2021年上海高考数学 立体几何强化训练(综合版)
2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

(8)立体几何(文)——2021年高考数学真题模拟试题专项汇编1.【2021年新高考Ⅰ卷,3】已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2B.22C.4D.422.【2021年新高考Ⅱ卷,4】卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度指卫星到地球表面的最短距离).把地球看成一个球心为O ,半径为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步轨道卫星的点的纬度的最大值记为α.该卫星信号覆盖的地球表面面积22π(1cos )S r α=-(单位:2km ),则S 占地球表面积的百分比为( ) A.26%B.34%C.42%D.50%3.【2021年北京卷,4】某四面体的三视图如图所示,该四面体的表面积为( )33+ B.1213+3 4.【2021年浙江卷,4】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A.32B.3C.322D.325.【2021年新高考Ⅱ卷,5】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则四棱台的体积为( ) A.5623B.562C.282D.28236.【2021年浙江卷,6】如图,已知正方体1111ABCD A B C D -,,M N 分别是1A D ,1D B 的中点,则( )A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B7.【2021年北京卷,8】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10<mm ),中雨(10mm —25mm ),大雨(25mm —50mm ),暴雨(50mm —100mm ),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )A.小雨B.中雨C.大雨D.暴雨8.【2021年全国乙卷(文),10】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A.π2B.π3C.π4D.π69.【2021年全国甲卷(文),14】已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__________.10.【2021年上海卷,9】已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,点C 为下底底面圆周上的一个动点,点C 绕着下底底面旋转一周,则ABC △面积的取值范围为____________.11.【2021年全国乙卷(文),16】以图①为正视图,在图②③④③中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为___________(写出符合要求的一组答案即可).12.【2021年全国乙卷(文),18】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.13.【2021年安徽怀宁模拟,18】如图,在三棱柱111ABC A B C -中,侧面11AAC C ⊥底面11,2,ABC AA AC AC AB BC ====,且AB BC ⊥,O 为AC 的中点.(1)求证:平面11A B O ⊥平面1BCA ;(2)若点E 在1BC 上,且//OE 平面1A AB ,求三棱锥1E A BC -的体积.14.【2021年广西桂林模拟(文),18】如图所示,在三棱锥A BCD -中,侧棱AB ⊥平面BCD ,F 为线段BD 中点,Q 为线段AB 中点,2π3BCD ∠=,3AB =,2BC CD ==.证明:(1)CF ⊥平面ABD ; (2)求点D 到平面QCF 的距离.15.【2021年全国甲卷(文),19】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形.2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥,(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.答案以及解析1.答案:B解析:本题考查圆锥的侧面展开图.设圆锥的底面半径为r ,母线长为l .由题意可得2ππr l =,所以222l r ==. 2.答案:C解析:由题意可知,6400cos 0.1536000640036000r r α==≈++,所以从同步卫星上可望见的地球的表面积222π(1cos )2π(10.15)S r r α=-≈-,此面积与地球表面积之比约为222π(10.15)100%42%4πr r -⨯≈.3.答案:A解析:画正方体,删点,剩下的4个点就是三棱锥的顶点,如图:1333311(11)2S +=⨯⨯⨯+=表. 4.答案:A解析:本题考查几何体的三视图.该几何体是高为1的四棱柱,其底面为三个全等的直角边为1的等腰直角三角形拼成的梯形,面积为32,故其体积是32. 5.答案:D解析:本题考查棱台的体积.将正四棱台1111A B C D ABCD -补成四棱锥P ABCD -,作PO ⊥底面ABCD 于点O ,交平面1111A B C D 于点1O ,则棱台1111A B C D ABCD -的体积1111P ABCD P A B C D V V V --=-.由题意,11112142PA PO A B PA PO AB ====,易知,4PA =,22AO =22224(22)22PO PA AO --=,所以12PO =,则1322(44)223P ABCD V -=⨯⨯⨯,1111142(22)23P A B C D V -=⨯⨯,所以棱台1111A B C D ABCD -的体积111132242282P ABCD P A B C D V V V --=-==.6.答案:A解析:本题考查空间的线线关系与线面关系.易知1A D ⊥平面1ABD ,故11A D D B ⊥,排除B ,C 项;连接1AD ,可知//MN AB ,所以//MN 平面ABCD ,A 项正确;因为AB 不垂直于平面11BDD B ,//MN AB ,所以直线MN 不垂直于平面11BDD B ,D 项错误.7.答案:B解析:由相似的性质可得,小圆锥的底面半径2002502r ==,故231π5015050π3V =⨯⨯⨯=⋅小圆锥,积水厚度3250π12.5π100V h S ⋅===⋅大小圆锥圆,属于中雨,故选B. 8.答案:D解析:本题考查立体几何中的线面关系及解三角形的应用.如图,记正方体的棱长为a ,则1111112AD C B A C B D a ====,所以1122B P PC a ==,221162BP B P B B a =+=.在1BC P 中,由余弦定理得22211113cos 22PB C B PC PBC PB C B +-∠==⋅,所以1π6PBC ∠=.又因为11//AD BC ,所以1PBC ∠即为直线PB 与1AD 所成的角,所以直线PB 与1AD 所成的角为π6.9.答案:39π解析:本题考查圆锥的体积与侧面积.由题可得圆锥的体积21π12π30π3V r h h ===,可得52h =,故圆锥的母线22132l r h +,所以圆锥的侧面积π39πS rl ==. 10.答案:5]解析:本题主要考查空间几何体.上顶面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABCSAB CM =⨯⨯,根据题意,AB 为定值2,所以ABCS 的大小随着CM 长短的变化而变化.当点M 与点O 重合时,22125CM OC ==+=,取得最大值,此时12552ABCS =⨯⨯=.当点M 与点B 重合时,CM 取最小值2,此时12222ABCS=⨯⨯=.综上所述,ABCS 的取值范围为[2,5].11.答案:②⑤或③④解析:本题考查几何体的三视图.由高度可知,侧视图只能为②或③.当侧视图为②时,则该三棱锥的直观图如图1,平面PAC ⊥平面ABC ,2PA PC ==,5BA BC =2AC =,此时俯视图为⑤;当侧视图为③时,则该三棱锥的直观图如图2,PA ⊥平面ABC ,1PA =,5AC AB ==2BC =,此时俯视图为④.12.答案:(1)因为PD ⊥底面ABCD ,AM ⊂底面ABCD , 所以PD AM ⊥.又因为PB AM ⊥,PD PB P ⋂=,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD .因为AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由PD ⊥底面ABCD ,所以PD 即为四棱锥P ABCD -的高,DPB 是直角三角形. 由题可知底面ABCD 是矩形,1PD DC ==,M 为BC 的中点,且PB AM ⊥.设2AD BC a ==,取CD 的中点为E ,CP 的中点为F ,连接MF ,AF , EF ,AE ,可得//MF PB ,//EF DP ,那么AM M F ⊥,AM F 为直角三角形,且12EF =,2144AE a =+,21AM a =+,222142AF EF AE a =++因为DPB 是直角三角形,所以根据勾股定理得224BP a =+,则2242a MF +=.由AM F 是直角三角形,可得222AM MF AF +=,解得22a =, 所以底面ABCD 的面积22S a ==,则四棱锥P ABCD -的体积11221333V S h =⋅⋅=⨯⨯-.13.答案:(1)1111,//,AB BC AB A B BC A B ⊥∴⊥,在1A AC 中,112AA AC AC ===,O 是AC 的中点,1AO AC ∴⊥,又平面11AAC C ⊥平面ABC ,平面11AAC C平面ABC AC =,1A O ∴⊥平面ABC .BC ⊂平面1,ABC AO BC ∴⊥. 111,A B AO ⊂平面111111,A B O A B AO A =,BC ∴⊥平面11A B O , 又BC ⊂平面1BCA ,∴平面1BCA ⊥平面11A B O .(2)如图,连接1B C ,设1B C 与1BC 交于点E ,连接1,OE AB , 易得1//OE AB ,1AB ⊂平面11,ABB A OE ⊄平面11ABB A ,//OE ∴平面11ABB A ,∴满足条件的E 为1BC 的中点.11111 1122E A BCC A BC B A CC V V V ---==三棱锥三棱锥三棱锥21133212346=⨯⨯⨯⨯=, 故三棱锥1E A BC -的体积为36.14.答案:(1)AB ⊥平面BCD ,CF ,BD ⊂平面BCD ,AB CF ∴⊥,AB BD ⊥.2BC CD ==,F 为BD 中点,CF BD ∴⊥.又CF AB ⊥,AB BD B =,AB ,BD ⊂平面ABD ,CF ∴⊥平面ABD .(2)在三棱锥Q DCF -中,设D 到平面QFC 距离为d . Q DCF D QCF V V --=,1133DCFQCFQB Sd S ∴⋅⋅=⋅⋅,DCFQCFQB S d S ⋅∴=.1112π322sin 2223DCFDCBSS ==⨯⨯⨯⨯=,2π44222cos 233BD =+-⨯⨯⨯.AB BD ⊥,3AB =,Q ,F 分别为AB ,BD 的中点.22912212ADAB BD QF ++∴====.QCF 中,π2cos 13CF ==,235422CQ ⎛⎫=+ ⎪⎝⎭,21QF =. 25211244cos 55212QCF +-∴∠==⨯⨯,21sin QCF ∴∠=. 152121122QCFS∴=⨯⨯=. 33372221d ∴==.15.答案:(1)如图,取BC 的中点为M ,连接EM .由已知易得//EM AB ,2AB BC ==,1CF =,112EM AB ==,11//AB A B , 由11BF A B ⊥得EM BF ⊥,又易得EM CF ⊥,BF CF F ⋂=,所以EM ⊥平面BCF , 故1111121132323F EBC E FBC V V BC CF EM --==⨯⨯⨯=⨯⨯⨯⨯=三棱锥三棱锥.(2)连接1A E ,1B M ,由(1)知11//EM A B , 所以ED 在平面11EMB A 内.在正方形11CC B B 中,由于F ,M 分别是1CC ,BC 的中点,所以1tan 2CF CBF BC ∠==,111tan 2BM BB M BB ∠==, 且这两个角都是锐角,所以1CBF BB M ∠=∠, 所以111190BHB BMB CBF BMB BB M ∠=∠+∠=∠+∠=︒, 所以1BF B M ⊥,又11BF A B ⊥,1111B M A B B ⋂=,所以BF ⊥平面11EMB A , 又DE ⊂平面11EMB A ,所以BF DE ⊥.。
上海高中数学之立体几何练习(打印).

