【高等代数】期末考试题(卷)A
《高等代数与解析几何(下) 》期末考试试卷(A 卷)

6.(10 分) 用非退化线性替换将二次型
化为标准型.
q(x1, x2 , x3 ) = x12 − 2x1x3 + x22 + 2x2 x3 − x32
7.(13 分)设V1 与V2 分别是齐次线性方程组 x1 + x2 + + xn = 0 与 x1 = x2 = = xn
的解空间,证明 K n = V1 ⊕V2 .
5 5 λ+7 5 5 λ+7故特征向量为 Nhomakorabea2 和 3.
………………5 分
⎛ −1⎞ ⎛ −1⎞
当 λ1
=
−2 时,特征向量η1
=
⎜ ⎜
1
⎟ ⎟
,η2
=
⎜ ⎜
0
⎟ ⎟
.
⎜⎝ 0 ⎟⎠
⎜⎝ 1 ⎟⎠
………………2 分
⎛ −1⎞
当 λ2
=
3 时,特征向量η3
=
⎜ ⎜
−1⎟⎟ .
⎜⎝ 1 ⎟⎠
………………2 分
命题共 2 页第 1 页
三.解答题:(共 80 分)
⎛3 5 5⎞
1.(15 分)
设
A
=
⎜ ⎜ ⎜⎝
5 −5
3 −5
5
⎟ ⎟
,问矩阵
A 是否可以相似于一个对角矩阵,若可
−7 ⎟⎠
以,求一个可逆矩阵T ,使T −1AT 为对角形矩阵.
2.(10 分) 求单叶双曲面 x2 + y2 − z2 = 1上过点(-3,-2,4)的直母线的方程. 9 4 16
矩
阵.
4. n 维线性空间V 的线性变换 A 在某个基下的矩阵为对角矩阵的充要条件是 A
(完整版)高等代数II期末考试试卷及答案A卷,推荐文档

2、( D )设A是非零线性空间 V 的线性变换,则下列命题正确的是:
(A)A的核是零子空间的充要条件是A是满射; (B)A的核是 V 的充要条件是A是满射; (C)A的值域是零子空间的充要条件是A是满射; (D)A的值域是 V 的充要条件是A是满射。
二、 单项选择题(每小题 3 分,共 15 分)
1、( )复数域 C 作为实数域 R 上的线性空间可与下列哪一个 线性空间同构:
(A)数域 P 上所有二级对角矩阵作成的线性空间; (B)数域 P 上所有二级对称矩阵作成的线性空间; (C)数域 P 上所有二级反对称矩阵作成的线性空间; (D)复数域 C 作为复数域 C 上的线性空间。 2、( )设A是非零线性空间 V 的线性变换,则下列命题正确的是:
2、设A是数域 P 上线性空间 V 的线性变换,证明W L 1,2 ,...,r 是A的不变子空间的兖要条件是 A i W i 1, 2,..., r
3、已知 A E 是 n 级正定矩阵,证明:
(1)A 是正定矩阵;
(2) A 2E 3n
答案
一、 填空题(每小题 3 分,共 15 分)
3、( B ) 矩阵 A 可逆的充要条件是:
A A 0; B A 是一个非零常数;
C A 是满秩的; DA 是方阵。
4、( C )设实二次型 f X AX (A 为对称阵)经正交变换后化为:
1、在线性空间 P4 中,定义线性变换:
A a,b,c, d a,b, a c,b d a,b,c, d P4
高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
高等代数(下)期末考试 A 卷解答

五、证明题 3. (本题13分) 设 A 是欧氏空间V 的一个变换, 并且对任意
V , 有 A (,). V , 1
(1) 证明: A 是 V的一个线性变换.
(2) 当 取何值时, A 是 V的一个正交变换?
(1) 证明:对于 , V , k R, 由于 A ( ) ( ) ( , ) ( ) ( , ) (, ) [ ( , ) ] [ (, ) ] 以及 A ( ) A (), A (k ) k (k , ) k[ ( , ) ] kA ( ),
已知
B
A2
A
E,
其中
A
与
1 0
3
2
相似,则
B __3________
5. 设 1,2,3 是3维欧氏空间V的一组基,这组基的度量矩阵为
2
1
1 2
2 1
则向量 1 2 的长度
为
2.
