河南省焦作市数学高三上学期理数11月月考试卷

合集下载

焦作市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1B .﹣=1C .﹣=1D .﹣=12. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100米到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50米B .60米C .80米D .100米 3. 若,则等于()A .B .C .D .4. 已知,则方程的根的个数是( )22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩[()]2f f x = A .3个B .4个C .5个D .6个5. 已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A .1B .C .3D .26. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .3007. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .8. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为()A .10 13B .12.5 12C .12.5 13D .10 15班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.执行如图所示的程序框图,则输出的S等于()A.19B.42C.47D.8910.若函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,则有()A.a>1且b<1B.a>1且b>0C.0<a<1且b>0D.0<a<1且b<011.若偶函数f(x)在(﹣∞,0)内单调递减,则不等式f(﹣1)<f(lg x)的解集是()A.(0,10)B.(,10)C.(,+∞)D.(0,)∪(10,+∞)12.已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个二、填空题13.用“<”或“>”号填空:30.8 30.7.14.某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.15.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是 .16.若直线y﹣kx﹣1=0(k∈R)与椭圆恒有公共点,则m的取值范围是 .17.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为 .18.△ABC中,,BC=3,,则∠C= .三、解答题19.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值. 序号(i )分组(分数)组中值(Gi )频数(人数)频率(Fi )1[60,70)65①0.102[70,80)7520②3[80,90)85③0.204[90,100)95④⑤合计50120.【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是()()2x f x x ax a e =++a R ∈e 自然对数的底数.(1)当时,求曲线在处的切线方程;1a =()y f x =0x =(2)求函数的单调减区间;()f x(3)若在恒成立,求的取值范围.()4f x ≤[]4,0-a 21.在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨xOy (2,0)y 迹为曲线.C (1)求曲线的方程;111]C (2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,(1,0)C A B C E F 线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.AB EF M N MN P P 22.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0).(1)求f (x )的最小值,并求取最小值时x 的范围;(2)若f (x )的最小值为2,求证:f (x )≥+.a b 23.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.24.(本小题满分13分)在四棱锥中,底面是直角梯形,,,.P ABCD -ABCD //AB DC 2ABC π∠=AD =33AB DC ==(Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若,,求直线与平面所成角的大小.PA PD ==PB PC =PA PBC ABCDP焦作市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.2.【答案】A【解析】解:如图所示,设水柱CD的高度为h.在Rt△ACD中,∵∠DAC=45°,∴AC=h.∵∠BAE=30°,∴∠CAB=60°.在Rt△BCD中,∠CBD=30°,∴BC=.在△ABC中,由余弦定理可得:BC2=AC2+AB2﹣2ACABcos60°.∴()2=h2+1002﹣,化为h2+50h﹣5000=0,解得h=50.故选:A.【点评】本题考查了直角三角形的边角关系、余弦定理,考查了推理能力和计算能力,属于中档题.3.【答案】B【解析】解:∵,∴,∴(﹣1,2)=m(1,1)+n(1,﹣1)=(m+n,m﹣n)∴m+n=﹣1,m﹣n=2,∴m=,n=﹣,∴故选B .【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等. 4. 【答案】C【解析】由,设f (A )=2,则f (x )=A,则,则A=4或A=,作出f (x )的图像,由[()]2f f x =2log 2x =14数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。