立体几何练习题一、选择题1.已知平面α外不共线的三点,,A B C 到α的距离都相等,则正确的结论是A. 平面ABC 必平行于αB. 平面ABC 必与α相交C. 平面ABC 必不垂直于αD. 存在ABC ∆的一条中位线平行于α或在α内 2.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的(A )充分非必要条件; (B )必要非充分条件; (C )充要条件; (D )非充分非必要条件.3.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。
在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 (A )48 (B )18 (C )24 (D )36 4.已知二面角l αβ--的大小为060,m n 、为异面直线,且m n αβ⊥⊥,,则m n 、所成的角为(A )030 (B )060 (C )090 (D )01205.已知球O 半径为1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C两点的球面距离都是4π,B 、C 两点的球面距离是3π,则二面角B C OA --的大小是(A )4π (B )3π (C )2π(D )23π 7.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,, D .ββαβα⊥⇒⊥=⊥n m n m ,,I8.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确...的是 A .AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线 C .若AB =AC ,DB =DC ,则AD =BCD .若AB =AC ,DB =DC ,则AD ⊥BC9.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题:①αγβγαβ⊥⊥⇒⊥,;②αγβγαβ⊥⇒⊥,∥;③l l αβαβ⊥⇒⊥,∥. 其中正确的命题有A .0个B .1个C .2个D .3个10.如图,O 是半径为1的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F分别是大圆弧»AB 与»AC 的中点,则点E 、F 在该球面上的球面距离是 (A )4π (B )3π (C )2π(D )24π11.如图,正三棱柱111ABC A B C -的各棱长都为2,E F 、分别为AB 、A 1C 1的中点,则EF 的长是(A )2 (B )3 (C )5 (D )7 12.若P 是平面α外一点,则下列命题正确的是(A )过P 只能作一条直线与平面α相交(B )过P 可作无数条直线与平面α垂直 (C )过P 只能作一条直线与平面α平行 (D )过P 可作无数条直线与平面α平行13.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l(A )平行 (B )相交 (C )垂直 (D )互为异面直线 14.对于平面α和共面的直线m 、,n 下列命题中真命题是(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 15.关于直线m 、n 与平面α、β,有下列四个命题:① 若//m α,//n β且//αβ,则//m n ; ② 若m α⊥,n β⊥且αβ⊥,则m n ⊥; ③ 若m α⊥,//n β且//αβ,则m n ⊥; ④ 若//m α,n β⊥且αβ⊥,则//m n 。
2021级人教版数学科目+立体几何综合训练(一)

2021 级数学科自主学习提升课程(一)立体几何综合训练1、如图,在三棱锥 A - BCD 中,平面 ABD ⊥ 平面 BCD , AB = AD , O 为 BD 的中点. (1)证明: OA ⊥ CD ;(2)若 OCD 是边长为 1 的等边三角形,点 E 在棱 AD 上, DE = 2EA ,且二面角 E - BC - D 的大小为 45︒ , 求三棱锥 A - BCD 的体积.2、如图,四棱锥 P - ABCD 的底面是矩形, PD ⊥ 底面 ABCD ,M 为 BC 的中点,且 PB ⊥ AM .(1)证明:平面 PAM ⊥ 平面 PBD ;(2)若 PD = DC = 1 ,求四棱锥 P - ABCD 的体积.3、如图,在四棱锥 P - ABCD 中,底面 ABCD 是平行四边形, ∠ABC = 120︒, AB = 1, BC = 4, PA = N 分别为 BC, PC 的中点, PD ⊥ DC , PM ⊥ MD . (1)证明: AB ⊥ PM ;(2)求直线 AN 与平面 PDM 所成角的正弦值.M ,4、如图,在四棱锥P﹣ABCD 中,PC⊥底面ABCD,底面ABCD 是直角梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E 是PB 的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若PC>1,直线PA 与平面EAC 所成角的正弦值为,求二面角P﹣AC﹣E 的余弦值.5、如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:AD⊥CD;(2)已知CD=PD=4,AB=AD=3,∠ADP=90°.在棱AB 上是否存在一点E,使得平面PAD 与平面PCE 所成的锐二面角的余弦值为?若存在,求出的值,若不存在,请说明理由.6、如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAD⊥平面ABCD;(2)若PA=PD=AB=CD=2,∠APD=90°,求点C 到平面BDP 的距离.7、如图,在梯形ABCD 中,AB∥CD,AD=DC=CB,∠ABC=60°,四边形ACEF 是矩形.(Ⅰ)求证:AC⊥EB;(Ⅱ)若CE=BC,且CE⊥BC,求EB 与平面FBD 所成角的正弦值.8、如图,在四棱锥P﹣ABCD 中,PA=PB=AB,且∠PBC=2∠PAD=90°.(1)求证:平面PAD⊥平面ABCD;(2)求平面PAB 与平面PBC 所成锐二面角的余弦值.9、如图,在四棱锥P﹣ABCD 中,PA⊥平面ABCD,AD∥BC,PA=AD=CD=3,E为PD 的中点,点F 在PC 上,且;(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F﹣AE﹣P 的余弦值;(Ⅲ)设点G 在PB 上,且,判断直线AG 是否在平面AEF 内,说明理由.10、如图,四棱锥P﹣ABCD 中,平面PCD⊥平面ABCD,AB∥CD,AB=3DC=6,BM=2MP.(1)求证:CM∥平面PAD;(2)若AD=1,AD⊥DC,PD⊥PC 且PD=PC.求直线CM 与平面PAB 所成的角.11、已知平面四边形ABCD 中,AB⊥AC,AB=AC=AD=CD=2,现将△ABC沿AC 折起,使得点B 移至点P 的位置(如图),且PC=PD.(1)求证:CD⊥PA;(2)若M 为PD 的中点,求点D 到平面ACM 的距离.12、在四棱锥P﹣ABCD 中,四边形ABCD 为平行四边形,以BC 为直径的圆O(O 为圆心)过点A,且AO=AC =AP=2,PA 底面ABCD,M 为PC 的中点.(1)证明:平面OAM⊥平面PCD;(2)求二面角O﹣MD﹣C 的余弦值.13、在三棱柱ABC﹣A1B1C1 中,M,N 分别为BC,AB1 的中点.(Ⅰ)证明:MN∥平面ACC1A1;(Ⅱ)若AB=AC=AA=,BC=2,且A1 在底面ABC 上的正投影恰为点M,求二面角N﹣BC﹣C1 的正弦值.114、如图,在多面体ABCDE 中,平面ACDE⊥平面ABC,四边形ACDE 为直角梯形,CD∥AE,AC⊥AE,∠ABC=60°,CD=1,AE=AC=2,F 为BE 的中点.(1)当BC 的长为多少时,DF⊥平面ABE.(2)求平面ABE 与平面BCD 所成的锐二面角的大小.15、在四棱台ABCD﹣A1B1C1D1 中,底面为矩形,平面AA1D1D⊥平面CC1D1D,且CC1=CD=DD1=C1D1=1.(1)证明:AD⊥平面CC1D1D;(2)若AC 与平面CC1D1D 所成角为,求二面角C﹣AA1﹣D 的余弦值.116、在如图所示的几何体中,EA⊥平面ABCD,四边形ABCD 为等腰梯形,AD∥BC,AD=BC,AD=1,∠ABC=60°,EF∥AC,EF=AC.(1)证明:AB⊥CF;(2)当二面角B﹣EF﹣D 的余弦值为时,求线段CF 的长.17、如图,在四棱锥P﹣ABCD 中,BC⊥平面PAB,AB∥CD,若DC=DP=2,BC=,AP=1,AB=3.(Ⅰ)求证:AP⊥AB;(Ⅱ)求直线PC 与平面ADP 所成的角的正弦值.18、如图1,在梯形ABCD 中,AD∥BC,AB⊥AD,AD=AB=BC=2,将△ABD沿BD 折起,使得A 到P 的位置,且二面角P﹣BD﹣C 是直二面角,如图2.(1)求证:CD⊥PB.(2)求二面角P﹣BC﹣D 的余弦值.19、在直角梯形ABCD 中,∠ABC=90°,BC∥AD,AD=4,AB=BC=2,M为线段AD 中点.将△ABC沿AC 折起,使平面ABC⊥平面ACD,得到几何体B﹣ACD.(Ⅰ)求证:AB⊥平面BCD;(Ⅱ)求直线BD 与平面BCM 所成角的正弦值.20、如图所示,四棱锥S﹣ABCD 中,△SAB为等边三角形,四边形ABCD 为菱形,,二面角S﹣AB﹣C 为直二面角,点E 为线段AB 的中点.(1)求证:SC⊥CD;(2)求直线BC 与平面SCD 所成角的余弦值.21、已知正△ABC的边长为3,点D、E 分别是AB、AC 上的三等分点(点E 靠近点A,点D 靠近点B)(如图1),将△ADE沿DE 折起到△ADE的位置,使二面角A1﹣DE﹣B 的平面角为90°,连接A1B,A1C(如图2).1(1)求证:AE⊥平面BCED;1(2)在线段BC 上是否存在点P,使得直线PA1 与平面A1EC 所成的角为60°?若存在,求出CP 的长;若不存在,请说明理由.22、如图,AB⊥平面ADE,AB∥CD,AD=CD=AB=AE=3,∠DAE=120°,四边形ABCD 的对角线交于点M,N 为棱DE 上一点,且MN∥平面ABE.(1)求的值;(2)求二面角B﹣AC﹣N 的余弦值.23、如图,在四棱锥P﹣ABCD 中,△PBC为正三角形,底面ABCD 为直角梯形,AD∥BC,∠ADC=90°,AD=CD=3,BC=4,点M,N 分别在线段AD 和PC 上,且.(1)求证:PM∥平面BDN;(2)设二面角P﹣AD﹣B 为θ.若,求直线PA 与平面PBC 所成角的正弦值.24、如图:P⊥平面ABCD,四边形ABCD 为直角梯形,��//��,∠���= 90 ∘,P = P = 2P = 2A = 2.求证:平面���⊥平面PBC;求二面角�−��−�的余弦值;在棱PA 上是否存在点Q,使得��//平面PBC?若存在,求��的值,若不存在,请说明理由.��25、如图,AB 是半圆O 的直径,C 是半圆O 上除A,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC∥EB,DC=EB=1,AB=4.(1)证明:平面ADE⊥平面ACD;(2)当C 点为半圆的中点时,求二面角D﹣AE﹣B 的余弦值.。
2021年高考数学解答题专项练习《立体几何》五(含答案)

2021年高考数学解答题专项练习《立体几何》五1.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.2.已知一个三棱台的上、下底面分别是边长为20 cm和30 cm的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.3.如图所示,平面四边形ADEF所在的平面与梯形ABCD所在的平面垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(1)若四点F,B,C,E共面,AB=a,求x的值;(2)求证:平面CBE⊥平面EDB.4.如图,已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP//GH.5.如图,三棱柱ABC-A1B1C1的各棱长均相等,AA1⊥底面ABC,E,F分别为棱AA1,BC的中点.(1)过FA1作平面α,使得直线BE//平面α,若平面α与直线BB1交于点H,指出点H所在的位置,并说明理由;(2)求二面角B-FH-A1的余弦值.6.如图,一简单几何体ABCDE的一个面ABC内接于圆O,G,H分别是AE,BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(1)证明:GH∥平面ACD;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.7.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.8.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.9.如图,已知正四棱锥V﹣ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.(1)求正四棱锥V﹣ABCD的体积;(2)求直线VD与底面ABCD所成角的正弦值.10.如图,在四棱锥P-ABCD中,AD=CD=AB,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与PB交于点N,求PN:PB的值.11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD为菱形,且∠A1AB=∠A1AD.(1)证明:四边形BB1D1D为矩形;(2)若AB=A1A,∠BAD=60°,A1A与平面ABCD所成的角为30°,求二面角A1-BB1-D的余弦值.12.