择题1.(2024甘肃威武)计算:4222a b a b a b -=--( ) A. 2B. 2a b -C. 22a b -D. 2a b a b -- 2. (2024天津市)计算3311x x x ---的结果等于( ) A. 3 B. x C. 1x x - D. 231x - 3. (2024河北省)已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( ) A. x B. y C. x y + D. x y -4. (2024黑龙江绥化)m 的取值范围是( ) A. 23m ≤ B. 32m ≥- C. 32m ≥ D. 23m ≤-5. (2024四川乐山)已知12x <<2x -的结果为( ) A. 1- B. 1 C. 23x - D. 32x -6. (2024湖南省) )A. B. C. 14 D.7. (2024江苏盐城),设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58. (2024重庆市B )的值应在( ) A. 8和9之间 B. 9和10之间C. 10和11之间D. 11和12之间9. (2024重庆市A )已知m =m 的范围是( ) A. 23m <<B. 34m <<C. 45m <<D. 56m << 二、填空题1. (2024吉林省)当分式11x +的值为正数时,写出一个满足条件的x 的值为______.2. (2024北京市)x 的取值范围是_________.3. (2024黑龙江齐齐哈尔)在函数12y x =++中,自变量x 的取值范围是______. 4. (2024湖北省)计算:111m m m +=++______.5. (2024四川德阳)__________.6. (2024贵州省)________.7. (2024山东威海)=________.8. (2024天津市)计算)11的结果为___.9. (2024上海市)1=,则x =___________.10. (2024山东威海)计算:2422x x x+=--________. 11. (2024黑龙江绥化)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________. 三、解答题1. (2024江苏连云港)下面是某同学计算21211m m ---的解题过程: 解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-① (1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.2. (2024甘肃威武).3. (2024北京市)已知10a b --=,求代数式()223232a b ba ab b -+-+值. 4. (2024甘肃临夏)化简:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭. 5. (2024江苏苏州) 先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-. 6. (2024四川达州)先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.7. (2024湖南省)先化简,再求值:22432x x x x x -⋅++,其中3x =. 8. (2024深圳)先化简,再求值: 2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中 21a =+ 9. (2024山东烟台)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.。
山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 组和第 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 名学生,其中选择“C家用器具使用与维护”的女生有 名,“D烹饪与营养”的男生有 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】见试题解答内容【解答】解:(1)设A型充电桩的单价为x万元,则B型充电桩的单价少(x+0.3)万元,根据题意得=,解得x=0.9,经检验x=0.9是原方程的解,x+0.3=1.2.答:A型充电桩的单价为0.9万元,则B型充电桩的单价为1.2万元;(2)设购买A型充电桩m个,则购买B型充电桩(25﹣m)个,根据题意,得:,解得:≤m≤.∵m为整数,∴m=14,15,16.∴该停车场有3种购买机床方案,方案一:购买14个A型充电桩、11个B型充电桩;方案二:购买15个A型充电桩、10个B型充电桩;方案三:购买16个A型充电桩、9个B型充电桩.∵A型机床的单价低于B型机床的单价,∴购买方案三总费用最少,最少费用=16×0.9+1.2×9=25.2(万元).二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.【答案】(1)反比例函数为y=﹣,B(4,﹣1),一次函数为y=﹣x+3;(2)n=﹣.