人教版八年级上册数学一次函数单元测试题及答案
人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。
m=,n=-B。
m=,n=-1C。
m=-1,n=-D。
m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。
n<-3或n>1B。
n>-3且n<1C。
n≥-3且n≤1D。
n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。
y1≤y2B。
y1=y2C。
y1<y2D。
y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。
A。
一B。
二C。
三D。
四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。
k>0B。
k<0C。
0<k<1D。
k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。
(-1,1) B。
(-1,-1) C。
(2,8) D。
(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。
y=x-2中,x取x≥2B。
y=2/(x+1)中,x取x≠-1C。
y=2x中,x取全体实数D。
y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。
八年级数学(一次函数)单元测试题(含答案)-

第十一章 一次函数测试题考试时间:120分钟 总分:100分一、(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少(3)当y=12时,•x的值是多少566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元通话7分钟呢xy1234-2-1CA-14321O25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N 型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大最大利润是多。
八年级数学上册《第十九章 一次函数》单元测试卷及答案(人教版)

八年级数学上册《第十九章一次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.已知正比例函数y=(m−3)x的图象过第二、四象限,则m的取值范围是( )A.m≥3B.m>3C.m≤3D.m<33.已知小明家、体育场、超市在一条笔直的公路旁(小明家、体育场、超市到公路的距离忽略不计),图中的信息反映的过程是小明从家跑步去体育场,在体育场锻炼了一阵后又走到超市买些学习用品,然后再走回家.图中x表示小明所用的时间,y表示小明离家的距离.根据图中的信息,下列说法中错误的是().A.体育场离小明家的距离是2.5kmB.小明在体育场锻炼的时间是15minC.小明从体育场出发到超市的平均速度是50m/minD.小明从超市回家的平均速度是60m/min4.一次函数y=−2x+4的图象可由y=−2x的图象平移得到的,则平移的方法为()A.向上平移4个单位B.向下平移4个单位C.向右平移4个单位D.向左平移4个单位5.点P(a,b)在函数y=4x+3的图象上,则代数式8a−2b+1的值等于()A.7 B.5 C.-5 D.-66.一次函数y=2ax−b(a<0)的图象经过两个点A(−1,y1)和B(2,y2),则y1,y2的大小关系是()A.y1>y2B.y1<y2C .当b >0时y 1>y 2D .当b <0时7.如图,一次函数y =kx +b 与y =x +2的图象相,交于点P(m ,4),则关于x 、y 的二元一次方程组{kx −y =−b y −x =2的解是( )A .{x =2y =4B .{x =1y =4C .{x =3y =4D {x =4y =48.如图,若一次函数y 1=−x −1与y 2=ax −3的图象交于点P(m ,−2)则关于x 的不等式−x −1<ax −3的解集是( )A .x >2B .x >1C .x <1D .x <−29.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题10.已知函数y =(m −1)x |m|−3是关于x 的一次函数,则m 的值为 .11.在平面直角坐标中,点A(−3,−2)、B(−1,−2)直线y =kx(k ≠0)与线段AB 有交点,则k 的取值范围为 .12.将直线y =−2x −1向左平移a (a >0)个单位长度后,经过点(1,−5),则a 的值为 .13.如图,直线y =2x +1和y =kx +3相交于点A(34,52),则关于x 的不等式kx +3≤2x +1的解集为 .14.某苹果种植合作社通过网络销售苹果,如图所示的线段AB 反映了苹果的日销售量y (千克)与销售单价x (元/千克)间的函数关系,已知1千克苹果的成本是5元,如果某天该合作社的苹果销售单价为8元/千克,那么这天销售苹果的盈利是 元.三、解答题15.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?16.如图,在平面直角坐标系内,直线AB与x轴交于点A(1,0),与y轴交于点B(0,−2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=3,求点C的坐标.17.