河南省焦作市第十二中学2024届高三上学期11月月考数学试题

河南省焦作市第十二中学2024届高三上学期11月月考数学试题

河南省焦作市第十二中学2024届高三上学期11月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}{}1,2,3,33,A B yy x x A ===-∈∣,则集合A B =I ( ) A .{}3B .{}1,3C .{}3,6D .{}0,3,62.已知p2>,q :0m x -<,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .3m <B .3m >C .5m <D .5m >3.已知()f x 为奇函数,且当0x <时,()232f x x x =++.则当[]1,3x ∈时,()f x 的最小值是( ) A .2B .14C .2-D .14-4.已知角α的终边上一点()4,3A ,且()tan 2αβ+=,则()tan 3πβ-=( ) A .12B .12-C .52D .52-5.已知等比数列{}n a 的前n 项和为n S ,且0n a >,若610S =,1870S =,则24S =( ) A .90B .135C .150D .1806.函数()sin 2sin 2xf x x =+的最大值为( ) A .32BCD .547.已知向量()2,0a =r,sin b α⎛= ⎝⎭r ,若b r 在a r 上的投影向量1,02c ⎛⎫= ⎪⎝⎭r ,则向量a r 与b r的夹角为( )A .π6B .π4C .π3D .2π38.已知函数()f x 的定义域为R ,满足()()122f x f x +=,当(]0,2x ∈时,()exf x x=,记()f x 的极小值为t ,若对(],,2e x m t ∞∀∈-≥,则m 的最大值为( ) A .1-B .1C .3D .不存在二、多选题9.下列等式成立的是( ) A .lg 2lg5lg81lg50lg 40+-=-B .lg 4lg5122lg 0.5lg8+-=+C .7lg142lg lg 7lg1803-+-=D .()2lg 2lg 2lg5lg52++=10.已知定义在R 上的函数()f x 满足:对于任意的,x y ∈R ,都有()()()1f x y f x f y +=++,且当0x >时,()1f x >-,若()11f =,则下列说法正确的有( )A .()00f =B .()f x 关于()1,1对称C .()f x 在R 上单调递增D .()()()21220232023f f f +++=L11.已知a 为常数,函数()()ln 2f x x x ax =-有两个极值点1x ,2x (12x x <),则( )A .10a 4<<B .122x x +<C .()10<f xD .()212f x >-12.如图,在边长为2的正方体111ABCD AB C D -中,点E ,F 分别111,CC B C 的中点,点P 为11A D 棱上的动点,则( )A .在平面CBP 内不存在与平面11AB D 垂直的直线 B .三棱锥A PCD -的体积为定值C .1//A F 平面1AEDD .过1,,A FE 三点所确定的截面为梯形三、填空题13.函数()f x14.已知函数()e e x x f x a -=+(a 为常数)为奇函数,则满足()()2230f x f x -+≤的x的取值范围是.15.在ABC V 中,2BD DC =u u u r u u u r,点E 在线段AD 上且与端点不重合,若BE xBA yBC =+u u u r u u u r u u u r ,则ln ln x y +的最大值为.16.设定义在(0,)+∞上的函数()f x 满足()e 1x f x -'>,若(l n )f x x ≥12f ⎛⎫= ⎪⎝⎭则x 的最小值为.四、解答题17.已知集合{}121A x a x a =+≤≤-,{}35B x x x =≤>或. (1)若4a =,求A B ⋂; (2)若A B ⊆,求a 的取值范围.18.已知数列满足()*2144N n n n a a a n ++=-∈,且124,12a a ==.(1)证明:{}12n n a a +-是等比数列,并求{}n a 的通项公式; (2)已知数列{}n b 满足2log nn a b n=,求{}n b 的前n 项和n T .19.已知函数()cos (0)f x x x ωωω=->.(1)若()f x 在(0,π)上有且仅有2个极值点,求ω的取值范围; (2)将()f x 的图象向右平移π12个单位长度后,再将所得图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若()g x 的最小正周期为π,求()g x 的单调递减区间.20.三棱柱111ABC A B C -中,侧面11BCC B 是矩形,1AC AA =,11AC A B ⊥.(1)求证:面11ACC A ⊥面ABC ;(2)若1BC =,2AC =,160A AC ∠=︒,在棱AC 上是否存在一点P ,使得二面角1B A P C--的大小为45°?若存在求出,不存在,请说明理由.21.记ABC V 的内角A B C ,,的对边分别为a b c ,,,已知2cos 0a b C +=. (1)tan 3tan C B +的值;(2)若b =2,当角A 最大时,求ABC V 的面积.22.已知函数()ln 1f x x mx =++,()()1xg x x =-e .(1)若()f x 的最大值是0,求m 的值;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求m 的取值范围.。