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.13.四棱台被过点A1,C1,D的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD是边长为2的菱形,BAD=60°,BB1⊥平面ABCD,BB1=2.(1)求证:平面AB1C⊥平面BB1D;(2)若AA1与底面ABCD所成角的正切值为2,求二面角A1-BD-C1的余弦值.14.如图,三棱柱ABC﹣AB1C1中,侧面BB1C1C为菱形,AC=AB1.1(1)证明:AB⊥B1C;(2)若∠CAB1=90°,∠CBB1=60°,AB=BC=2,求三棱锥B1﹣ACB的体积.15.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.(I)证明:;(II)若,求五棱锥体积.答案解析16.答案:(1)证明:连接BD ,设AC 交BD 于O ,连接SO.由题意知SO ⊥AC.在正方形ABCD 中,AC ⊥BD ,所以AC ⊥平面SBD ,得AC ⊥SD. (2)解:设正方形边长为a ,则SD=22a ,又OD=22a ,所以∠SDO=60°.连接OP ,由(1)知AC ⊥平面SBD ,所以AC ⊥OP ,且AC ⊥OD ,所以∠POD 是二面角P -AC -D 的平面角.由SD ⊥平面PAC ,知SD ⊥OP ,所以∠POD=30°,即二面角P -AC -D 的大小为30°.(3)解:在棱SC 上存在一点E ,使BE ∥平面PAC.由(2)可得PD=24a ,故可在SP 上取一点N ,使PN=PD.过N 作PC 的平行线与SC 的交点即为E.连接B N ,在△BDN 中,知BN ∥PO.又由于NE ∥PC ,故平面BEN ∥平面PAC ,可得BE ∥平面PAC.由于SN ∶NP=2∶1,故SE ∶EC=2∶1.17.解:如图所示,在三棱台ABC -A′B′C′中,O′,O 分别为上、下底面的中心,D ,D′ 分别是BC ,B′C′的中点,则DD′是等腰梯形BCC′B′的高,又C′B′=20 cm ,CB=30 cm ,所以S 侧=3×12×(20+30)×DD′=75DD′. S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD′=3253,所以DD′=1333(cm), 又因为O′D′=36×20=1033(cm),OD=36×30=53(cm), 所以棱台的高h=O′O =D′D 2-(OD -O′D′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm), 由棱台的体积公式,可得棱台的体积为V=h 3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30=1900(cm 3). 故棱台的体积为1900 cm 3.18.解:(1)∵AF ∥DE ,AB ∥DC ,AF∩AB=A,DE∩DC=D,∴平面ABF ∥平面DCE .∵四点F ,B ,C ,E 共面,∴FB ∥CE ,∴△ABF 与△DCE 相似.∵AB=a ,∴ED=a ,CD=2a ,AF=2a x , 由相似比得AF ED =AB CD ,即2ax a =a 2a,所以x=4. (2)证明:不妨设AB=1,则AD=AB=1,CD=2,在Rt △BAD 中,BD=2,取CD 中点为M ,则MD 与AB 平行且相等, 连接BM ,可得△BMD 为等腰直角三角形,因此BC=2,因为BD 2+BC 2=CD 2,所以BC ⊥BD ,又因为平面四边形ADEF 所在的平面与梯形ABCD 所在的平面垂直, 平面ADEF∩平面ABCD=AD ,ED ⊥AD ,所以ED ⊥平面ABCD ,所以BC ⊥DE ,又因为BD∩DE=D,所以BC ⊥平面EDB ,因为BC ⊂平面CBE ,所以平面CBE ⊥平面EDB .19.20.解:21.解:22.答案:证明:如图.23.24.25.26.27.28.29.30.。
专题8.8 立体几何综合问题(精练)-2021年新高考数学一轮复习学与练(解析版)

专题8.8 立体几何综合问题一、选择题1.(2020·浙江高三月考)“直线l与平面α内无数条直线垂直”是“直线l与平面α垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件【答案】B【解析】设命题p:直线l与平面α内无数条直线垂直,命题q:直线l与平面α垂直,⇒,所以p是q的必要不充分条件.则p q,但q p故选:B、是空间两个不同的平面,则“平面α上存在不共线的三点到2.(2020·上海市建平中学月考)已知αβαβ”的()平面β的距离相等”是“//A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】、是空间两个不同的平面,若平面α内存在不共线的三点到平面β的距离相等,已知αβαβ或相交,可得//αβ,则平面α上存在不共线的三点到平面β的距离相等;反之,若//αβ”的必要不充分条件.所以“平面α上存在不共线的三点到平面β的距离相等”是“//故选:B.3.(2020·浙江高三月考)设m,n是空间两条不同直线,α,β是空间两个不同平面,则下列选项中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件⊥”的充分不必要条件B.当时,“m⊥β”是“αβC.当时,“n//α”是“”必要不充分条件D .当时,“”是“”的充分不必要条件【答案】C 【解析】A,B,D 正确;C 错误.,////m n m n m n αα⊂⇒或与异面;,////;m n m n n ααα⊂⇒⊂或所以当m α⊂时,//n α是//m n 的既不充分又不必要条件.故选C3.(2020·河北新华·石家庄二中高三月考(理))如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE A C ⊥于E ,且,PA PE =则点P 的轨迹是( )A .线段B .圆C .椭圆的一部分D .抛物线的一部分【答案】A【解析】 连结1AP ,可证11A AP A EP ≌,即11A A A E =,即点E 是体对角线1AC 上的定点,直线AE 也是定直线.PA PE =,∴动点P 必定在线段AE 的中垂面α上,则中垂面α与底面ABCD 的交线就是动点P 的轨迹,所以动点P 的轨迹是线段.故选:A5.(2020·河南月考(理))3D 打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为31 g/cm,不考虑打印损耗,制作该模型所需原料的质量约为()(取π 3.14=,精确到0.1)A.609.4g B.447.3g C.398.3g D.357.3g【答案】C【解析】如图,是几何体的轴截面,因为圆锥底面直径为,所以半径为OB=.因为母线与底面所成角的正切值为tan B,所以圆锥的高为10cmPO=.设正方体的棱长为a,DE=1010a-=,解得5a=.所以该模型的体积为(()2331500ππ105125cm33V=⨯⨯-=-.所以制作该模型所需原料的质量为()500π500π1251125398.3g33⎛⎫-⨯=-≈⎪⎝⎭.故选:C.6.(2020·上海浦东新·华师大二附中月考)运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆221916x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .64πB .48πC .16πD .32π【答案】B【解析】 构造一个底面半径为3,高为4的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为(04)h h 时,小圆锥的底面半径为r ,则43h r =, 34r h ∴=, 故截面面积为26991h ππ-,把y h =代入椭圆221916x y +=可得x =, ∴橄榄球形几何体的截面面积为221699h x πππ=-, 由祖暅原理可得橄榄球形几何体的体积()1229494483V V V πππ⎛⎫=-=⨯-⨯⨯= ⎪⎝⎭圆柱圆锥. 故选:B .7.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤【答案】D【解析】 设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠= 从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ==== 因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.8.(2019·山西高二期中(理))如图,在Rt ABC ∆中,D ,E 分别为AB ,AC 边上的中点,且4AB =,2BC =.现将ABC ∆沿DE 折起,使得A 到达1A 的位置,且二面角1A DE B --为60︒,则1AC =( )A .B .3CD .【答案】A【解析】 ,D E 分别为,AB AC 中点 //DE BC ∴ DE BD ∴⊥,1DE A D ⊥又1,BD A D ⊂平面1A BD ,1BD A D D = DE ∴⊥平面1A BD二面角1A DE B --的平面角为1A DB ∠ 160A DB ∴∠=12A D BD == 12A B ∴=//BC DE BC ∴⊥平面1A BD ,又1A B ⊂平面1A BD 1BC A B ∴⊥1AC ∴===故选:A9.(2020·浙江诸暨·)正方体1111ABCD A BC D -中,在111A B D ∆内部(不含边界)存在点P ,满足点P 到平面11ACC A 的距离等于点P 到棱1BB 的距离.分别记二面角P AD B --为α,P AC B --为β,P BC A --为γ,则下列说法正确的是( )A .αβγ>>B .αγβ<<C .αβγ<<D .以上说法均不正确【答案】C【解析】如图所示,作PQ ⊥面ABCD 于Q ,作QE AD ⊥于E ,QF BC ⊥于F ,QG AC ⊥于G ,连PE ,PF ,PG , 则PEQ α=∠,PGQ β=∠,PFQ γ=∠. 因此tan PQ QE α=,tan PQ QG β=,tan PQ QFγ=, 作111PE A D ⊥于1E ,111PF B C ⊥于1F ,111PG AC ⊥于1G ,1PG 即点P 到平面11ACC A 的距离,1PB 即点P 到棱1BB 的距离,因此11PB PG =,因为111QF PF PB PG QG =<==,因此tan tan βγ<,因为11QG PG PE QE =<=,因此tan tan αβ<综上有:tan tan tan αβγ<<,即αβγ<<,故选:C10.(2020·安徽合肥·高三三模(理))在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的面11DCC D 的交线长等于()A .23πB .πC .43πD【答案】A【解析】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ;又APD MPC ∠=∠, 在Rt PDA △与Rt PCM 中,∵6AD =,则3MC =, ∴tan tan AD MC APD MPC PD PC ∠==∠=,则63PD PC =, 即2PD PC =.在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系, 则()3,0D -,()3,0C ,设(),P x y , 由2PD PC ==整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以()5,0F 为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,则21sin 42EK EFK EF ∠===; ∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=. 故选:A .二、多选题 11.(2020·广东宝安·高三开学考试)如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF 的面积与BEF 的面积相等D .三棱锥A BEF -的体积为定值【答案】ABD【解析】可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确;由11//B D 平面ABCD ,可知//EF 平面ABCD ,B 也正确;连结BD 交AC 于O ,则AO 为三棱锥A BEF -的高,1111224BEF S =⨯⨯=△,三棱锥A BEF -的体积为1134224⨯⨯=为定值,D 正确;很显然,点A 和点B 到的EF 距离是不相等的,C 错误. 故选:ABD 12.(2020·江苏赣榆一中高一月考)已知在矩形ABCD 中,4AB =,3BC =,将矩形ABCD 沿对角线AC 折成大小为θ的二面角B AC D --,若折成的四面体ABCD 内接于球O ,则下列说法正确的是( ) A .四面体ABCD 的体积的最大值是245 B .球的体积随θ的变化而变化C .球心O 为原矩形的两条对角线的交点D .球O 的表面积为定值25π 【答案】ACD【解析】如图,(1)当面ACD ⊥面ABC 时,四面体ABCD 的体积最大,此时,如图,过点D 作AC 的垂线,交AC 于点E ,则DE 即为四面体ABCD 的高,由等面积法得:AC DE AD DC ⨯=⨯,∴ 125DE = , ∴四面体ABCD 的最大值为11112243433255ABC V S h =⋅=⨯⨯⨯⨯=, 故A 选项正确; (2)在四面体ABCD 内,AC 的中点O 到点,,,A B C D 的距离相等,∴点O 为外接球的球心,此时球的半径522AC R ==,球的体积242533V R ππ== ,为定值,球的表面积2425S R ππ== ,为定制,故B 选项错误,,C D 正确,故选,,A C D 13.