潮州市湘桥区农投公司现有22吨优质农产品需要销售,经市场调查,采用批发、零售两种销售方式,这两种销售方式每天的销量及每顿所获得利润如表:销售方式批发零售利润(元/吨)1200 2000假设农投公司售完22吨优质农产品,共批发了x吨,所获总利润为y元.(1)求出y与x之间的函数关系式;(2)如果农投公司销售这批优质农产品共获利28000元,请计算农投公司通过批发方式销售这批农产品共多少吨?18.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?19.某商场计划购进甲、乙两种商品共80件进行销售,已知甲种商品的进价为120元/件,乙种商品的进价为80元/件,甲种商品的销售单价为150元/件,乙种商品的销售单价y(元/件)与购进乙种商品的数量x(件)之间的函数关系如图所示.(1)求y(元/件)关于x(件)的函数关系式(不要求写出自变量x的取值范围);(2)当购进乙种商品30件时,求销售完80件甲、乙两种商品获得的总利润;(3)实际经营时,因原材料价格上张,甲、乙两种商品的进价均提高了10%,为保证销售完后总利润不变,商场决定将这两种商品的销售单价均提高m元,且m不超过乙种商品原销售单价的9%,求m的最大值.参考答案1.B2.D3.C4.A5.C6.A7.A8.B9.D10.-111.23≤k ≤212.113.x ≥3414.660015.(1)解:设该一次函数解析式为y=kx+b将(150,45)、(0,60)代入y=kx+b 中,得 {150k +b =45b =60解得: {k =−110b =60∴该一次函数解析式为y= −110 x+60.(2)解:当y= −110 x+60=8时解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.16.(1)解:设直线AB 的解析式为y =kx +b把A(1,0),B(0,−2)分别代入得{k +b =0b =−2,解得{k =2b =−2∴直线AB 的解析式为y =2x −2;(2)解:设C(t ,2t −2),∵S △BOC =3∴12×2×t =3,解得t =3,∴C 点坐标为(3,4).17.(1)解:由题意可得y =1200x +2000(22−x)y =−800x +44000(2)解:当y =28000时−800x +44000=28000解得:x =20答:农投公司通过批发方式销售这批农产品20吨.18.(1)解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为(x +11)元,根据题意,得20(x +11)+30x =2920解得 x =54x +11=65答:甲、乙两种头盔的单价各是65元,54元.(2)解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w则m ≥12(40−m),解得m ≥1313,故最小整数解为m =14w =0.8×65m +(54−6)(40−m)=4m +1920∵4>0,则w 随m 的增大而增大∴m =14时,w 取最小值,最小值=4×14+1920=1976.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.19.(1)解:设y 关于x 的函数关系式为y =kx +b依题意得{20k +b =120,60k +b =100解得{k =−12b =130,所以y 关于x 的函数关系式为y =−12x +130 (2)解:当x =30时,y =−12×30+130=115利润为(150−120)×(80−30)+(115−80)×30=2550(元)答:当购进乙种商品30件时,总利润为2550元.(3)解:依题意,甲种商品进价为120×(1+10%)=132(元/件)乙种商品的进价是80×(1+10%)=88(元/件)根据提价前后总利润不变得(150+m−132)(80−x)+(−12x+130+m−88)x=(150−120)(80−x)+(−12x+130−80)x,化简得,x=−20m+240∵m≤9%(−12x+130)∴m≤9%[−12(−20m+240)+130]∴m≤9∴m的最大值为9.。
一次函数单元测试卷(含答案)

一次函数单元测试卷班级___________座号______________________评分___________一、选择题(每小题5分,共25分)1、下列函数(1)y =πx (2)y =2x -1 (3)y =1x(4)y =2-1-3x (5)y =x 2-1中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、下列哪个点在一次函数43-=x y 上( ).A 、(2,3)B 、(-1,-1)C 、(0,-4)D 、(-4,0)3、若一次函数y =kx -4的图象经过点(–2,4),则k 等于 ( )A 、–4B 、4C 、–2D 、24、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( ).A 、y 1>y 2B 、y 1>y 2 >0C 、y 1<y 2D 、y 1=y 25、2012年“国际攀岩比赛”在举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( )二、填空题(每小题5分,共50分)6、当k =________时,y =(k +1)x 2k +k 是一次函数;当m =_______时,y =(m -1)x 2m 是正比例函数。