【解答】解:(1)反比例函数y=的图象过A(﹣1,4),B(a,﹣1)两点,∴m=﹣1×4=a•(﹣1),∴m=﹣4,a=4,∴反比例函数为y=﹣,B(4,﹣1),把A、B的坐标代入y=kx+b得,解得,∴一次函数为y=﹣x+3;(2)∵A(﹣1,4),B(4,﹣1),P(n,0),BQ∥AP,BQ=AP,∴四边形APQB是平行四边形,∴点A向左平移﹣1﹣n个单位,向下平移4个单位得到P,∴点B(4,﹣1)向左平移﹣1﹣n个单位,向下平移4个单位得到Q(5+n,﹣5),∵点Q在y=﹣上,∴5+n=,解得n=﹣.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.【答案】(1)一次函数的表达式为y=x﹣1,该函数的图象见解答;(2)x<﹣2或0<x<4;(3)点P的坐标为(0,)或(0,﹣).【解答】解:(1)∵反比例函数y=的图象经过A(m,1),B(﹣2,n)两点,∴1=,n==﹣2,解得:m=4,∴A(4,1),B(﹣2,﹣2),将A(4,1),B(﹣2,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为y=x﹣1,该函数的图象如图所示:(2)由图可得,不等式kx+b﹣<0的解集范围是x<﹣2或0<x<4;(3)设直线AB交x轴于C,交y轴于D,在y=x﹣1中,当x=0时,y=﹣1,∴D(0,﹣1),当y=0时,得x﹣1=0,解得:x=2,∴C(2,0),∴OC=2,∵P(0,a),A(4,1),∴PD=|a+1|,∵S△APC=,∴|a+1|•(4﹣2)=,解得:a=或﹣,∴点P的坐标为(0,)或(0,﹣).四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.【答案】(1)y=﹣x2+3x+4;(2)当m为时,四边形CDNP是平行四边形;(3)存在这样的m值,使MN=2ME,此时m的值为或.【解答】解:(1)在直线y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,∴点B(4,0),点C(0,4),设抛物线的解析式为,把点B(4,0),点C(0,4)代入可得:,解得:,∴抛物线的解析式为y==﹣x2+3x+4;(2)由题意,P(m,﹣m2+3m+4),∴PN=﹣m2+3m+4,当四边形CDNP是平行四边形时,PN=CD,∴OD=﹣m2+3m+4﹣4=﹣m2+3m,∴D(0,m2﹣3m)N(m,0),设直线MN的解析式为,把N(m,0)代入可得,解得:k1=3﹣m,∴直线MN的解析式为y=(3﹣m)x+m2﹣3m,又∵过点P作x轴的平行线交抛物线于另一点M,且抛物线对称轴为,∴M(3﹣m,﹣m2+3m+4),∴(3﹣m)2+m2﹣3m=﹣m2+3m+4,解得m1=(不合题意,舍去),m2=;∴当m为时,四边形CDNP是平行四边形;(3)存在,理由如下:∵对称轴为x=,设P点坐标为(m,﹣m2+3m+4),∴M点横坐标为:×2﹣m=3﹣m,∴N(m,0),M(3﹣m,﹣m2+3m+4),①如图1,∵MN=2ME,即E是MN的中点,点E在对称轴x=上,∴E(,),又点E在直线BC:y=﹣x+4,代入得:=﹣+4,解得:m=或(舍去),故此时m的值为.②如图2,设E点坐标为(n,﹣n+4),N(m,0),M(3﹣m,﹣m2+3m+4),∵MN=2ME,∴0﹣(﹣m2+3m+4)=2(﹣m2+3m+4+n﹣4)①,∴3﹣m﹣m=2(n﹣3+m)②,联立①②并解得:m=(舍去)或,综上所述,m的值为或.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.【答案】(1)证明过程见解答;(2).【解答】(1)证明:∵∠B=∠AED=∠C,∠AEC=∠B+∠BAE=∠AED+∠CED,∴∠BAE=∠CED,在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,∴∠EAD=∠EDA;(2)解:∵∠AED=∠C=60°,AE=ED,∴△AED为等边三角形,∴AE=AD=ED=4,过A点作AF⊥ED于F,∴EF=ED=2,∴AF=,∴S△AED=ED•AF=.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.【答案】(1)S=(0≤x≤4),(2)当x=2时,S有最大值,最大值为2.【解答】解:(1)如图,过点A作AG⊥OC于点G,连接AC,∵顶点A的坐标为(2,2),∴OA=,OG=2,AG=2,∴cos∠AOG==,∴∠AOG=60°,∵四边形OABC是菱形,∴∠BOC=∠AOB=30°,AC⊥OB,AO=OC,∴△AOC是等边三角形,∴∠ACO=60°,∵DE⊥OB,∴DE∥AC,∴∠EDO=∠ACO=60°,∴△EOD是等边三角形,∴ED=OD=x,∵DF∥OB,∴△CDF∽△COB,∴,∵A(2,2),AO=4,则B(6,2),∴OB=,∴=,∴DF=(4﹣x),∴S==,∴S=(0≤x≤4),(2)∵S==(0≤x≤4),∴当x=2时,S有最大值,最大值为2.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.【答案】(1)见解析;(2)15﹣3.【解答】(1)证明:连接OE,∵OD=OE,∴∠OED=∠ODE,∵DE平分∠ADC,∴∠CDE=∠ODE,∴∠OED=∠CDE,∴OE∥CD,∵∠ACB=90°,∴∠AEO=90°,∴OE⊥AC,∴AC是⊙O的切线;(2)解:过D作DF⊥AB,∵AD平分∠BAC,DF⊥AB,∠ACB=90°,∴CD=DF,∵CD=12,tan∠ABC=,∴BF==16,∴BD==20,∴BC=CD+BD=32,∴AC=BC•tan∠ABC=24,∴=12,∵OE∥CD,∴△AEO∽△ACD,∴,∴,解得EO=15﹣3,∴⊙O的半径为15﹣3.