(2020·湖北江岸·期末)向体积为1的正方体密闭容器内注入体积为x (01x <<)的液体,旋转容器,下列说法正确的是( )A .当12x =时,容器被液面分割而成的两个几何体完全相同 B .不管注入多少液体,液面都可以成正三角形形状CD 【答案】AC【解析】对于A ,当12x =时,题目等价于过正方体中心的平面截正方体为两部分, 根据对称性知两部分完全相同,所以A 正确; 对于B ,取12x =,此时液面过正方体中心,截面不可能为三角形,所以B 错误; 对于C ,当液面与正方体的体对角线垂直时,液面为如图所示正六边形时面积最大,其中正六边形的顶点均为对应棱的中点,所以液面面积的最大值为162S ==,C 正确; 对于D ,当液面过1DB 时,截面为1B NDG ,将1111D C B A 绕11C D 旋转2π,如图所示;则111DN B N DN B N DB ''+=+≥= 当D 、N 、1B '三点共线时等号成立,所以液面周长最小值为D 错误. 故选:AC.14.(2020·广东深圳·高二月考)(多选题)如图,在直三棱柱111ABC A B C -中,1223AA AC AB ===,AB AC ⊥,点D ,E 分别是线段BC ,1BC 上的动点(不含端点),且1EC DC B C BC=.则下列说法正确的是( )A .//ED 平面1ACCB .该三棱柱的外接球的表面积为68πC .异面直线1BC 与1AA 所成角的正切值为32 D .二面角A EC D --的余弦值为413【答案】AD【解析】在直三棱柱111ABC A B C -中,四边形11BCC B 是矩形, 因为1EC DC B C BC=,所以11////ED BB AA ,ED 不在平面1ACC 内,1AA ⊂平面1ACC , 所以//ED 平面1ACC ,A 项正确; 因为1223AA AC AB ===,所以3AB =, 因为AB AC ⊥,所以BC ==1BC 易知1BC 是三棱柱外接球的直径,所以三棱柱外接球的表面积为22417πππ=⨯=⎝⎭,所以B 项错误; 因为11//AA BB ,所以异面直线1BC 与1AA 所成角为1BB C ∠.在1Rt B BC 中,12BB =,BC =,所以11tan BC BB C BB ∠==C 项错误; 二面角A EC D --即二面角1A B C B --,以A 为坐标原点,以AB ,AC ,1AA 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图则1(0,0,0),(3,0,0),(0,2,0),(3,0,2)A B C B ,1(3,0,2)AB ∴=,(3,2,0)BC =-,1(3,2,2)BC =--, 设平面1ABC 的法向量(,,)n x y z =,则1100n AB n B C ⎧⋅=⎪∴⎨⋅=⎪⎩,即3203220x z x y z +=⎧⎨-+-=⎩,令2x =可得(2,0,3)n =-, 设平面1BB C 的一个法向量为(,,)m x y z =,则100m BC m B C ⎧⋅=⎪⎨⋅=⎪⎩,即3203220x y x y z -+=⎧⎨-+-=⎩,令2x =可得(2,3,0)m = 故二面角A EC D --413=,所以D 项正确. 故选:AD.三、填空题15.(2020·浙江高三月考)在2000多年前,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究圆锥曲线:用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线.已知一个圆锥的高和底面半径都为2,则用与底面呈45的平面截这个圆锥,得到的曲线是___________.【答案】抛物线【解析】因为圆锥的高和底面半径都为2,因此有, ︒tan 145OS SAO SAO AO︒∠==⇒∠=所以母线SA 与底面所成的角为45,因为用与底面呈45的平面截这个圆锥,所以该平面一定会与圆锥的某条母线(如SA )平行,由题中所给的结论可知:用与底面呈45的平面截这个圆锥,得到的曲线是抛物线.故答案为:抛物线16.(2020·江西其他(文))《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).己知弦尺,弓形高寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,,答案四舍五入,只取整数...........)【答案】317 【解析】如图,设圆半径为寸(下面长度单位都是寸),连接,已知,, 在中,,即,解得, ︒︒︒1AB =1CD =53.14,sin 22.513π≈≈r ,OA OD 152AD AB ==1OD OC CD r =-=-Rt ADO 222AD OD OA 2225(1)r r +-=13r =由得,所以, 图中阴影部分面积为扇形(平方寸), 镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为(立方寸)故答案为:317.17.(2020·河北新华·石家庄二中高二月考)如图,在四棱锥中,四边形为菱形,且是等边三角形,点是侧面内的一个动点,且满足,则点所形成的轨迹长度是_______.【解析】根据题意,连接AC ,BD ,记其交点为O ,取PC 上一点为M ,连接MB ,MD ,作图如下:5sin 13AD AOD AO ∠==22.5AOD ∠=︒45AOB ∠=︒S S =214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△6.332550317V Sh =≈⨯≈P ABCD -ABCD 2,60,AB DAB PAD =∠=∆PB Q =PBC DQ AC ⊥Q若满足题意,又,故平面DBQ ,则点Q 只要在平面DBQ 与平面PBC 的交线上即可.假设如图所示:平面DBM 与平面DBQ 是同一个平面,则Q 点的轨迹就是线段BM.根据假设,此时直线平面DBM ,则.故三角形MOC 为直角三角形.因为三角形PAD 是等边三角形,三角形BAD 也是等边三角形,故AD ,又因为BC //AD ,故BC PB ,故三角形PBC 为直角三角形,故故在三角形PAC 中,由余弦定理可得:故在直角三角形MOC 中, 在直角三角形PBC 中, 在三角形BCM 中: 故可得:. DQ AC ⊥AC BD ⊥AC ⊥AC ⊥AC MO ⊥PB ⊥⊥2210PC PB BC +2,23,10PA AC PC ===33021023cos PCA ∠==⨯210OC MC cos PCA ==∠BC cos PCB PC ∠=1010=2222829BM BC CM BC CM cos PCB =+-⨯⨯⨯∠=27BM =故答案为. 18.(2021·福建其他)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,,,,为中点,为内的动点(含边界),且.①当在上时,______;②点的轨迹的长度为______.【答案】【解析】 (1)当在上时,因为平面,故,又,故平面.故.又,为中点,故所以为中点.故. (2)取中点则由(1)有平面,故,又,设平面则有平面.故点的轨迹为.又此时,,故. 所以3P ABC -PA ⊥ABC 90ACB ∠=︒4CA =2PA =D AB E PAC ∆PC DE ⊥E AC AE =E E AC PA ⊥ABC PA DE ⊥PC DE ⊥DE ⊥PAC DE AC ⊥90ACB ∠=︒D AB //DE BC E AC 122AE AC ==AC F DF ⊥PAC PC DF ⊥PC DE ⊥DEF PC G ⋂=PC ⊥DGF E FG 2CF =1tan 2PA PCA AC ∠==sin PCA ∠==sin 5FG CF PCA =⋅∠==故答案为:19.(2020·全国高三专题练习(文))现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.【答案】12 90【解析】足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起.所以设这个足球有x 块正五边形,一共有5x 条边,其中白皮三条边和黑皮相连,又足球表面中的正六边形的面为20个,根据题意可得方程:,解得,该足球表面中的正五边形的面为12个;因为任何相邻两个面的公共边叫做足球的棱,所以每条棱由两条边组成,该足球表面的棱为:条.故答案为:12;90.20.如图在三棱锥S ABC -中,SA SB SC ==,且2ASB BSC CSA π∠=∠=∠=,M N 、分别是AB 和SC 的中点.则异面直线SM 与BN 所成的角的余弦值为______,直线SM 与面SAC 所成角大小为5203x =⨯12x =()125+206290⨯⨯÷=_________.4π 【解析】 因为2ASB BSC CSA π∠=∠=∠=,所以以S 为坐标原点,SA,SB,SC 为x,y,z 轴建立空间直角坐标系.设2SA SB SC ===,则(1,1,0),(0,2,0),(0,0,1),(2,0,0),(0,0,2).M B N A C因为2(1,1,0),(0,2,1),cos ,2SM BNSM BN -==-==,所以异面直线SM 与BN 所成的角的余弦值为5,面SAC 一个法向量为(0,2,0),SB =则由2cos ,22SM SB ==得π,4SM SB =,即直线SM 与面SAC 所成角大小为π4. 21.(2020·包头市第九中学高一期末)设三棱锥的底面和侧面都是全等的正三角形,是棱的中点.记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则,,中最大的是_________,最小的是________.【答案】【解析】S ABC -P SA PB AC αPB ABC βP AC B --γαβγαβ作交于,由于,, 所以为正三棱锥,由对称性知,取中点,连接,作平面,交平面于,连接, 作平面,交平面于,连接,作,交于,连接,所以, 由于,所以,由于平面,所以,由于,平面,所以,, 因为,在上,平面于,平面于, 所以.所以.所以, 由于都是锐角,所以, 由于在上,由对称性,而,则,由于也是锐角,所以,由,,所以 综上所述,三个角中的最小角是,最大角是.故答案为:①;②.四、解答题//PD CA SC D AB BC CA ==SA SB SC ==S ABC -BD PB =PD E BE EH ⊥ABC ABC H BH PF ⊥ABC ABC F BF PG AC ⊥AC G GF BE PD ⊥//PD AC BPD α=∠PF ⊥ABC PBF β=∠PG AC ⊥PF ⊥ABC PGF γ=∠sin BE EH BP BP BP BPα==>=//PD CA E PD EH ⊥ABC H PF ⊥ABC F EH PF =sin PF EH BP BPβ==sin sin αβ>,αβαβ>P SA PB CP =CP PG >sin sin PF PF PF PG CP BP γβ=>==γγβ>PB BG<sin BE EH PF BP BP BP α==>==sin PF PGγ>=αγβααβ22.(2019·北京西城·高三三模)如图,在正四棱柱1111ABCD A BC D -中,1AB =,13AA =,过顶点A ,1C 的平面与棱1BB ,1DD 分别交于M ,N 两点(不在棱的端点处).(1)求证:四边形1AMC N 是平行四边形;(2)求证:AM 与AN 不垂直;(3)若平面1AMC N 与棱BC 所在直线交于点P ,当四边形1AMC N 为菱形时,求PC 长.【答案】(1)证明见解析;(2)证明见解析;(3)=2PC .【解析】(1)依题意1AM C N ,,,都在平面1AC 上, 因此AM ⊆平面1AC ,1NC ⊆平面1AC ,又AM ⊆平面11ABB A ,1NC ⊆平面11DCC D ,平面11ABB A 与平面11DCC D 平行,即两个平面没有交点,则AM 与1NC 不相交,又AM 与1NC 共面,所以//AM 1NC ,同理可证//AN 1MC ,所以四边形1AMC N 是平行四边形;(2)因为M ,N 两点不在棱的端点处,所以11MN BD AC <=,又四边形1AMC N 是平行四边形,1MN AC ≠,则1AMC N 不可能是矩形,所以AM 与AN 不垂直;(3)如图,延长1C M 交CB 的延长线于点P ,若四边形1AMC N 为菱形,则1AM MC =,易证11Rt ABM Rt C B M ≅,所以1BM B M =,即M 为1BB 的中点, 因此112BM CC =,且1//BM CC ,所以BM 是1PCC 的中位线, 则B 是PC 的中点,所以22PC BC ==.23.(2019·全国高三专题练习)如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP DE ⊥?如果存在,求出BP BC 的值;如果不存在,请说明理由. 【答案】(1)//AB 平面DEF ,理由见解析;(2)13. 【解析】(1)AB∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF∥AB.又因为AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB∥平面DEF.(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A(0,0,2),B(2,0,0),C(0,0),E(01),故DE =(01).假设存在点P(x ,y ,0)满足条件,则AP =(x ,y ,-2),AP ·DE 20-=,所以y =.又BP =(x 2-,y ,0),PC =(-x ,y ,0),BP ∥PC ,所以(x 2-)(y )=xy -y +=把y =代入上式得4x 3=,所以BP =1BC 3, 所以在线段BC 上存在点P 使AP⊥DE,此时BP 1BC 3=. 24.