焦作市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,AB 边上的中线CO=2,若动点P满足=(sin 2θ)+(cos 2θ)(θ∈R),则(+)•的最小值是( ) A .1 B .﹣1 C .﹣2 D .02. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .43. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.4. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A. B. C. D.5. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( ) A. B. C.D.6.已知平面向量=(1,2),=(﹣2,m),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)7. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 若函数f (x )=2sin (ωx+φ)对任意x 都有f(+x )=f (﹣x ),则f()=( )A .2或0B .0C .﹣2或0D .﹣2或29. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( ) A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 10.若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .211.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )A .1B .2C .3D .412.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A. BC. D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 14.在(x 2﹣)9的二项展开式中,常数项的值为 .15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.16.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .17.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 62383cos()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.18.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 三、解答题19.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.20.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.21.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且.(Ⅰ)求角B 的大小;(Ⅱ)若b=6,a+c=8,求△ABC 的面积.22.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.24.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?焦作市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】 C 【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.2. 【答案】 A【解析】解:①在区间(0,+∞)上,函数y=x ﹣1,是减函数.函数y=为增函数.函数y=(x ﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x 3是增函数.∴有两个是增函数,命题①是假命题;②若log m 3<log n 3<0,则,即lgn <lgm <0,则0<n <m <1,命题②为真命题;③若函数f (x )是奇函数,则其图象关于点(0,0)对称, ∴f (x ﹣1)的图象关于点A (1,0)对称,命题③是真命题;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0即为3x ﹣2x ﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f (x )=0有2个实数根命题④为真命题.∴假命题的个数是1个. 故选:A . 【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.3. 【答案】D 【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2AB =,故选D.4. 【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.5.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).6.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.7.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.8. 【答案】D【解析】解:由题意:函数f (x )=2sin (ωx+φ),∵f (+x )=f (﹣x ),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f ()=2或﹣2故选D .9. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-,则5(0)2cos()6f π=-= D. 10.【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.11.【答案】A【解析】解:设等差数列{a n }的公差为d , 由a 1+1,a 3+2,a 5+3构成等比数列,得:(a 3+2)2=(a 1+1)(a 5+3), 整理得:a 32+4a 3+4=a 1a 5+3a 1+a 5+3即(a 1+2d )2+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A .【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.12.【答案】B 【解析】二、填空题13.【答案】.【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.14.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.15.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.16.【答案】(﹣,).【解析】解:∵,,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.17.【答案】【解析】18.【答案】1 2 -考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)已知函数求极值.求f ′(x )―→求方程f ′(x )=0的根―→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.三、解答题19.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-.试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->,设2()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.20.【答案】【解析】解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱,∴CC 1⊥平面ABC ,AC ⊂平面ABC ,∴CC 1⊥AC …∵AC=3,BC=4,AB=5,∴AB 2=AC 2+BC 2,∴AC ⊥CB …又C 1C ∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B ,∴AC ⊥BC 1…(2)设CB 1∩BC 1=E ,∵C 1CBB 1为平行四边形,∴E 为C 1B 的中点…又D 为AB 中点,∴AC 1∥DE … DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1…【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.21.【答案】【解析】解:(Ⅰ)由2bsinA=a ,以及正弦定理,得sinB=,又∵B 为锐角,∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由余弦定理b 2=a 2+c 2﹣2accosB , ∴a 2+c 2﹣ac=36,∵a+c=8,∴ac=,∴S △ABC ==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.【答案】解:(1)当a=1,f (x )=x 2﹣3x+lnx ,定义域(0,+∞), ∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)23.【答案】【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,则有g′(x)=2ax+b+=>0;从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k==a(x1+x2)+b=2ax0+b;又f′(x0)=2ax0+b,故k=f′(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+c•lnx,不妨设0<x1<x2,则k==2ax0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.24.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.。

焦作市一中2018-2019学年高三上学期11月月考数学试卷含答案

焦作市一中2018-2019学年高三上学期11月月考数学试卷含答案

焦作市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A.﹣ B .﹣5 C .5D.2. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð3. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( ) A.B.C .2D .44.与椭圆有公共焦点,且离心率的双曲线方程为( )A. B. C. D.5. 已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C.6x π=-D .6x π=6.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为() A .15,10,25B .20,15,15C .10,10,30D .10,20,207. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)8. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( ) A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)9. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .311.已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆B B .B ⊆AC .A=BD .A ∩B=φ12.设集合( )A .B .C .D .二、填空题13.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .14.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .15.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .16()23k x -+有两个不等实根,则的取值范围是 .17.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .18.阅读右侧程序框图,输出的结果i 的值为 .三、解答题19.已知函数f (x )=|2x ﹣a|+|x ﹣1|. (1)当a=3时,求不等式f (x )≥2的解集;(2)若f (x )≥5﹣x 对∀x ∈R 恒成立,求实数a 的取值范围.20.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .21.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.PA=;(1)求证:PB∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.(2)OAB【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.22.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.23.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由.24.设函数f(x)=ae x(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)求函数f(x)在[t,t+1](t>﹣3)上的最小值;(Ⅲ)若对∀x≥﹣2,kf(x)≥g(x)恒成立,求实数k的取值范围.焦作市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.﹣3<a<﹣1或1<a<3.14.﹣5.15.②③④.16.53, 124⎛⎤ ⎥⎝⎦17.4.18.7.三、解答题19.20.21.(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 22. 23.24.。