2 1 2
三、判别题(对的打”√”,错的打” ×”, 2×5=10分)
五、证明题 3. (本题13分) 设 A 是欧氏空间V 的一个变换, 并且对任意
V , 有 A (,). V, 1
(2) 当 取何值时, A 是 V的一个正交变换?
(2) 如果A 是 V的一个正交变换,即有 对于任意的 , V ,
(A ( ), ()) ( (,), (,)) (,) (,(,)) ((,),) 2(,)(,)(, ) (,) 2(,)(,) 2(,)(,)(,) (,),
2.
在线性空间
R22
2020-2021大学《高等代数》期末课程考试试卷A(含答案)

2020-2021《高等代数》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共40分,每小题4分)1.向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为____________,它的一组基为__________________.2.已知111α⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则_______,_______a b ==特征向量α对应的特征值0___________λ=.3.k 满足___________时,二次型22212312132(1)22f x x k x kx x x x =--+---是负定的。
4.设矩阵20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000B y -⎛⎫⎪= ⎪ ⎪⎝⎭相似,则_________,________x y ==.5.在空间[]n P x 中,设变换σ为()(1)()f x f x f x →+-,则σ在基0(1)(1)1,(1,2,1)!i x x x i i n i εε--+===-下的矩阵为____________________.6.相似矩阵的特征值__________.7.向量)1,3,2,4(),4,3,2,1(==βα,则内积=),(βα___________. 8.若A 是实对称矩阵,则 A 的特征值为____________.9.n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于___________________.10.对于线性空间V 中向量)1(,,,21≥r r ααα ,若在数域P 中有r 个不全为零的数r k k k ,,,21 ,使02211=+++r r k k k ααα ,则向量r ααα,,,21 称为_________.二、(15分)设V 是实数域上由矩阵A 的全体实系数多项式组成的空间,其中2100100,200A ωωω⎛⎫- ⎪== ⎪ ⎪⎝⎭,求V 的维数和一组基.三、(15分)用非退化线性替换化二次型22212312132322448x x x x x x x x x ---++为标准形.四、(15分)在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在基1234,,,ηηηη下的坐标,设(1,0,1,0)ξ=1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩; 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩.五、(15分)设1234,,,εεεε是四维线性空间V 的一组基,已知线性变换σ在这组基下的矩阵为1021121312552212⎛⎫⎪- ⎪⎪⎪--⎝⎭ 1)求σ在基11242234334442,3,,2ηεεεηεεεηεεηε=-+=--=+=下的矩阵; 2)求σ的核与值域.2020-2021《高等代数》期末课程考试试卷A 答案一、填空(共40分,每小题4分)1、向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为__2n -__________,它的一组基为122(1,1,0,,0,0),(0,0,1,,0,0),,(0,0,0,,1,0)n εεε-=-==_。
高代一期末考试试题及答案

高代一期末考试试题及答案一、选择题1. 设A和B都是n阶方阵,下列哪个条件可以推断出A与B一定可交换?A. AB = BAB. AB = 0C. det(A) = 0D. AB = I (单位矩阵)正确答案:A2. 设A是n阶方阵且可逆,则A^-1的列向量组是否一定线性无关?A. 是B. 否正确答案:A3. 设A是n阶对称矩阵,则A肯定满足的性质是:A. A的特征值为实数B. A的特征向量构成一组正交基C. A一定可以对角化D. A的秩等于n正确答案:A4. 设A是n阶可逆矩阵,下列哪个等式成立?A. (A^-1)^T = AB. (A^T)^-1 = AC. (A^-1)^T = (A^T)^-1D. (A^T)^-1 = (A^-1)^T正确答案:D5. 设A是n阶方阵,则A可能是可逆矩阵的充分必要条件是:A. 行列式det(A)不等于0B. 矩阵A的秩等于nC. 矩阵A有n个互不相同的特征值D. 矩阵A的伴随矩阵可逆正确答案:A二、计算题(请写出详细过程并附上最后计算结果)1. 