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)【答案】见解答.【解答】(1)解:过点F作FH⊥AC,FG⊥AB,垂足分别为H、G,如图:∵点E是△ABC的内心,∴AD是∠BAC的平分线,∵FH⊥AC,FG⊥AB,∴FG=FH,∵S△ABF,S△ACF,∴S△ABF:S△ACF=AB:AC.(2)证明:过点A作AM⊥BC于点M,如图,∵S△ABF=,S△ACF=,∴S△ABF:S△ACF=BF:FC,由(1)可得S△ABF:S△ACF=AB:AC.∴AB:AC=BF:FC,(3)证明:连接DB、DC,如图,∵,,∴∠ACF=∠BDF,∠FAC=∠FBD,∴△BFD∽△AFC,∴BF•CF=AF•DF,∵,∴∠FBA=∠ADC,又∠BAD=∠DAC,∴△ABF∽△ADC,∴,∴AB•AC=AD•AF,∴AB•AC=(AF+DF)•AF=AF2+AF•DF,∴AF2=AB•AC﹣BF•CF.(4)连接BE,如图,∵点E是△ABC的内心,∴BE是∠ABC的平分线,∴∠ABE=∠FBE,∵∠CAB=∠CAD=∠BAD,∠ADB=∠BDF,∴△ABD∽△BFD,∴,∴DB2=DA•DF,∵∠BED=∠BAE+∠ABE=+,∠DBE=∠DBC+∠FBE=∠DAC+∠FBE=+,∴∠BED=∠DBE,∴DB=DE,∴DE2=DA•DF,九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)【答案】(1)见解答;(2)见解答.【解答】解:(1)如图:Rt△ABC即为所求;(2)已知:Rt△ABC,∠ACB=90°,CE是AB边上的中线,求证:CE=AB,证明:延长CE到D,使得DE=CE,∵CD是AB边上的中线,∴BE=AE,∴四边形ACBD是平行四边形,∵∠BCA=90°,∴四边形ABCD是矩形,∴AB=CD,∴CE=CD=AB.一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)【答案】明珠大剧院到龙堤BC的距离约为1320m.【解答】解:如图,过P作PE⊥BC于E,过A作AD⊥PE于D,则四边形ADEB是矩形,∴DE=AB=520m,设PD=xm,在Rt△APD中,∵∠PAD=68.2°,∴AD=≈m,∴BE=AD=m,∴PE=PD+DE=(x+520)m,CE=BC﹣BE=(1200﹣)m,在Rt△PCE中,tan C=tan56.31°=,解得x=800,∴PD=800m,∴PE=PD+DE=800+520=1320(m),答:明珠大剧院到龙堤BC的距离约为1320m.一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 ③ 组和第 ③ 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 28% ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 560 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.【答案】(1)③,③,28%,560;(2)估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).【解答】解:(1)∵第③组的人数最多,∴一周课外经典阅读的平均时间的众数落在第③组;∵抽取100名进行调查,第50名、51名学生均在第③组,∴一周课外经典阅读的平均时间的中位数落在第③组;由题意得:(20+8)÷100×100%=28%,∴一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为28%;2000×28%=560(人),即估计全校一周课外经典阅读的平均时间达到4小时的学生有560人;故答案为:③,③,28%,560;(2)由题意可知,每组的平均阅读时间分别为1.5小时,2.5小时,3.5小时,4.5小时,5.5小时,∴=3.4(小时),答:估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)一周课外经典阅读的平均时间达到4小时的学生的人数的百分比为28%,∵28%<40%,∴此次开展活动不成功;建议:①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 20 名学生,其中选择“C家用器具使用与维护”的女生有 2 名,“D烹饪与营养”的男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.【答案】(1)20;2;1;(2)见解答;(3).【解答】解:(1)3÷15%=20(名),所以本次调查中,一共调查了20名学生,“C家用器具使用与维护”的女生数为25%×20﹣3=2(名),“D烹饪与营养”的男生数为20﹣3﹣10﹣5﹣1=1(名);故答案为:20;2;1;(2)选择“D烹饪与营养”的人数所占的百分比为:×100%=10%,补全上面的条形统计图和扇形统计图为:(3)画树状图为:共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果数为12,所以所选的学生恰好是一名男生和一名女生的概率==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习专题汇编3整式一、选择题1.