河南省焦作市第一中学2024届高三上学期11月月考数学试题

河南省焦作市第一中学2024届高三上学期11月月考数学试题

河南省焦作市第一中学2024届高三上学期11月月考数学试题1.已知集合,则()A.B.C.D.2.若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若,则()A.B.C.D.74.已知是边长为1的等边三角形,点D,E分别是边的中点,连结并延长到点F,使得,则的值为()A.B.C.1D.5.定义方程的实数根叫做函数的“躺平点”.若函数,的“躺平点”分别为,,则,的大小关系为()A.B.C.D.6.已知x,y为非零实数,向量,为非零向量,则“”是“存在非零实数x,y,使得”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在中,,且,是的中点,是线段的中点,则的值为()A.0B.C.D.28.如图,圆M为的外接圆,,,N为边BC的中点,则()A.5B.10C.13D.269.已知实数a满足,(i为虚数单位),复数,则()A .z 为纯虚数B .为虚数C .D .10.已知不等式的解集是,则b 的值可能是()A .B .3C .2D .011.关于函数有下述四个结论,则()A .是偶函数B .的最小值为C .在上有4个零点D .在区间单调递增12.如图,正方形与正方形边长均为1,平面与平面互相垂直,P是上的一个动点,则()A .的最小值为B .当P 在直线上运动时,三棱锥的体积不变C .的最小值为D .三棱锥的外接球表面积为13.已知曲线在处的切线方程为,则___________.14.已知数列是等差数列,,则使的最大整数n 的值为___________.15.某区域规划建设扇形观景水池,同时紧贴水池周边建设一圈人行步道.要求总预算费用24万元,水池造价为每平方米400元,步道造价为每米1000元(不考虑宽度厚度等因素),则水池面积最大值为___________平方米.16.已知是定义在上的奇函数,且,则的最小正周期为___________;若对任意的,当时,都有,则关于x 的不等式在区间上的解集为___________.17.已知向量,向量,记.(1)求表达式;(2)解关于x 的不等式.18.记为数列的前n 项和,已知是公差为的等差数列.(1)求的通项公式;(2)证明:.19.中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求面积的最大值.20.已知数列满足.(1)若,证明数列为等比数列,并求通项公式;(2)数列的前项和为,求.21.有人收集了春节期间平均气温与某取暖商品销售额的有关数据,如下表所示.平均气温-3-4-5-6-7销售额/万元2023273050(1)根据以上数据,用最小二乘法求出回归方程;(2)预测平均气温为时,该商品的销售额为多少万元.22.设函数,已知是函数的极值点.(1)求a;(2)设函数.证明:.。