7、若一次函数y =(m -3)x +(m -1)的图像经过原点,则m = ,此时y 随x 的增大而 .8、一个函数的图象经过点(1,2),且y 随x 的增大而增大,则这个函数的解析式是(只需写一个)9、一次函数y =-3x -1的图像经过点(0, )和( ,-7).10、一次函数y = -2x +4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 , 图象与坐标轴所围成的三角形面积是 .11、一次函数y =-2x +3的图像不经过的象限是_________12、若三点)1,0(),,2(),0,1(-P 在一条直线上,则P 的值为_________13、已知函数4-=+-=mx y m x y 与的图象的交点在x 轴的负半轴上,则=m ______.14、某市出租车的收费标准是:3千米以(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程x (x ≥3)时,车费y (元)与路程x (千米)之间的关系式为: .15、我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达 公里处三、解答题(每小题9分,共45分)16、某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元,“神州行”:不缴纳月租费,每通话1分钟,付话费0.6元。
第12章 一次函数单元测试一、二(含答案)

第12章 一次函数单元测试一一、 填空1、已知点(3,m )与点(n ,-2)关于坐标系原点对称,则mn =_______.2、点A 为直线y=-2x +2上的一点,且到两坐标轴距离相等,那么A 点坐标为_____.3、已知y=3x+4当x_______时,函数值为正数.4、函数 与x 轴交点坐标为_________.5、直线y=-3x -1与坐标轴围成三角形面积为________.6、在函数 的表达式中,自变量x 取值范围__________.7、若函数b ax y +=图象如图所示,则不等式0≥+b ax 解集为_____8.直线 不经过第 象限. 9.函数y=kx-4的图象平行于直线y=-2x ,则函数的表达式为 . 二、 选择题 1、如果直线)1()2(-+-=m x m y 经过第一、二、四象限,则m 的取值范围是( ).A 、m<2B 、m>1C 、m≠2 D、1<m<22、一次函数4+-=x y 和12+=x y 的图象的交点个数为( ).A 、没有B 、一个C 、两个D 、无数个3、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t (小时)的函数关系用图象表示为( ).A B C D 4、已知函数13+=x y ,当自变量x 增加m 时,相应函数值增加( ). A 、3m+1 B 、3m C 、m D 、3m -15、若点A (-2,n )在x 轴上,则B (n -1,n+1)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6、m 为整数,点P (3m -9,3-3m )是第三象限的点,则P 点的坐标为( ). A 、(-3,-3) B 、(-3,-2) C 、(-2,-2) D 、(-2,-3) 7.过点(2,3)的正比例函数解析式是 ( ) A. B. 21y x =- C. D. 8.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( ) A. (2,0) B. (-2,0) C. (0,2) D. (0,-2)9.下列函数中,当x>0时,y 随x 的增大而减小的是 ( ) A.x y = B.2+=x y C.2+-=x y D.2x y =10.一次函数y=ax+b 的图像如图所示,则下面结论中正确的是 ( ) (第10题)A .a <0,b <0B .a <0,b >0C .a >0,b >0D .a >0,b <011.直线 y= x +4与 x 轴交于 A ,与y 轴交于B, O 为原点,则△AOB 的面积为( ) A .12 B .24 C .6 D .1012.关于正比例函数y=-2x,下列结论正确的是 ( )A .图像必经过点(-1,-2)B .图像经过第一、三象限C .y 随x 的增大而减小D.不论x 取何值,总有y<013.一次函数y=kx+6,y 随x 的增大而减小,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 14. 无论m 取任何非零实数,一次函数y=mx-(3m+2)的图象过定点( )A 、(3,2)B 、(3,-2)C 、(-3,2)D 、(-3,-2) 15.一次函数a x y +=2,b x y +-=的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( ) A.4 B.5 C.6 D.7 三、解答题1、某校需要刻录一批电脑光盘,若电脑公司刻录,每张需要8元(含空白光盘费);若学校自刻,除租用刻录机需120元外每张还需成本费4元(含空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用少?还是自刻费用少?说明你的理由.2、有两条直线b ax y +=1,c cx y 52+=,学生甲解出它们的交点坐标为(2,-3),学生乙因把c 抄错了而解出它们的交点坐标为(1,3),求这两条直线解析式.3.已知y 是x 的一次函数,根据下表求出函数表达式,并填空.4.已知函数1)32(-++=m x m y , ⑴若函数图象经过原点,求m 的值;⑵若函数图象在y 轴上的截距为3-,求m 的值; ⑶若函数图象平行于直线1+=x y ,求m 的值; ⑷若该函数的值y 随自变量x 的增大而减小,求m 的取值范围.5.一次函数y=(2a+4)x —(3—b ),当a ,b 为何值时:(1)y 随x 的增大而增大? (2)图象经过二、三、四象限?(3)图象与y 轴交点在x 轴上方? (4)图象过原点?x 1 3 4 9 31 y1522212xy 24204t S24204t S24204tS24204tS21+=x y 8141+=x y 23y x =6y x =32y x =432132y x =-+第12章 一次函数水平测试二一、填空题1、若函数 是正比例函数,则常数m 的值是 。