(2019·上海市金山中学高二月考)几何特征与圆柱类似,底面为椭圆面的几何体叫做“椭圆柱”,如图所示的“椭圆柱”中,A B ''、AB 和O '、O 分别是上下底面两椭圆的长轴和中心,1F 、2F 是下底面椭圆的焦点,其中长轴的长度为2,两中心O '、O M 、N 分别是上、下底面椭圆的短轴端点,且位于平面AA B B ''的两侧.(1)求证:OM ∥平面A B N '';(2)求点M 到平面A B N ''的距离;(3)若点Q 是下底面椭圆上的动点,Q '是点Q 在上底面的投影,且1Q F '、2Q F '与下底面所成的角分别为α、β,试求出tan()αβ+的取值范围.【答案】(1)证明见解析;(2(3)tan()[5αβ+∈-. 【解析】(1)连接,,O M O N ON '',M N 分别为上下椭圆的短轴端点 //O M ON '∴∴四边形O MPN '为平行四边形 //OM O N '∴O N '⊂平面A B N '',OM ⊄平面A B N '' //OM ∴平面A B N ''(2)连接OO '由“椭圆柱”定义可知OO '⊥平面12F NFON ⊂平面12F NF OO ON '∴⊥ O N '∴==由对称性可知:A N B N ''= O N A B '''∴⊥1122A B N S A B O N ''∆'''∴=⋅=⨯=又12A B M S A B O M ''∆'''=⨯⋅=,OO '1133N A B M A B M V S OO ''''-∆'∴=⋅==设点M 到平面A B N ''的距离为d ,则13M A B N N A B M A B N V V S d ''''''--∆==⋅==解得:7d =,即点M 到平面A B N ''的距离为7(3)连接12,QF QF由题意知:QQ '⊥平面12F F Q,QQ '=1Q FQ '∴∠即为1Q F'与下底面所成角;2Q F Q '∠即为2Q F '与下底面所成角 即1Q FQ α'∠=,2Q F Q β'∠= 设1QF m =,由椭圆定义知:2QF m =1tan QQ QF α'∴==,2tan QQ QF β'== ()tan tan tan 1tan tan 1αβαβαβ+∴+===-21m ⎡⎤∈⎣⎦[]265,4m∴-+-∈-- ()tan 5αβ⎡∴+∈-⎢⎣⎦25.(2016·天津高考真题(理))如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(Ⅰ)求证:EG∥平面ADF ;(Ⅱ)求二面角O −EF −C 的正弦值;(Ⅲ)设H 为线段AF 上的点,且AH=23HF ,求直线BH 和平面CEF 所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)√33;(Ⅲ)√721.【解析】依题意,OF ⊥平面ABCD ,如图,以O 为点,分别以AD ⃗⃗⃗⃗⃗ ,BA⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(−1,1,0),B(−1,−1,0),C(1,−1,0),D(1,1,0),E(−1,−1,2),F(0,0,2),G(−1,0,0).(Ⅰ)证明:依题意,AD ⃗⃗⃗⃗⃗ =(2,0,0),AF⃗⃗⃗⃗⃗ =(1,−1,2). 设n 1=(x,y,z)为平面ADF 的法向量,则{n 1⋅AD ⃗⃗⃗⃗⃗ =0n 1⋅AF⃗⃗⃗⃗⃗ =0 ,即{2x =0x −y +2z =0 . 不妨设z =1,可得n 1=(0,2,1),又EG ⃗⃗⃗⃗⃗ =(0,1,−2),可得EG⃗⃗⃗⃗⃗ ⋅n 1=0, 又因为直线EG ⊄平面ADF ,所以EG//平面ADF .(Ⅱ)解:易证,OA⃗⃗⃗⃗⃗ =(−1,1,0)为平面OEF 的一个法向量. 依题意,EF⃗⃗⃗⃗⃗ =(1,1,0),CF ⃗⃗⃗⃗⃗ =(−1,1,2).设n 2=(x,y,z)为平面CEF 的法向量,则{n 2⋅EF ⃗⃗⃗⃗⃗ =0n 2⋅CF⃗⃗⃗⃗⃗ =0 ,即{x +y =0−x +y +2z =0 . 不妨设x =1,可得n 2=(1,−1,1).因此有cos <OA ⃗⃗⃗⃗⃗ ,n 2>=OA⃗⃗⃗⃗⃗⃗ ⋅n 2|OA ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√63,于是sin <OA ⃗⃗⃗⃗⃗ ,n 2>=√33, 所以,二面角O −EF −C 的正弦值为√33.(Ⅲ)解:由AH =23HF ,得AH =25AF .因为,所以AH ⃗⃗⃗⃗⃗⃗ =25AF ⃗⃗⃗⃗⃗ =(25,−25,45),进而有H(−35,35,45),从而BH⃗⃗⃗⃗⃗⃗=(25,85,45),因此cos <BH ⃗⃗⃗⃗⃗⃗ ,n 2>=BH⃗⃗⃗⃗⃗⃗ ⋅n 2|BH ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√721. 所以,直线BH 和平面CEF 所成角的正弦值为√721.26.(2018·天津高考真题(理))如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),//AD BC AD CD ⊥//EG AD //CD FG DG ABCD ⊥平面MN CDE 平面E BC F --103DA DC DGE (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则 即不妨令z =–1,可得n 0=(1,0,–1).又=(1,,1),可得,又因为直线MN 平面CDE ,所以MN ∥平面CDE .(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n =(x ,y ,z )为平面BCE 的法向量,则 即 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则 即不妨令z =1,可得m =(0,2,1).因此有cos <m ,n>=,于是sin <m ,n.所以,二面角E –BC–F . 32DC DE 0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 20220y x z ,,=⎧⎨+=⎩MN 32-00MN n ⋅=⊄BC ()122BE =-,,CF 00n BC n BE ,,⎧⋅=⎨⋅=⎩0220x x y z -=⎧⎨-+=⎩,,00m BC m CF ⎧⋅=⎨⋅=⎩,,020x y z -=⎧⎨-+=⎩,,10⋅=m nm n(Ⅲ)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得. 易知,=(0,2,0)为平面ADGE 的一个法向量,故=sinh0,2].所以线段27.(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD ,求AD 的长. 【答案】(1)2 (2【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD .取BC 中点O ,连接AO ,OE ,∵AE ⊥平面BCD ,BC ⊂平面BCD ,∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥,又AE AO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.()12BP h =--,,DC BP DCcos BP DC BP DC h ⋅⋅==DP∵2BC CD ==,∴112OE CD ==,AO =BD =∴DE =AE =∴2AD =;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,(1)CA θθ=-,设平面ACD 的法向量为(,,)n x yz =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅+⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sin 6θ=. ∴1(0,,22A ,又(1,2,0)D ,∴AD ==。
2021版新高考数学:高考中的立体几何问题含答案

教学资料范本2021版新高考数学:高考中的立体几何问题含答案编辑:时间:(对应学生用书第138页)[命题解读]立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查.[典例示范](本题满分12分)(20xx全国卷田)图1是由矩形ADEB、RtAABC 和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF = 2, /FBC=60° , 将其沿AB, BC折起使得BE与BF重合,连接DG ,如图2.(1)证明:图2中的A, C, G, D四点共面①,且平面ABC,平面BCGE②;(2)求图2中的二面角B-CG-A的大小③.[信息提取]看到①想到四边形ACGD共面的条件,想到折叠前后图形中的平行关系;看到②想到面面垂直的判定定理;看到③想到利用坐标法求两平面法向量的夹角余弦值,想到建立空间直角坐标系.[规范解答](1)由已知得AD//BE, CG//BE,所以AD//CG,故AD, CG确定一个平面,从而A, C, G, D四点共面. ................... 2分由已知得ABXBE, ABXBC,且BEABC=B,故AB,平面BCGE. .................................... 3分又因为AB?平面ABC, 所以平面ABC,平面BCGE. ........... 4分(2)作EHXBC,垂足为H. 因为EH?平面BCGE,平面BCGE,平面ABC, 所以EHL平面ABC. ................................................ 5分由已知,菱形BCGE的边长为2, /EBC = 60° ,可求得BH = 1, EH =>/3. ................................................... 6 分以H为坐标原点,HC的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A(—1, 1, 0), C(1, 0, 0), G(2, 0, V3),CG=(1, 0, V3), AC=(2, —1, 0). ........................................................ 8分设平面ACGD的法向量为n = (x, y, z),则CGn = 0,「x+gz= 0, 即................ 9分y= 0.ACn = 0, 2x-所以可取n = (3, 6, -V3). ........................... 10分又平面BCGE的法向量可取为m=(0, 1, 0),…i、n m y3 …八所以cos <n, m> =|nj|mj = 2 . ...................... 11 分因此,二面角B-CG-A的大小为30° . .................. 12分[易错防范]结合折叠后棱柱的侧棱关系:CG=BE 可求出CG,或者 借助折叠前后直角三角形的边角关系,直接求出点G 的 坐标[通性通法]合理建模、建系巧解立体几何问题 (1)建模——将问题转化为平行模型、垂直模型、平面化模型或角度、距离等 的计算模型;(2)建系一一依托于题中的垂直条件,建立空间直角坐标系,利用空间向量求 解. [规范特训I ] 1.(20xx 江南十校二模)已知多面体ABC-DEF,四边形BCDE 为矩形,z\ADE 与4BCF 为边长 为2,2的等边三角形,AB= AC= CD = DF = EF = 2.(1)证明:平面 ADE//平面BCF;(2)求BD 与平面BCF 所成角的正弦值.[解](1)取 BC, DE 中点分别为 O,O i,连接 OA, O i A, OF,O i F. 由 AB = AC=CD = DF = EF = 2, BC= DE = CF = AE = AD = BF = 2\f2,可知AABC, z\DEF 为等腰直角三角形,故OA ,BC, OF^DE, CD± DE, CDXDF,又 DEADF=D,故 CD,平面 DEF,平面 BCDE ,平面 DEF, 因为平面BCDE n 平面DEF = DE, OF^DE,所以O 〔F ,平面BCDE.同理OAL 平面BCDE;所以OF// OA,而O 〔F=OA,故四边形AOFO 1为平 行四边形,所以AO 1 // OF, AO 1?平面BCF, OF?平面BCF,所以AO 1 //平面 BCF,又 BC//DE,故 DE//平面 BCF,而 AO 〔nDE = O 1,所以平面 ADE //平面BCF.(2)以O 为坐标原点,以过O 且平行于AC 的直线作 为x轴,平行于AB 的直线作为y 轴,OO 1为z 轴建立空间 直角坐标系如图.则有 B(1, 1, 0), C(-1, —1, 0), D(-1, —1,2), F(-1, 1, 2),易错点不能恰当的建立直角坐标系防范措施 由(1)的结论入手,结合面面垂直的性质及侧面菱形的边 角关系建立空间直角坐标系建系后写不出点的坐标故BD=( —2, —2, 2), BC=( —2, —2, 0), BF=( —2, 0, 2).2y= 0,、…一 _____________ ,…,…,三 -> ,,L —2x—设平面BCF的法向量为n = (x, y, z),由BC±n, BF,n得,—2x+2z= 0, 取x=1得y=— 1, z=1,故平面BCF的一个法向量为n = (1, —1,1).、一,一一一一一.、二一一. —设BD与平面BCF所成角为9,则sin 8=|cos <B D, n>尸— 2X1— 2X (— 1) +2X1 1小X乖:3.故BD与平面BCF所成角的正弦值为1.32.(20xx河南、河北考前模拟)如图,在矩形ABCD中,AB=2, BC = 3,点E是边AD上的一点,且AE = 2ED,点H是BE的中点,将^ ABE沿着BE折起,使点A运动到点S处,且有SC= SD.(1)证明:SHL平面BCDE.(2)求二面角C-SBE的余弦值.[解](1)证明:取CD的中点M,连接HM, SM, 由已知得AE = AB=2, ;SE= SB= 2,又点H是BE的中点,「.SH,BE.. SC= SD,点M是线段CD的中点,ASMICD.又「HM // BC, BCXCD,HMXCD,,. SMA HM = M,从而CD,平面SHM,得CDXSH,又CD, BE 不平行,;SH ,平面BCDE.(2)法一:取BS 的中点N, BC 上的点P,使BP=2PC,连接HN, PN, PH,可知 HNXBS, HPXBE.由(1)得 SHL HP, ;HP ,平面 BSE,则 HPXSB,又 HN^BS, HNAHP = H, • . BS,平面 PHN,「•二面角C-SB-E 的平面角为/PNH.又计算得 NH = 1, PH =,2, PN ="3,法二:由(1)知,过H 点作CD 的平行线GH 交BC 于点G,以点H 为坐标原 点,HG, HM , HS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐 标系 H-xyz,则点 B(1, —1, 0), C(1, 2, 0), E(-1, 1, 0), S(0, 0, V2), BC=(0, 3, 0), BE=( —2, 2, 0), BS= (-1, 1, g设平面SBE 的法向量为 m=(x1, y1, Z I ),• .cos /PNH = 1 3 后3.mBE= —2x1 + 2y1 = 0, I m BS= - x1 + y1+ 嫄z1 = 0, 令 yi = 1,得 m = (1, 1, 0).设平面SBC 的法向量为n = (x 2, y 2, z 2), nBC = 3y2= 0, 由 一 _n B S= - x2 + y2+卷z2= 0, 令 z2=1,得 n =(啦,0, 1).••・二面角C-SB-E 的余弦值为平.• .cos <m, n> 一|m| |n| 一[2x73— 3 .。