计算矩阵相乘:A = [1 2 3; 4 5 6],B = [1 -1; 2 -2; 3 -3]解答:A *B = [1*1 + 2*2 + 3*3 1*(-1) + 2*(-2) + 3*(-3);4*1 + 5*2 + 6*3 4*(-1) + 5*(-2) + 6*(-3)]= [14 -14;32 -32]2. 计算矩阵的逆:设A = [1 2; 3 4]解答:计算A的行列式:det(A) = 1*4 - 2*3 = -2计算伴随矩阵:adj(A) = [4 -2;-3 1]计算A的逆:A^-1 = (1/det(A)) * adj(A) = (1/-2) * [4 -2;-3 1]= [-2 1;1.5 -0.5]三、证明题证明:若A是n阶对称矩阵,则A一定可以对角化。
解答:要证明A一定可以对角化,需要证明存在一个可逆矩阵P,使得P^(-1) * A * P = D,其中D是一个对角矩阵。
高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
2009-2011高等代数(下)考试卷(A)

2009-2010学学年第二期 数高等代(下)期末考试试卷(A 卷)选择题题(本大共5题题小,每小3分,共15分) 1.( )义变换下列所定的σ哪个线变换,一是性(A)线间在性空V 设中,α为对一固定的非零向量,于任意的V ξ∈,义定()σξξα=+;(B) 在3R 义中,定221231233(,,)(,,)x x x x x x x σ=+;(C) 在3R 义中,定222222123131223(,,)(,,)x x x x x x x x x σ=+++;(D) 在[]P x 义中,定()0()()f x f x σ=,其中0x 为P 个数中一固定的。
2.( )实数在域R 中,由全体3阶阵构线间矩所成的性空V 维数为的 (A )2; (B )4; (C )6; (D )9。
3. ( ) 如果1V , 2V 线间是性空V 两个间的子空, 且()1dim 5V =, ()2dim 3V =,()12dim 6V V +=, 么那()12dim V V ∩为(A) 2 (B)3 (C)4 (D)5 4.( 设)σ为欧间氏空V 个线变换号的一性,符(,)αβ表示向量α和β内积的,则哪说与下列一法σ为变换正交不等价(A ) 对任意V α∈,有()(),()(,)σασααα=; (B ) 对任意,V αβ∈,有()(),()(,)σασβαβ=; (C )对任意,V αβ∈,有()()(),,()σαβασβ=;( D) σ组标阵阵在任意一准正交基下的矩是正交矩.5. ( ) 设A 和B 为数域P 上的n 阶阵则方,A 和B 当仅当相似且(A) A 和B 值有相同的特征; (B) A 和B 有相同的秩; (C) 为存在着行列式不零的n 阶阵方T 使得1B T AT −= ; ( D) A 和B 有相同的迹。
二、 填题空题(本大共5题题小,每小3分,共15分)1、设阶阵三方A 项为的特征多式32()225f λλλλ=−−−则, =||A ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1、设1D =3512,2D =345510200,则D =12D D O O=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表,每小题2分,共20分)1、若方程13213602214x x xx -+-=---成立,则x 是(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+; (B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --; (D )()222AB =A B3、设A 为可逆n 阶方阵,则()**A=(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
6、1,α2α,,m α和1β,2β,,m β为两个n 维向量组,且1α=2β+3β++m β 2α=1β+3β++m βm α=1β+2β++1m β-则下列结论正确的是 (A )()()1 212,,,,,,m m R R αααβββ< (B )()()1 212,,,,,,m m R R αααβββ> (C )()()1 212,,,,,,m m R R αααβββ=(D )无法判定7、设A 为n 阶实对称方阵且为正交矩阵,则有(A )A=E (B )A 相似于E (C )2A E = (D )A 合同于E8、若1234,,,ηηηη是线性方程组AX O =的基础解系,则1η+2η+3η+4η是AX O =的 (A )解向量 (B )基础解系 (C )通解; (D )A 的行向量;9、1,λ 2λ都是n 阶矩阵A 的特征值,12λλ≠,且1X 和2X 分别是对应于1λ和2λ的特征向量,当1,k 2k 满足什么条件时,1122X k X k X =+必是矩阵A 的特征向量。