计算的结果正确的是()A. B. C. D.【答案】A2.下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1 C.-3(x-1)=-3x-3 D.-3(x -1)=-3x+3【答案】D3.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0,且b=0 D.若a·b=0,则a=0,或b=0【答案】D4.的结果是A. B. C. D.【答案】B5.列说法或运算正确的是A.1.0×102有3个有效数字 B.C.D.a10÷a4= a6【答案】D6.图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.B.C.D.【答案】B7.如果,那么代数式的值是()A.0 B.2 C.5 D.8【答案】D8.由m(a+b+c)= ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3.我们把等式①叫做多项式乘法的立方公式。
下列应用这个立方公式进行的变形不正确的是A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3C.(a+1)(a2+a+1)=a3+1D.x3+27=(x+3)(x2-3x+9)【答案】C9.下列运算正确的是A. B.C. D.【答案】D10.已知,则a2-b2-2b的值为A.4 B.3 C.1D.0【答案】C11.下列计算正确的是A.B.C.D.【答案】D12.下列运算中正确的是A.B.C.D.【答案】B13.已知有一多项式与(2x2+5x-2)的和为(2x2+5x+4),求此多项式为何?A.2B.6C. 10x+6D.4x2+10x+2 。
【答案】B14.下列运算正确的是A. B. C. D.【答案】C15.计算a2·a4的结果是( )A.a2 B.a6 C.a8D.a16【答案】B16.下列运算正确的是( )A. B. C.D.【答案】C17.下列运算正确的是()A.(3xy2)2=6x2y4 B. C.(-x)7÷(-x)2=-x5D.(6xy2)2÷3xy=2xy3【答案】C18.计算3x+x的结果是()A. 3x2 B.2x C. 4x D.4x2【答案】C19.下列运算正确的是()A.B.C. D.【答案】B20.计算的结果是()A.B.C.D.【答案】B21.下列计算正确的是( ).A. B. C. D.【答案】D22.下列计算正确的是().A、B、C、D、【答案】C.23.下列运算中,正确的是A. B.C. D.【答案】D24.下列等式成立的是().A. B.C. D.【答案】A25.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6C.m+3 D.m+6【答案】A26.下列运算正确的是()A. B. C.D.【答案】B27.已知(m为任意实数),则P、Q的大小关系为()A. B. C. D.不能确定【答案】C28.下列运算正确的是()A. B. C. D.【答案】D29.(-a)a= ()A.-a B.a C.-a D.a【答案】B30.计算2a2÷a结果是()A.2 B.2aC.2a3 D.2a2【答案】B31.下列各式计算正确的是A. B.C. D..【答案】C32.若,,则代数式的值等于A. B. C. D.【答案】B33. 下列运算中,不正确的是( )A.x3+ x3=2x3B.(–x2)3= –x5C.x2·x4= x6D.2x3÷x2 =2x【答案】B34.下列计算正确的是()A.a+a=a2 B.a·a2=a3 C.(a2) 3=a5 D.a2 (a +1)=a2+1【答案】B35.下列运算正确的是()A. B.C.D.【答案】D36.下列计算结果正确的是A. B. C. D.【答案】C37.下列运算中,结果正确的是().A. B. C. D.【答案】A38.计算-(-3a)的结果是( )A.-6a B.-9a C. 6a D. 9a【答案】B39.若,则的值为()A. B. C.0 D.4【答案】B40.化简a+2b-b,正确的结果()A.a- b B.-2b C.a+b D.a+2【答案】C.41.计算的结果是A.a6B.a5C.2a3D.a【答案】B42.下列各式运算正确的是( )A.2a2+3a2=5a2B.(2ab2)2=4a3b4C. 2a6÷a3=2a2D. (a2)3=a5【答案】A43.下列运算,正确的是A.B.C.D.【答案】 A44.若,,则的值是().A.2 B.4 C.D.【答案】B45.下列计算正确的是()A.x4+x2=x6 B.x4—x2=x2C.x4·x2=x8 D.(x4)2=x8【答案】D46.下列计算正确的是:A. B. C. D.【答案】C47.计算(a3)2·a3的结果是()A.A8B.A9C.A10D.A11【答案】B48.如果A.3和-2B.-3和2C.3和2D.-3和-2【答案】C49.下列运算中,正确的是()A. B. C. D.【答案】A50.下列计算正确的是A. B.2a·4a=8a C. D.【答案】C51.(2010云南昆明)下列各式运算中,正确的是( )A. B.C. D.【答案】B52.计算(的结果是A. B. C. D.