焦作市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.232. 已知全集,集合,集合,则集合为R U ={|||1,}A x x x R =≤∈{|21,}xB x x R =≤∈U AC B I ( ) A.B.C.D.]1,1[-]1,0[]1,0()0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.3. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°4. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}5. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=()A .6B .9C .36D .726. 双曲线E 与椭圆C :+=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积x 29y 23为π,则E 的方程为( )A.-=1B.-=1x 23y 23x 24y 22C.-y 2=1 D.-=1x 25x22y 247. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A .2sin 2cos 2αα-+ B.sin 3αα+C. 3sin 1αα-+D .2sin cos 1αα-+8. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2) 9. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.函数y=2|x|的图象是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( )A .30°B .60°C .120°D .150°12.如图,棱长为的正方体中,是侧面对角线上一点,若 1111D ABC A B C D -,E F 11,BC AD 1BED F 是菱形,则其在底面上投影的四边形面积( )ABCDA .B .C.D 1234二、填空题13.计算sin43°cos13°﹣cos43°sin13°的值为 .14.已知数列的首项,其前项和为,且满足,若对,{}n a 1a m =n n S 2132n n S S n n ++=+n N *∀∈1n n a a +<恒成立,则的取值范围是_______.m 【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.15.下列四个命题申是真命题的是 (填所有真命题的序号)①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆. 16.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如表:x 681012y 2356根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元. 17.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.18.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .三、解答题19.(本题满分14分)在ABC ∆中,角,,所对的边分别为,已知cos (cos )cos 0C A A B +=.A B C c b a ,,(1)求角B 的大小;(2)若,求b 的取值范围.2=+c a 【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.20.已知直线l 的方程为y=x+4,圆C 的参数方程为(θ为参数),以原点为极点,x 轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l 与圆C 的交点的极坐标;(Ⅱ)若P 为圆C 上的动点.求P 到直线l 的距离d 的最大值. 21.已知椭圆C : +=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.22.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.23.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由. 24.已知等差数列{a n}满足a1+a2=3,a4﹣a3=1.设等比数列{b n}且b2=a4,b3=a8(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}前n项的和S n.焦作市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C 【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A 、B 、C ,其值依次为8.92、9.92、5,排除A 、B 法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C 满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程. 2. 【答案】C.【解析】由题意得,,,∴,故选C.[11]A =-,(,0]B =-∞(0,1]U AC B =I 3. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.4. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x <,由指数函数的值域为(0,+∞)一定有10x >﹣1,而10x <可化为10x <,即10x <10﹣lg2,由指数函数的单调性可知:x <﹣lg2故选:D 5. 【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2.则a 2a 6=9×q 6=72.故选:D .6. 【答案】【解析】选C.可设双曲线E 的方程为-=1,x 2a 2y 2b 2渐近线方程为y =±x ,即bx ±ay =0,b a由题意得E 的一个焦点坐标为(,0),圆的半径为1,6∴焦点到渐近线的距离为1.即=1,|6b |b 2+a 2又a 2+b 2=6,∴b =1,a =,5∴E 的方程为-y 2=1,故选C.x 257. 【答案】A【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.8. 【答案】D【解析】解:令x=0,则函数f (0)=a 0+3=1+1=2.∴函数f (x )=a x +1的图象必过定点(0,2).故选:D .【点评】本题考查了指数函数的性质和a 0=1(a >0且a ≠1),属于基础题. 9. 【答案】A【解析】解:∵复数z 满足(1+i )z=2i ,∴z===1+i ,它在复平面内对应点的坐标为(1,1),故选A . 10.【答案】B【解析】解:∵f (﹣x )=2|﹣x|=2|x|=f (x )∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C 错误.且当x=0时,y=1;x=1时,y=2,故A ,D 错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键. 11.【答案】C【解析】解:由sinB=2sinC ,由正弦定理可知:b=2c ,代入a 2﹣c 2=3bc ,可得a 2=7c 2,所以cosA===﹣,∵0<A <180°,∴A=120°.故选:C .【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查. 12.【答案】B 【解析】试题分析:在棱长为的正方体中,,设1111D ABC A B C D -11BC AD ==AF x =x =解得,即菱形的边长为,则在底面上的投影四边形是底边x =1BED F =1BED F ABCD 为,高为的平行四边形,其面积为,故选B.3434考点:平面图形的投影及其作法.二、填空题13.【答案】 .【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,故答案为. 14.【答案】15(,)43-15.【答案】 ①③④ 【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④16.【答案】 7.5 【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x ﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a 的值,这样使得题目简化,注意运算不要出错. 17.【答案】 0.9 【解析】解:由题意, =0.9,故答案为:0.9 18.【答案】 [,] .【解析】解:由m 2﹣7am+12a 2<0(a >0),则3a <m <4a 即命题p :3a <m <4a ,实数m 满足方程+=1表示的焦点在y 轴上的椭圆,则,,解得1<m <2,若p 是q 的充分不必要条件,则,解得,故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p ,q 的等价条件是解决本题的关键. 三、解答题19.【答案】(1);(2).3B π=[1,2)【解析】20.【答案】【解析】解:(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为:x2+(y﹣2)2=4,联立,解得或.可得极坐标分别为:,.(II)圆心(0,2)到直线l的距离=,∴P到直线l的距离d的最大值为+r=+2.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.22.【答案】【解析】解:由已知得:A={x|﹣1≤x≤3},B={x|m﹣2≤x≤m+2}.(1)∵A∩B=[0,3]∴∴,∴m=2;(2)∵p是¬q的充分条件,∴A⊆∁R B,而C R B={x|x<m﹣2,或x>m+2}∴m﹣2>3,或m+2<﹣1,∴m>5,或m<﹣3.23.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力. 24.【答案】【解析】解:(1)设等差数列{a n}的公差为d,则由,可得,…解得:,∴由等差数列通项公式可知:a n=a1+(n﹣1)d=n,∴数列{a n}的通项公式a n=n,∴a4=4,a8=8设等比数列{b n}的公比为q,则,解得,∴;(2)∵…∴,=,=,∴数列{c n}前n项的和S n=.。