2021年上海高考数学 立体几何习题集

2021年上海高中数学强化训练立体几何1.能保证棱锥是正棱锥的一个条件是()A.底面是正多边形B.各侧棱都相等C.各侧棱与底面都是全等的正三角形D.各侧面都是等腰三角形【答案】C2.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.每个侧面都是全等矩形的四棱柱D.底面是菱形,且有一个顶点处的三条棱两两垂直【答案】D3.设命题甲:“直四棱柱1111ABCD A B C D -中,平面1ACB 与对角面11BB D D 垂直”;命题乙:“直四棱柱1111ABCD A B C D -是正方体”.那么甲是乙的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件【答案】C4.判断下列说法正确的是_______:①四边相等的四边形是菱形;②若四边形的两个对角都是直角,则这个四边形是圆内接四边形.③将一个矩形沿竖直方向平移一段距离可形成一个长方体;④平行四边形是一个平面.⑤多面体至少有四个面.【答案】⑤5.下列命题不正确的有.⑴底面是矩形的平行六面体是长方体;⑵棱长相等的直四棱柱是正方体;⑶棱锥被平面分成的两部分不可能都是棱锥;⑷有一个面是多边形,其余各面都是三角形的几何体是棱锥.【答案】①②③④6.下列命题正确的有.⑴棱柱的侧面都是平行四边形;⑵有两个面平行,其余各面都是平行四边形的几何体叫做棱柱;⑶用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;⑷有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.【答案】①7.一个正棱锥的侧棱长与底面边长相等,则该棱锥不可能是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥【答案】D8.设有四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.以上四个命题中,真命题有_______.【答案】④.9.下列说法正确是()A.圆台是直角梯形绕其一边旋转而成B.圆锥是直角三角形绕其一边旋转而成C.圆柱的母线和它的底面不垂直.D.圆台可以看作是平行于底面的平面截一个圆锥而得到的.【答案】D10.将一个边长为4和8的矩形纸片卷成一个圆柱,则圆柱的底面半径为.【答案】2π或4π;11.如图,右边哪一个长方体是由左边的平面图形围成的()【答案】D12.圆锥的侧面展开图是半径为a 的半圆面,求圆锥的母线与轴的夹角是_______,轴截面的面积是______.【答案】30 ,234a 13.一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为()A.63B.8C.83D.12【答案】A14.有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为()A.2324πcm ,12πcm B.2315πcm ,12πcm C.2324πcm ,36πcm D.以上都不正确【答案】A15.如图,三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱1AA ⊥底面ABC ,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()B.C.D.4【答案】B16.一个几何体的三视图如图所示,则此几何体的体积是()A.112B.80C.72D.64【答案】B.17.长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为()A.22B.32C.4D.52【答案】C.18.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求圆锥的母线长.【答案】40319.一圆锥轴截面顶角为120︒,母线长为1,求轴截面的面积.20.圆台的母线长为2a ,母线和轴的夹角为30︒,一个底面半径是另一个底面半径的2倍,求圆台的高____,上下两底面面积之和_______.,25πa 21.圆台侧面的母线长为2a ,母线与轴的夹角为30︒,一个底面半径是另一个底面半径的2倍,则两底面半径为.【答案】a 、2a .22.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于2392cm ,母线与底面的夹角是45︒,求这个圆台的母线长________.【答案】23.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是14∶,截去的圆锥的母线长是3,求圆台的母线长______.【答案】9.24.圆锥轴截面顶角为120︒,母线长为1.⑴求轴截面的面积;⑵过顶点的圆锥的截面中,最大截面的面积.【答案】⑴圆锥的轴截面为顶角为120︒的等腰三角形,腰长为1,故高为12011cos 22︒⋅=,底边长为2sin 60︒=,从而轴截面面积为1122=;⑵过顶点的圆锥的截面都是等腰三角形,且腰长为1,设顶角为θ,三角形的面积为1sin 11sin 22θθ⋅⋅⋅=,由轴截面的顶角为120︒知,0120θ︒<≤,故当θ为直角时,过顶点的截面有最大面积12.25.在球心同侧有相距9的两个平行截面,它们的面积分别为49π和400π.求球的半径_________.【答案】25.26.已知半径为10的球的两个平行截面的周长分别为12π和16π,求这两个截面间的距离______.【答案】2或14.27.设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂直于OP 的平面截球得三个圆,则这三个圆的面积之比为()A.3:5:6B.3:6:8C.5:7:9D.5:8:9【答案】D28.球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18AB =,24BC =、30AC =,球心到这个截面的距离为球半径的一半,求球的半径_____.【答案】R =29.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1D.230.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A.2B.1C.12+【答案】D31.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD的长度分别等于、,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5④MN 的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个【答案】C32.如图正方体1111ABCD A B C D -,其棱长为1,,P Q 分别为线段1AA ,11C D 上的两点,且11A P C Q λ==.求在正方体侧面上从P 到Q 的最短距离________.33.已知如图,正三棱柱ABC DEF -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达D 点的最短路线的长为____.FEDCBA【答案】10.34.如图所示,正三棱锥S ABC -的侧棱长为1,45ASB ∠= ,M 和N 分别为棱SB 和SC 上的点,求AMN∆的周长的最小值_________.35.如图,在直三棱柱111ABC A B C -中,AB BC ==12BB =,90ABC ∠=︒,E 、F 分别为1AA 、11C B 的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为.1A 【答案】322;36.如图所示,正三棱锥S ABC -的侧棱长为1,40ASB ∠= ,M 和N分别为棱SB 和SC 上的点,求AMN∆的周长的最小值________.37.在体积为的球的表面上有A B C ,,三点,1AB =,BC =,A ,C 两点的球面距离为33π,则球心到平面ABC 的距离为.【答案】3238.已知球O 的半径是1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是π4,B 、C 两点的球面距离是π3,则二面角B OA C --的大小是()A.π4B.π3C.π2D.2π3【答案】C39.A 、B 是半径为R 的球O的球面上两点,它们的球面距离为π2R ,求过A 、B 的平面中,与球心的最大距离是________【答案】2R 40.已知,,A B C 三点在球心为O ,半径为R 的球面上,且AB AC BC R ===,那么,AB 两点的球面距离为_________,球心到平面ABC 的距离为_________.【答案】π3R ,3R41.如图球O 的半径为2,圆1O是一小圆,1O O =,A 、B 是圆1O 上两点,若,A B 两点间的球面距离为2π3,则1AO B ∠=.【答案】π242.如图,在半径为3的球面上有A 、B 、C 三点,90ABC ∠= ,BA BC =,球心O 到平面ABC 的距离是2,则B 、C 两点的球面距离是()A.π3B.πC.4π3D.2π【答案】C.43.球面上有3个点,其中任意两点的球面距离都等于大圆周长的16,经过3个点的小圆的周长为4π,求这个球的半径.【答案】44.如图,O 是半径为1的球心,点,,A B C 在球面上,,,OA OB OC 两两垂直,,E F 分别是大圆弧AB 与AC的中点,则点,E F 在该球面上的球面距离是()A.π4B.π3C.π2D.2π4EFGOC BA 【答案】π3。
上海高考数学真题专题-立体几何专题

第七部 立体几何专题【考点1】立体几何判断题公理1 如果直线l上有两个点在平面 上,那么直线l在平面 上.公理2 如果不同的两个平面 、 有一公共点A,那么 、 的交集是过点A的直线. 公理3 不在同一直线上的三点确定一个平面.公理4 平行于同一直线的两条直线相互平行.推论1 一条直线和直线外的一点确定一个平面.推论2 两条相交的直线确定一个平面.推论3 两条平行的直线确定一个平面.等角定理如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.线面平行判定:若平面外一条直线和这个平面内的一条直线平行,则线面平行.线面平行性质:若线面平行,经过这条直线的平面和这个平面相交,则直线和交线平行. 线面垂直判定:若直线l与平面 上的两条相交直线都垂直,则直线l与平面 垂直.推论:若两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面.线面垂直性质:若一条直线垂直于一个平面,则这条直线垂直于平面内的所有直线.推论若两条直线同时垂直于同一个平面,则这两条直线平行.面面平行判定:若平面内有两条相交直线都平行于另一个平面,则面面平行.推论:若平面内的两条相交直线,分别平行于另一个平面内的两条相交直线,则面面平行. 推论:垂直于同一条直线的两个平面平行.面面平行性质:若两个平行平面同时和第三个平面相交,则得到的两条交线互相平行.推论:若一条直线垂直于两个平行平面中的一个平面,则它也垂直于另一个平面.面面垂直判定:若平面经过另一个平面的一条垂线,则面面垂直.面面垂直性质:若面面垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面.1.(2019春15)已知平面 、 、 两两垂直,直线a 、b 、c 满足:a ,b ,c ,则直线a 、b 、c 不可能是( )A. 两两垂直B. 两两平行C. 两两相交D. 两两异面2.(2017春15)过正方体中心的平面截正方体所得的截面中,不可能的图形是( ) A. 三角形 B. 长方形 C. 对角线不相等的菱形 D. 六边形3.(2016春18)设直线l 与平面 平行,直线m 在平面 上,那么( ) A. 直线l 平行于直线m B. 直线l 与直线m 异面 C. 直线l 与直线m 没有公共点 D. 直线l 与直线m 不垂直4.