一次函数_单元测试含答案

二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。
2021年新人教版第19章《一次函数》单元测试题及答案(1)

新人教版八年级数学第19章《一次函数》单元测试(1)时间:10分钟 满分:120分一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( )A.x >2B.x <2C.x ≠2D.x ≠-2 2.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤1 5.若一次函数y=(1-2m)x+m 的图象经过点A(x 1, y 1)和点B(x 2,y2),当x 1<x 2时,y 1<y2,且与y 轴相交于正半轴,则 m 的取值范围是( )A.m >0B.m <21C.0<m <21D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6±B.4C. 6±或4 D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )8.一次函数y=kx+b 的图象如图所示,当x <1时,Cy 的取值范围是( )A.-2<y <0B. -4<y <0C. y <-2D. y <-4 9.将直线y=-2x 向右平移2个单位所得直线的解析式为( )A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与x 之间关系的函数图象是( )二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为 。
(word版)初二上册数学一次函数单元测试题及答案,文档

初二上册数学一次函数单元测试题一、填空〔每小5分,共25分〕1、假设函数y(3m)x m28是正比例函数,常数m的是。
2、一次函数y kx2,你充一个条件,使y随x的增大而减小。
3、从A地向B地打途,按收,3分内收元,以后每超1分加收1元,假设通t分〔t 3〕,需付y〔元〕与〔t分〕之的函数关系式是。
4、某市自来水公司了鼓励市民用水,采取分段收准,某市居民每月交水y〔元〕与水量x〔吨〕的函数关系如所示,你通察函数象,答复自来水公司收准:假设用水不超5吨,水元/吨;假设用水超5吨,超局部的水元/吨。
5、学校室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2方桌拼成一行能坐6人,如所示,你合个律,填写下表:拼成一行的桌子数1234⋯⋯n 人数468⋯⋯二、〔每小5分,共25分,每小只有一个正确答案〕6、以下各曲中不能表示y是x的函数的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕1A .B .C .D .7、假设点A 〔2,4〕在函数ykx 2的象上,以下各点在此函数象上的是〔〕31 1A .〔0,-2〕B .〔2,0〕C .〔8,20〕D .〔2,2〕8、右是温度的示意,左的刻度表示氏温度,右的刻度表示°°〕氏温度,氏温度y 〔F 〕与氏温度〔C 〕x 之的函数关系式⋯⋯⋯〔A .9B .y5x32y x40C .y5x32D .y5x31999、“兔跑〞述了的故事:先的兔子看着慢爬行的,傲起来,睡了一,当它醒来,快到点了,于是急忙追赶,但已晚,先到了点。
用S 1、S 2分表示和兔子所行的路程,t ,以下象中与故事相 吻合的是⋯⋯⋯〔 〕A .B .C .D . 10、如OA 、AB 分表示甲、乙两名同学运的一次函数象,中s 和t 分表示运路程和,甲的速度比乙快,以下法:①射AB 表示甲的路程与的函数关系;②甲的速度比乙快米/秒; ③甲乙先跑12米;④8秒后,甲超了乙,其中正确的法是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕 A .①② B .②③④ C .②③ D .①③④三、解答〔此大分50分〕11、〔8分〕一次函数象〔3,5〕和〔-4,-9〕两点,〔1〕求此一次函数解析式;〔2〕假设点在〔a ,2〕函数象上,求a 的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第三次月考测试题
一、填空题(每小题3分,共27分)
1、若函数2
8(3)m y m x -=-是正比例函数,则常数m 的值是 。
2、平方根与立方根相等的数是 ;
3、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t 分钟(t ≥3),则需付电话费y (元)与t (分钟)之间的函数关系式是 。
4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 元/吨;若用水超过5吨,超过部分的水费为
元/吨。
5.等腰三角形是轴对称图形,它的对称轴是 ;
6.等腰三角形的顶角的外角度数为130o ,则底角的度数为 ;
7、如图1,△ABC ≌△AED ,∠D=40O ,∠B=45O ,则∠C= ;∠DAE= ;