焦作市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ 2. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 3. 下列各组函数为同一函数的是( ) A .f (x )=1;g (x )= B .f (x )=x ﹣2;g (x )= C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=4. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A.B.C.D .65. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. B. C. D.6. 已知变量x 与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( ) A. =﹣0.2x+3.3B. =0.4x+1.5 C. =2x ﹣3.2D. =﹣2x+8.67. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n8. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4) 9. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能10.若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直11.如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .20B .25C .22.5D .22.7512.设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( ) A .[,2) B .[,2] C .[,1) D .[,1]二、填空题13.用“<”或“>”号填空:30.8 30.7.14.已知x ,y满足条件,则函数z=﹣2x+y 的最大值是 .15.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积S =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力. 16.当时,4x<log a x ,则a 的取值范围 .17.设R m ∈,实数x ,y 满足23603260y mx y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.18.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .三、解答题19.已知椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为.(1)求椭圆C 的方程;(2)直线l 1,l 2是椭圆的任意两条切线,且l 1∥l 2,试探究在x 轴上是否存在定点B ,点B 到l 1,l 2的距离之积恒为1?若存在,求出点B 的坐标;若不存在,请说明理由.20.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形ABEFMN ,其设计创意如下:在长4cm 、宽1c m 的长方形ABCD 中,将四边形DFEC 沿直线EF 翻折到MFEN (点F 是线段AD 上异于D 的一点、点E 是线段BC 上的一点),使得点N 落在线段AD 上. (1)当点N 与点A 重合时,求NMF ∆面积;(2)经观察测量,发现当2NF MF -最小时,LOGO 最美观,试求此时LOGO 图案的面积.21.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.22.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 32=,且0=⋅. (1)求曲线C 的方程;(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为23,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.23.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.24.已知函数f (x )=x 3+x .(1)判断函数f (x )的奇偶性,并证明你的结论; (2)求证:f (x )是R 上的增函数;(3)若f (m+1)+f (2m ﹣3)<0,求m 的取值范围.(参考公式:a 3﹣b 3=(a ﹣b )(a 2+ab+b 2))焦作市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D 【解析】考点:球的表面积和体积. 2. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B M k B A =,则,1x k y k =-=-,可得1x y +=,当14x y +取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 3. 【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确. 故选:C .4. 【答案】C .【解析】解:∵2a =3b=m ,∴a=log 2m ,b=log 3m , ∵a ,ab ,b 成等差数列, ∴2ab=a+b , ∵ab ≠0,∴+=2,∴=log m 2, =log m 3, ∴log m 2+log m 3=log m 6=2, 解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.5.【答案】D【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.6.【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3,=2.7,代入A成立,代入D不成立.故选:A.7.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.8.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.9.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.10.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l⊥α.故选:B.11.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.12.【答案】C【解析】解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即==f(1)=,∴数列{a n}是以为首项,以为等比的等比数列,∴a n=f(n)=()n,∴S n==1﹣()n∈[,1).故选C.【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{a n}是等比数列,属中档题.二、填空题13.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.14.【答案】4.【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【答案】116.【答案】.【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1).17.【答案】[3,6]【解析】18.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.三、解答题19.【答案】【解析】解:(1)∵椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为,∴=,解得,∴椭圆C 的方程为.…(2)①当l 1,l 2的斜率存在时,设l 1:y=kx+m ,l 2:y=kx+n (m ≠n ),△=0,m 2=1+2k 2,同理n 2=1+2k 2m 2=n 2,m=﹣n ,设存在,又m 2=1+2k 2,则|k 2(2﹣t 2)+1|=1+k 2,k 2(1﹣t 2)=0或k 2(t 2﹣3)=2(不恒成立,舍去) ∴t 2﹣1=0,t=±1,点B (±1,0),②当l 1,l 2的斜率不存在时,点B (±1,0)到l 1,l 2的距离之积为1. 综上,存在B (1,0)或(﹣1,0).…20.【答案】(1)215cm 16;(2)24. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,MF =,NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =,4BE =-∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛+⨯-⨯=- ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 21.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.22.【答案】【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x MN ME -=-==,∴),31(y x E 则)1,(-=y x QM ,)1,31(+=y x PE …………2分∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即1322=+y x ∴曲线C 的方程为1322=+y x …………4分23.【答案】(1)1x =-(2)①()1,-+∞,②6【解析】试题解析:(1)由题意,131331x x x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133x x=-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去 所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >,因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-,即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞②因为()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,所以()()3323x x g x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311xxx x m --+-≥⋅+-,即:93333x xx xm --≤+++恒成立令33,2x x t t -=+≥,则9m t t≤+在2t ≥时恒成立令()9h t t t =+,()29'1h t t=-,()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