(2014春13)两条异面直线所成的角的范围是( )A. (0,)2B. (0,]2C. [0,)2D. [0,]25.(2012春17)已知空间三条直线l 、m 、n ,若l 与m 异面,且l 与n 异面,则( ) A. m 与n 异面 B. m 与n 相交C. m 与n 平行D. m 与n 异面、相交、平行均有可能 6.(2016文16)如图,正方体1111ABCD A B C D中,E 、F 分别为BC 、1BB 的中点,则下列直线中 与直线EF 相交的是( )A. 直线1AAB. 直线11A BC. 直线11A DD. 直线11B C【考点2】多面体相关题(1)棱柱如果一个多面体有两个全等的多边形的面互相平行,且不在这两个面上的棱都相互平行, 那么这个多面体叫做棱柱.侧棱不垂直于底面侧棱垂直于底面底面是正多边形棱柱斜棱柱直棱柱正棱柱.底面是平行四边形侧棱垂直于底面底面是矩形四棱柱平行六面体直平行六面体长方体底面是正方形棱长都相等正四棱柱正方体. 直柱体的表面积:22S S S ch S 侧全底底(h c 、分别为直柱体的高和底面周长) 棱柱的体积:V S h 棱柱底(h 为棱柱的高)7.(2018春14)如图,在直三棱柱111ABC A B C 的棱所在的直线中,与直线1BC 异面的 直线的条数为( )A. 1B. 2C. 3D. 48.(2018年15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马, 设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面 矩形的一边,则这样的阳马的个数是( )A. 4B. 8C. 12D. 169.(2016理6)如图,正四棱柱1111ABCD A B C D 中,底面ABCD 边长为3,1BD 与底面 所成角大小为2arctan3,则该正四棱柱的高等于10.(2013春9)在如图所示的正方体1111ABCD A B C D 中,异面直线1A B 与1B C 所成角的 大小为11.(2015理4)若正三棱柱的所有棱长均为a ,且其体积为,则a12.(2016春25)如图,已知正三棱柱111ABC A B C 的体积为,底面边长为3, 求异面直线1BC 与AC 所成的角的大小.13.(2015春25)如图,在正四棱柱中1111ABCD A B C D ,1AB ,1D B 和平面ABCD所成的角的大小为arctan4,求该四棱柱的表面积.14.(2015理19)如图,在长方体1111ABCD A B C D 中,11AA ,2AB AD ,E 、F 分别是棱AB 、BC 的中点,证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11AC FE 所成角的大小.15.(2013理19)如图,在长方体ABCD A B C D 中,2AB ,1AD ,1AA , 证明直线BC 平行于平面D AC ,并求直线BC 到平面D AC 的距离.16.(2013春25)如图,正三棱锥111ABC A B C 中,16AA ,异面直线1BC 与1AA 所成 角的大小为6,求该三棱柱的体积.(2)棱锥如果一个多面体有一个多边形的面,且不在这个面上的棱都有一个公共点,那么这个多面 体叫做棱锥. 如果棱锥的底面是正多边形,且底面中心与顶点的连线垂直于底面,那么这个 棱锥叫做正棱锥.正锥体的表面积:12S S S ch S 侧全底底(h c 、分别为斜高和底面周长) 棱锥的体积:13V S h棱锥底(h 为棱锥的高) 17.(2018春7)如图,在长方体1111ABCD A B C D 中,3AB ,4BC ,15AA ,O 是11A C 的中点,则三棱锥11A A OB 的体积为18.(2012理14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC ,若2AD c ,且2AB BD AC CD a ,其中a 、c 为常数,则四面体ABCD 体积最大值是19.(2013文19)如图,正三棱锥O ABC 的底面边长为2,高为1,求该三棱锥的体积及表面积.20.(2014年19)底面边长为2的正三棱锥P ABC ,其表面展开图是三角形123PP P , 如图,求△123PP P 的各边长及此三棱锥的体积V .【考点3】旋转体相关题(1)圆柱和圆锥圆柱的表面积:2222S S S rh r 侧全底(h r 、分别为圆柱的高和底面半径) 圆锥的表面积:2S S S rh r 侧全底(h r 、分别为母线长和底面半径) 圆柱的体积:2V S h r h 圆柱底(h r 、分别为圆柱的高和底面半径) 圆锥的体积:21133V S h r h圆锥底(h r 、分别为圆锥的高和底面半径)22.(2016春附5)已知圆锥的母线长为10,母线与轴的夹角为30 ,则该圆锥的侧面积为23.(2012文5)一个高为2的圆柱,底面周长为2 ,该圆柱的表面积为24.(2012理8)若一个圆锥的侧面展开图是面积为2 的半圆面,则该圆锥的体积为25.(2011理7)若圆锥的侧面积为2 ,底面面积为 ,则该圆锥的体积为26.(2014文7)若圆锥的侧面积是底面积的3倍,则其母线与轴所成的角的大小为 (结果用反三角函数值表示)27.(2014理6)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为(结果用反三角函数值表示)28.(2015理6)若圆锥的侧面积与过轴的截面面积之比为2 ,则其母线与轴的夹角的大 小为29.(2019年14)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两 个直角边旋转得到的两个圆锥的体积之比为( )A. 1B. 2C. 4D. 830.(2015春18)底面半径为1,母线长为2的圆锥的体积为( )A. 2B.C.23D. 331.(2014春24)如图,在底面半径和高均为1的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线 PB 中点,已知过CD 与E 的平面与圆锥侧面的交线是以 E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离为( )A. 1B. 2C. 2D. 432.(2013文10)已知圆柱 母线长为l ,底面半径为r ,O 是 上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线, 若直线OA 与BC 所成角的大小为6,则lr33.(2015文19)如图,圆锥的顶点为P ,底面圆心为O ,底面的一条直径为AB ,C 为半圆弧 AB 的中点,E 为劣弧 CB的中点,已知2PO ,1OA ,求三棱锥P AOC 的 体积,并求异面直线PA 与OE 所成角的大小.(2)球球的表面积公式:24S r (r 是球的半径)球的体积公式:343V r球(r 是球的半径) 球面距离求法:确定两点的直线距离,求出圆心角34.(2017年4)已知球的体积为36 ,则该球主视图的面积等于 35.(2016春14)半径为1的球的表面积为( ) A.B. 43C. 2D. 436.(2014春21)若两个球的体积之比为8:27,则它们的表面积之比为( )A. 2:3B. 4:9C. 8:27D. 37.(2013春21)若两个球的表面积之比为1:4,则这两个球的体积之比为( ) A. 1:2 B. 1:4 C. 1:8 D. 1:1638.(2011春20)某甜品店制作一种蛋筒冰激凌,上部分是半球形,下半部分呈圆锥形 (如图),现把半径为10cm 的圆形蛋皮等分成5个扇形,用一个蛋皮围成圆锥的侧面 (蛋皮厚度忽略不计),求该蛋筒冰激凌的表面积和体积.(精确0.01)(3)祖暅原理祖暅原理:体积可看成是由面积叠加而成,用一组平行平面截两个空间图形,若在任意等 高处的截面面积都对应相等,则两空间图形的体积必然相等39.(2013理13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x 和22(3)1(3)x y x 、两条直线1y 和1y 围成的封闭图形记为D ,如图阴影部分,记D 绕y 轴旋转一周而成的几何体为,过(0,)y (||1y )作 的水平截面,所得截面面积为48 ,试利用祖暅原理、一个平放 的圆柱和一个长方体,得出 的体积为【考点4】三视图将三个视图展示在同一个平面上,使俯视图在主视图的下方,左视图在主视图的右方,我们 把整个构图叫做这个长方体的三视图.40.(2011文7)若一个圆锥的主视图是边长为3、3、2的三角形,则该圆锥侧面积为 41.(2014文8)在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个 小长方体的体积之和等于【考点5】立体几何综合(1)异面直线所成角异面直线所成角的范围(0,90] . 求异面直线所成的角,主要有以下方法: ① 平移,将异面直线平移至相交,常用“作平行”和“取中点”的方法.② 补形,延长异面直线,或者将题中几何体进行添补,然后再平移至相交.③ 向量法,设空间直线a 与b 所成的角为 ,(0,2,它们的方向向量分别为1d和2d ,1d和2d 的夹角为 ,[0,] ,根据空间两条直线所成角的定义,可知cos |cos | .(2)直线与平面所成角直线与平面所成角的范围[0,90] . 求直线与平面所成的角,主要有以下方法: ① 定义法,根据直线与平面所成角的定义,找斜线及其射影的夹角. ② 垂线法,过直线上某一点作平面的垂线.③ 等体积法,通过几何体体积相等,求出直线上的点到平面的距离.④ 向量法,设直线l 与平面 所成角为 ,[0,]2,d是l 的一个方向向量,n 是的一个法向量,d与n 的夹角为 ,根据直线与平面所成角的定义,可知sin |cos | .(3)二面角的平面角二面角的平面角的范围[0,180] . 求二面角的平面角,主要有以下方法: ①定义法,在两个半平面中分别作交线的垂线.②垂线法,过一个平面上一点作另一个平面的垂线,再作交线的垂线. ③垂面法,找到一个与两个半平面均垂直的平面,截得的交线所形成的角.④ 等体积法,通过几何体体积相等,求出直线上的点到平面的距离.⑤ 射影法,面积射影定理cos S S. ⑥ 向量法,设二面角大小为 ,[0,] ,二面角两个半平面的法向量分别为1n 和2n,1n 和2n的夹角为 ,根据二面角的定义,可知 或 .(4)距离的计算线面距离、面面距离都可以转化为点到平面的距离. 求点到平面的距离,主要有两种方法: ① 垂线法,过点作平面的垂线,求垂线的长度.② 等体积法,通过几何体体积相等,求出高,即点到平面的距离.③ 向量法,已知平面 上一点A 与平面 外一点M ,n是平面 的一个法向量,设点M到平面 的距离为d ,则||||n AM d n . 42.(2019年3)已知向量(1,0,2)a,(2,1,0)b ,则a 与b 的夹角为43.(2017年7)如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB的坐标为(4,3,2),则1AC 的坐标为44.(2011春13)有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图), 则AB 与CD 所成角的大小是45.(2019春17)如图,正三棱锥P ABC 中,侧棱长为2M 、N 分 别是PB 和BC 的中点.(1)求异面直线MN 与AC 所成角的大小; (2)求三棱锥P ABC 的体积.46.(2012文19)如图,在三棱锥P ABC 中,PA 底面ABC ,D 是PC 的中点,已知2BAC,2AB ,AC ,2PA ,求:(1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成的角的大小.(结果用反三角函数值表示)47.(2012理19)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PA 底面ABCD ,E 是PC 的中点,已知2AB ,AD 2PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.48.(2019年17)如图,在长方体1111ABCD A B C D 中,M 为1BB 上一点,已知2BM ,3CD ,4AD ,15AA .(1)求直线1AC 与平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.49.(2017春17)如图,长方体1111ABCD A B C D 中,2AB BC ,13AA . (1)求四棱锥1A ABCD 的体积; (2)求异面直线1A C 与1DD 所成角的大小.50.(2017年17)如图,直三棱柱111ABC A B C 的底面为直角三角形,两直角边AB 和 AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C 的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.51.(2011文20)已知1111ABCD A B C D 是底面边长为1的正四棱柱,高12AA ,求: (1)异面直线BD 与1AB 所成角的大小(结果用反三角函数值表示); (2)四面体11AB D C 的体积.52.(2012春19)如图,正四棱柱1111ABCD A B C D 的底面边长为1,高为2,M 为线段AB 的中点,求:(1)三棱锥1C MBC 的体积; (2)异面直线CD 与1MC 所成角的大小. (结果用反三角函数值表示)53.(2011理21)已知1111ABCD A B C D 是底面边长为1的正四棱柱,1O 为11A C 与11B D 的交点.(1)设1AB 与底面1111A B C D 所成角的大小为 ,二面角111A B D A 的大小为 ,求证:tan;(2)若点C 到平面11AB D 的距离为43, 求正四棱柱1111ABCD A B C D 的高.54.