8.如图2,点A 、B 、C 、D 在同一条直线上,AB=CD ,DE ∥AF ,要使△ACF ≌△DBE ,则还需要添加一个条件: (只需写一个条件)
9、学校阅览室有能坐
4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,拼成一行的桌子数
1 2 3 4 …… n 人 数
4
6
8
……
图1 图3
二、选择题(每小题3分,共15分,每小题只有一个正确答案)
10.如图,BI ,CI 分别是∠ABC 和∠ACB 的平分线, DE 过I 点且DE ∥BC ,则下列结论正确的是( ) A .AI 平分∠BAC B .I 到三边的距离相等 C .AI=AE D .DE=BD+CE 11.点A (-3,-4)关于y 轴对称点是( )
A .(3,-4)
B .(-3,4)
C .(3,4)
D .(-4,3)
12、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图 象不经过( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
13、已知下列等式:①-|-2|=2;②
4)4(2
-=-;③9.081.0=;④ππ-=-33。
其中正确的有( )个; A 、1 B 、2 C 、3 D 、4
14、如图8,在RT △ABC 中,∠C=90O ,AD 平分∠BAC 交BC 于点D ,若BC=32,且
BD ﹕DC=9﹕7,则点D 到AB 的距离为( ) A 、12 B 、14 C 、16 D 、18
15、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是………( )
图8
A .
B .
C .
D .
三、解答题(第16题和第17题各6分)
16、计算:)6464(25
9
)12(32----; 17、解方程:8(x-1)3=27;
18.(8分)如图将一个直角三角尺ABC 绕着30°角的顶点B 顺时针旋转,使点A 转到CB 的延长线上的点E 处。
(1)三角尺旋转了多少度?(2)判断△CBD 的形状并说明理由;(3)求∠BDC 的度数。
19.(12分)已知:一个正比例函数和一个一次函数的图像交于点P (-2、2)且一次函数的图像与y 轴的交点Q 的纵坐标为4。
(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出这两个函数的图像;(3)求△PQO 的面积。
20、(9分)画出函数26y x =+的图象,利用图象:(1)求方程260x +=的解;(2)求不等式26x +>0的解;(3)若13y -≤≤,求x 的取值范围。
21、(10分)小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:
(1)小强到离家最远的地方需要几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长?
(3)小强何时距家21km?(写出计算过程)
22、(10分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网的两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。
此外B 种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式。
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
23、(14分)某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套。
已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元;做一套N 型号的时装需要A种布料1.1m,B种布料0.4 m,可获利50元。
若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元。
(1)求y与x的函数关系式,
(2)求出x的取值范围;
(3)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
四、附加题(此大题满分20分)
16、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
积为27
8,并说明理
(3)探究:当点P 运动到什么位置时,△OPA 的面由。
测试题答案
1.3-. 2.0k <.
3.0.6(3,)y t t t =-≥是整数. 4.0.72;0.9. 5.10;22n +. 6.B . 7.A . 8.A . 9.D . 10.B . 11.321;2
y x a =-=
. 12.(1)3x =-;(2)3x ->;(3)73
22
x -≤≤-.
13.(1)3小时,30千米;(2)10点半;半小时;(3)小强在11:24时和13:36时距家21km .
14.(1)123, 1.254y x y x ==+;(2)当用户某月上网时间超过30小时时,选择B 种上网方式更省钱;
当上网时间为30小时时,两种上网方式费用一样; 当上网时间少于30小时时,选择A 种上网方式更省钱 .
15.(1)53600(4044)y x x =+≤≤;(2)当生产N 型号的时装44套时,所获利润最大,最大利润是3820元. 16.(1)34k =
;(2)9
18(80)4S x x =+-<<(3)当P 点的坐标为139,28⎛⎫- ⎪⎝⎭
时,△OPA 的面积为278.。