焦作市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

焦作市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .12. 阅读如右图所示的程序框图,若输入,则输出的值是( )0.45a =k (A ) 3 ( B ) 4(C ) 5 (D ) 63. 已知全集,,,则有()U R ={|239}xA x =<≤{|02}B y y =<≤A .B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð4. 如图所示,程序执行后的输出结果为()A .﹣1B .0C .1D .25. 函数f (x )=3x +x 的零点所在的一个区间是()A .(﹣3,﹣2)B .(﹣2,﹣1)C .(﹣1,0)D .(0,1)6. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( )A .1+iB .﹣1﹣iC .﹣1+iD .1﹣i7. 已知函数f (x )=e x +x ,g (x )=lnx+x ,h (x )=x ﹣的零点依次为a ,b ,c ,则( )A .c <b <aB .a <b <cC .c <a <bD .b <a <c8. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确9. 已知复数z 满足(3+4i )z=25,则=( )A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i10.已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.如果定义在R 上的函数满足:对于任意,都有)(x f 21x x ≠)()(2211x f x x f x +,则称为“函数”.给出下列函数:①;②)()(1221x f x x f x +>)(x f H 13++-=x x y ;③;④,其中“函数”的个数是( ))cos sin (23x x x y --=1+=x e y ⎩⎨⎧=≠=00||ln x x x y H A . B . C . D .432112.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0二、填空题13.【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数()()21xf x ex ax a =--+1a <,使得,则的取值范围是0x ()00f x <a 14.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .15.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).16.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)17.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 . 18.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .三、解答题19.如图,在边长为a 的菱形ABCD 中,∠ABC=60°,PC ⊥面ABCD ,E ,F 是PA 和AB 的中点.(1)求证:EF∥平面PBC;(2)求E到平面PBC的距离.20.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.21.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30154580后451055合计7525100(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考数据:P (K 2>k )0.150.100.050.0250.0100.005k 2.0722.7063.8415.0246.6357.879(参考公式:,其中n=a+b+c+d )22.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+. 23.(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.P ABCD -ABCD PA ⊥ABCD E PD (1)证明:平面;//PB AEC(2)设,的体积,求到平面的距离.1AP =AD =P ABD -V =A PBC111]24.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.焦作市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos (45°﹣15°)=cos30°=.故选:C .【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题. 2. 【答案】 D.【解析】该程序框图计算的是数列前项和,其中数列通项为n ()()12121n a n n =-+最小值为5时满足()()11111113352121221n S n n n ⎡⎤∴=+++=-⎢⎥⨯⨯-++⎣⎦L 90.452n S n n >∴>∴Q ,由程序框图可得值是6. 故选D .0.45n S >k 3. 【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 4. 【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s <15,s=5,n=4满足条件s <15,s=9,n=3满足条件s <15,s=12,n=2满足条件s <15,s=14,n=1满足条件s <15,s=15,n=0不满足条件s <15,退出循环,输出n 的值为0.故选:B .【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题. 5. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.6.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.7.【答案】B【解析】解:由f(x)=0得e x=﹣x,由g(x)=0得lnx=﹣x.由h(x)=0得x=1,即c=1.在坐标系中,分别作出函数y=e x ,y=﹣x,y=lnx的图象,由图象可知a<0,0<b<1,所以a<b<c.故选:B.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.8.【答案】B【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.9. 【答案】B解析:∵(3+4i )z=25,z===3﹣4i .∴=3+4i .故选:B .10.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D ⊂A ,矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A ,正方形是矩形,所以C ⊆B .故选B . 11.