(2018年17)已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO ,OA 、OB 是底面半径,且90AOB ,M 为 线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.55.(2018春19)利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB 于C ,3AB 米, 4.5OC 米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).(图1) (图2) (图3)56.(2016文19)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱, 如图, AC 长为56 , 11A B 长为3,其中1B 与C 在平面11AA O O 的同侧. (1)求圆柱的体积与侧面积;(2)求异面直线11O B 与OC 所成的角的大小.57.(2016理19)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图, AC 长为23 , 11A B 长为3,其中1B 与C 在平面11AA O O 的同侧. (1)求三棱锥111C O A B 的体积;(2)求异面直线1B C 与1AA 所成的角的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年上海高考数学·立体几何习题一、考点分析1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩L底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★底面为矩形底面为正方形侧棱与底面边长相等2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r=d、球的半径为R、截面的半径为r)★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)俯视图1.求异面直线所成的角(]0,90θ∈︒︒:解题步骤: 一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法二证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行;三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角[]0,90θ∈︒︒:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直); 三计算:常通过解直角三角形,求出线面角。
3求二面角的平面角[]0,θπ∈解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角;二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。
二、典型例题1._________________.第1题侧(左)视图 正(主)视图2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .5.如图5是一个几何体的三视图,若它的体积是33,则 a .6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm3俯视图1 12 a2020正视图 20侧视图1010 20俯视图8.设某几何体的三视图如图8(尺寸的长度单位为m),则该几何体的体积为_________m 3。
第7题第8题9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_____________.图1011. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.223221俯视图正(主)视图侧(左)视图2322正视图俯视图俯视图侧视图正视图33413.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________14.如果一个几何体的三视图如图14所示(单位长度: cm), 则此几何体的表面积是_____________.图1415.一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:2cm)_____________.正视图左视图俯视图16.图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________.图16 图1717.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为______________.18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为______________.图18俯视图正(主)视图侧(左)视图2322考点二 体积、表面积、距离、角注:1-6体积表面积 7-11 异面直线所成角 12-15线面角1. 将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了___________.2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为___________.3.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为_______________. 4.正棱锥的高和底面边长都缩小原来的21,则它的体积是原来的______________. 5.已知圆锥的母线长为8,底面周长为6π,则它的体积是 . 6.平行六面体1AC 的体积为30,则四面体11AB CD 的体积等于 .7.如图7,在正方体1111ABCD A B C D -中,,E F 分别是11A D ,11C D 中点,求异面直线1AB 与EF 所成角的角______________.8. 如图8所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为_____________.第8题 第7题9.正方体''''ABCD A B C D -中,异面直线'CD 和'BC 所成的角的度数是_________________.10.如图9-1-3,在长方体1111ABCD A B C D -中,已知13,AB BC BC CC ==,则异面直线1AA 与1BC 所成的角是_________,异面直线AB 与1CD 所成的角的度数是______________图1311. 如图9-1-4,在空间四边形ABCD 中,AC BD ⊥ AC BD =,,E F 分别是AB 、CD 的中点,则EF 与AC 所成角的大小为_____________.12. 正方体1AC 中,1AB 与平面11ABC D 所成的角为 .13.如图13在正三棱柱111ABC A B C -中,1AB AA =,则直线1CB 与平面11AA B B 所成角的正弦值为_______ 14. 如图9-3-6,在正方体ABCD —A 1B 1C 1D 1中,对角线BD 1与平面ABCD 所成的角的正切值为________图9-3-6 图9-3-1 图715.如图9-3-1,已知ABC ∆为等腰直角三角形,P 为空间一点,且52,AC BC PC AC ==⊥,PC BC ⊥,5PC =,AB 的中点为M ,则PM 与平面ABC 所成的角为16.如图7,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为__________________.17.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是______________. 18.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3, 11=AA ,则顶点A 、B 间的球面距离是_________________.19.已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =213,AC =8AD =,则,B C 两点间的球面距离是 .ACPA 1CBAB 1C 1D 1 DO20. 在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是_________________.21.△ABC 的顶点B 在平面a 内, A 、C 在a 的同一侧,AB 、BC 与a 所成的角分别是30°和45°,若AB=3,BC=24 ,AC=5,则AC 与a 所成的角为_________.22.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为_____________.23.已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =AC =8AD =,则,B C 两点间的球面距离是 .24.正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为25.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O表面积等于______.26.已知正方体的八个顶点都在球面上,且球的体积为323π,则正方体的棱长为_________. 27. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为_________.1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.(Ⅰ) 求证:11B D AE ⊥;(Ⅱ) 求证://AC 平面1B DE ;(Ⅲ)求三棱锥A-BDE 的体积.2.已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .AD 11A E CD 1ODB AC 1B 1A 1C3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点.(Ⅰ)求证:MN ∥平面PAD ;(Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=o,求证:MN ⊥平面PCD .4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。
现将梯形 AEFD 沿EF 折起,得到图(2)(1)若折起后形成的空间图形满足DF BC ⊥,求证:AD CF ⊥;(2)若折起后形成的空间图形满足,,,A B C D 四点共面,求证://AB 平面DEC ;A B C D E F 图(1) E B CF D A 图(2) N MPD AP DA BC O M 5.如图,在五面体ABCDEF 中,FA ⊥平面ABCD,AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,N 为AE 的中点,AF=AB=BC=FE=12AD (I) 证明平面AMD ⊥平面CDE ;(II) 证明//BN 平面CDE ;6.在四棱锥P -ABCD 中,侧面PCD 是正三角形,且与底面ABCD 垂直,已知菱形ABCD 中∠ADC =60°,M 是P A 的中点,O 是DC 中点.(1)求证:OM // 平面PCB ;(2)求证:P A ⊥CD ;(3)求证:平面P AB ⊥平面COM .A F EBCD M N7.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明P A //平面EDB ;(2)证明PB ⊥平面EFD8.正四棱柱ABCD-A 1B 1C 1D 1的底面边长是3,侧棱长是3,点E ,F 分别在BB 1,DD 1上,且AE ⊥A 1B ,AF ⊥A 1D .(1)求证:A 1C ⊥面AEF ;(2)求二面角A-EF-B 的大小;(3)点B 1到面AEF 的距离.A C考点五异面直线所成的角,线面角,二面角1.如图,四棱锥P—ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=AD.求证:(1)平面P AC⊥平面PBD;(2)求PC与平面PBD所成的角;2.如图所示,已知正四棱锥S—ABCD侧棱长为2,底面边长为3,E是SA的中点,则异面直线BE与SC所成角的大小为 _____________.3.正六棱柱ABCDEF-A1B1C1D1E1F1底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是___________________.4. 若正四棱锥的底面边长为23cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是________.5. 如图,在底面为平行四边形的四棱锥P-ABCD中,,AB AC PA⊥⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:AC PB⊥;(2)求证:PB//平面AEC;(3)若PA AB AC a===,求三棱锥E-ACD的体积;(4)求二面角E-AC-D的大小.1.已知直线l 、m 、平面α、β,且l ⊥α,m ⊂β,给出下列四个命题:(1)α∥β,则l ⊥m (2)若l ⊥m ,则α∥β(3)若α⊥β,则l ∥m (4)若l ∥m ,则α⊥β其中正确的是__________________.2. m 、n 是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题: ①,;m n m n αβαβ⊥⇒⊥P P , ②,,;m n m n αβαβ⊥⊥⇒P P ③,,;m n m n αβαβ⊥⇒⊥P P ④,,;m m n n ααββ⊥⇒⊥P P 其中真命题的编号是________(写出所有真命题的编号)。