【答案】B53.下列运算正确的是()A. B.C. D.【答案】C54.下列运算中,正确的是()A. B. C. D.【答案】D55.下列运算中,正确的是()A. B. C. D.【答案】C56.如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n =().A.29B.30C.31D.32【答案】B57.下列运算正确的是()A.B.C. D.【答案】C58.计算(a4)2÷a2的结果是()A.a2 B.a5 C.a6D.a7【答案】C59.计算的结果是(A)(B)(C)(D)【答案】C60.下列运算中,正确的是()A.B.C.D.【答案】C61.计算(a)的结果是: ( )A.a B.a C.a D.a【答案】B62.(下列运算正确的是()A. B.C. D.【答案】D63.下列运算正确的是().A. B. C. D.【答案】D64.下列运算正确的是A.(a+b)(a-b)=a2+b2 B.(a-2)2=a2-4C.a3+a3=2a6 D.(-3a2)2=9a4【答案】D65.(下列运算正确的是()A. B. C. D.【答案】B66.下列各式运算正确的是A. B.C. D.【答案】D67.计算(-a2)3的结果是()A. –a5B.a6C.-a6 D. a5【答案】C68.已知整式的值为6,则的值为A.9 B.12 C.18 D.24【答案】C69.有若干张面积分虽为的正方形和长方形纸片,阳阳从中抽取了1张面积为的正方形纸片,4张面积为的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为的正方形纸片A.2张 B.4张 C.6张 D.8张【答案】B70.下列二次三项式是完全平方式的是:A. B. C. D.【答案】B71.下列运算正确的是()A. B.C. D.【答案】B72.下列运算中结果正确的是A. B.C. D.【答案】D73.下列运算正确的是()A. ·=B.C. +=2 D. ÷a=【答案】C74.下列计算正确的是()长A. B.(a+b)2=a2+b2 C. D.a2+a3=a5【答案】A75.下列运算正确的是()A. B. C. D.【答案】B76.计算(α3)2的结果是A.3α2B.2α3 C.α5 D.α6【答案】D77.下列运算正确的是()A. B. C. D.【答案】D78.多项式1+xy-xy²的次数及最高次项的系数分别是A.2,1 B.2,-1 C.3,-1 D.5,-1【答案】C79.下列运算正确的是()。
B. C. D.【答案】B80.下列运算正确的是A.B.C.D.【答案】D81.下列运算中,正确的是( )A.2a+3b=5ab B.2a-(a+b)=a-bC.(a+b)2=a2+b2 D.a2·a3=a 6【答案】B82.某工厂第一个生产a件产品,第二年比第一年增产了20%,则两年共生产产品的件数为( )A.0.2a B.a C.1.2a D.2.2a【答案】 D83.下列计算正确的是()A . B. C.D.【答案】D84.已知a-2b=-2,则4-2a+4b的值是( )A.0B.2C.4D.8【答案】D.85.下列运算正确的是 ( )A. B. C. D.【答案】C86.下列式子中,正确的是()A.x3+x3=x6B.=± 2 C.(x·y3)2=xy6 D.y5÷y2=y3【答案】D87.(2010四川广安)下列计算正确的是A. B. C. D.【答案】B88.下列各式:①②=1 ③④⑤,其中计算正确的是()A.①②③B.①②④C.③④⑤ D.②④⑤【答案】B89.如图2,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为A. B.C. D.【答案】C90.下列计算正确的是()A. B.C. D.【答案】D91.下列运算正确的是()A.a+a= a2B.a·a2= a2C.(2a) 2= 2 a2D. a+2a =3a【答案】D92.计算的结果是()A. B. C. D.【答案】B93.下列运算正确的是()A.a·a= a B.(—y)= y C.(m n)= m n D.—2x+6 x= 4 x【答案】D二、填空题94.若代数式3x+7的值为-2,则x=【答案】-395.若,且,则【答案】296.用代数式表示“a、b两数的平方和”,结果为【答案】97. 若,,则=【答案】798.计算:=【答案】99.已知.(1)若,则的最小值是;(2).若,,则=.【答案】(1);(2).100.若,则=【答案】14101.若代数式可化为,则的值是.【答案】5102.已知a≠0,,,,…,,则(用含a的代数式表示).【答案】103.观察等式:①,②,③…按照这种规律写出第n个等式:.【答案】104.计算:a 3÷ a 2 =【答案】105.计算:( x + 1 ) ( x ─ 1 ) =【答案】x2-1106.若3sm+5y2与x3yn的和是单项式,则nm.【答案】107.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由()个基础图形组成.-【答案】3n+1108.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是()元.【答案】(a+1.25b )109.已知, 【答案】-6110.用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =().【答案】y =53x -51.。