【答案】C【解析】∵,1122()()x f x x f x +)()(1221x f x x f x +>∴,∴在上单调递增.1212()[()()]0x x f x f x -->)(x f R①, ,,不符合条件;231y x '=-+(x ∈-∞0y '<②,符合条件;32(cos +sin )=3)04y x x x π'=--+>③,符合条件;0xy e '=>④在单调递减,不符合条件;()f x (,0)-∞综上所述,其中“函数”是②③.H 12.【答案】 B 【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.二、填空题13.【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线0x的下方.因为,故当时,,函数单调递减; 当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案.3,12e ⎡⎫⎪⎢⎣⎭考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数0x ()00f x <的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依0x据题设建立不等式组求出解之得.14.【答案】 (3,1) .【解析】解:由(2m+1)x+(m+1)y ﹣7m ﹣4=0,得即(2x+y ﹣7)m+(x+y ﹣4)=0,∴2x+y ﹣7=0,①且x+y ﹣4=0,②∴一次函数(2m+1)x+(m+1)y ﹣7m ﹣4=0的图象就和m 无关,恒过一定点. 由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1) 15.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省焦作市数学高三上学期理数11月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)已知集合P={x|1<2x<2},Q={x|x>1},则P∩Q=()
A . (0,)
B . (,1)
C . (﹣1,)
D . (0,1)
2. (2分)已知,为虚数单位,且,则()
A . 2
B .
C .
D .
3. (2分) (2020高二上·深圳月考) 已知,则()
A .
B .
C .
D .
4. (2分) (2020高二下·广州期末) 已知正项等比数列满足,若
,则n为()
A . 5
B . 6
C . 9
D . 10
5. (2分) (2018高二下·鸡泽期末) 给出下列四个命题,其中真命题的个数是()
①回归直线恒过样本中心点;②“ ”是“ ”的必要不充分条件;
③“ ,使得”的否定是“对,均有”;④“命题”为真命题,则“命题”也是真命题.
A . 0
B . 1
C . 2
D . 3
6. (2分) (2019高一上·上饶期中)
A .
B . 5
C .
D . 13
7. (2分)点A(3,2),B(﹣2,7),若y=ax﹣3与线段AB的交点P分有向线段AB的比为4:1,则a的值()
A . 3
B . -3
C . 9
D . -9
8. (2分)(2020·池州模拟) 在正三棱锥中,M、N分别是、中点,,
,则三棱锥的外接球的表面积为()
A .
B .
C .
D .
9. (2分) (2019高二上·淮安期中) 下列命题正确的个数为()
⑴已知定点满足,动点满足,则动点的轨迹是椭圆;(2)已知定点
满足,动点满足,则动点的轨迹是一条射线;(3)当时,曲线:表示椭圆;(4)曲线方程的化简结果为 .
A . 0个
B . 1个
C . 2个
D . 3个
10. (2分)已知是等比数列,,则公比q=()
A .
B . -2
C . 2
D .
11. (2分) (2019高一上·蕉岭月考) 某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来
推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是()
A .
B .
C .
D .
12. (2分)已知函数f(x)=满足对任意的实数x1≠x2都有<0成立,则实数a 的取值范围为()
A . (﹣∞,2)
B . (﹣∞,]
C . (﹣∞,2]
D . [, 2)
二、填空题 (共4题;共5分)
13. (1分)已知函数f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2,则f(x)的最大值为________.
14. (1分) (2020高一下·奉化期中) 数列中,当n为奇数时,,当n为偶数时,,则这个数列的前2n项的和 =________
15. (2分)(2017·绍兴模拟) 已知某几何体的三视图如图所示,则该几何体的表面积为________,体积为________.
16. (1分) (2019高一上·苏州月考) 设函数,若互不相同的实数满足
,则的取值范围是________.
三、解答题 (共7题;共80分)
17. (15分) (2016高一上·沭阳期中) 对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=a•f1(x)+bf2(x),那么称h(x)为f1(x)、f2(x)的和谐函数.
(1)已知函数f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,试判断h(x)是否为f1(x)、f2(x)的和谐函数?并说明理由;
(2)已知h(x)为函数f1(x)=log3x,f2(x)=log x的和谐函数,其中a=2,b=1,若方程h(9x)+t•h (3x)=0在x∈[3,9]上有解,求实数t的取值范围.
18. (10分)(2019·浙江模拟) 已知数列,的各项均不为零,若是单调递增数列,且
, .
(Ⅰ)求及数列的通项公式;
(Ⅱ)若数列满足,,求数列的前项的和
19. (10分)(2018高二上·南通期中) 的内角的对边分别为,已知

(1)求;
(2)若,求的面积.
20. (15分)(2012·重庆理) 如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点
(1)求点C到平面A1ABB1的距离;
(2)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.
21. (10分) (2017高二下·如皋期末) 已知函数f(x)=e2x+1﹣2mx﹣ m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求m•n的最大值.
22. (10分) (2016高一下·宜昌期中) 已知函数f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的单调增区间;
(2)若x∈[0,π]时,f(x)的值域是[5,8],求a,b的值.
23. (10分)已知正实数a、b满足:.
(1)求a+b的最小值m;
(2)在(1)的条件下,若不等式|x﹣1|+|x﹣t|≥m对任意实数x恒成立,求实数t的取值范围.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共5分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共80分) 17-1、
17-2、
18-1、
19-1、
19-2、
20-1、
20-2、
21-1、
21-2、22-1、
22-2、23-1、23-2、。

相关文档
最新文档