(A )10k =且20k =; (B )10k ≠,20k ≠ (C )120k k ≠ (D )10k ≠而20k =10、下列哪一个二次型的矩阵是110130000-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦(A )22121222(,)23f x x x x x x =-+; (B )22121122(,)3f x x x x x x =-+;(C)221231222(,,)23f x x x x x x x =-+; (D)22123112232(,,)3f x x x x x x x x x =--+;三、计算题(每小题9分,共63分)1、设3阶矩阵,23=23A αγγ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 23B=βγγ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中23αβγγ,,,均是3维行向量,且已知行列式A =18,B =2,求A+B 2、解矩阵方程AX+B=X ,其中010A=111101⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦ ,112053B -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦3、设有三维列向量组11=11λα+⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 21=11αλ⎡⎤⎢⎥+⎢⎥⎢⎥⎣⎦, 31=11αλ⎡⎤⎢⎥⎢⎥⎢⎥+⎣⎦,20=βλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦λ为何值时:(1)β可由1 α,2α,3α线性表示,且表示式是唯一的;(2)β不能由1 α,2α,3α线性表示;(3)β可由1 α,2α,3α线性表示,且有无穷种表示式,并写出表示式。
4、已知四元非齐次线性方程组AX=β满足()3R A =,123γγγ,,是AX=β的三个解向量,其中122402γγ⎛⎫ ⎪- ⎪+= ⎪ ⎪⎝⎭, 231034γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭求AX=β的通解。
5、已知A=B ,且11A=111a a b b ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,000B=010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦求a , b6、齐次线性方程组123123122303402a 0x x x x x x x x x -+=⎧⎫⎪⎪-+=⎨⎬⎪⎪-++=⎩⎭中当a 为何值时,有非零解,并求出通解。
7、用正交变换法化二次型222123123121323(,,)444444f x x x x x x x x x x x x =+++++为标准型,并求出正交变换。
四、证明题(7分)设A 为m ×n 矩阵,B 为n 阶矩阵,已知()n R A = 证明:若AB=O ,则B=O《高等代数》期末考试题A题参考答案与评分标准一、填空题1、-10;2、81;3、-4,-6,-12;4、()132A E -; 5、5; 二、单项选择题(每小题2分,共20分)三、计算题(每小题9分,共63分)1、2233++A+B =3=124αβαβγγγγ (2分)=2312αγγ+2312βγγ (4分)=232αγγ+2312βγγ (7分)=2×18+12×2=60 (9分)2、()AX+B X E A X B =⇒-= (2分)111013012E A --=-=≠ (3分) ()1X E A B -=- (5分)()102113213011E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥-⎣⎦(7分)02111311321202030115311X --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(9分)3、设112233k k k βααα=++21+1111111+1(+3)11+1=(+3)0111+111+A λλλλλλλλ==≠ 0λ⇒≠且3λ≠-时,方程组有唯一解即β可由1 α,2α,3α唯一线性表示, (2)当=3λ-时()21101213A =1213011211290006---⎛⎫⎛⎫ ⎪ ⎪--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭R(A)=2 ,()R A =3 ∴无解即当=3λ-时,β不能由1 α,2α,3α线性表示 (6分) (3)当=0λ时()11101110A =1110000011100000⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()R(A)= R A =1<3 ∴有无穷组解 基础解系为:1110η-⎛⎫ ⎪= ⎪ ⎪⎝⎭, 2101η-⎛⎫⎪= ⎪ ⎪⎝⎭通解为 12112212c c X c c c c ηη--⎛⎫ ⎪=+= ⎪ ⎪⎝⎭当=0λ时 β可由1 α,2α,3α线性表示为无穷多种形式1211223()c c c c βααα=--++ 1c ,2c 为任意常数 (9分)4、R(A)= 3 <4 AX= θ∴的基础解系含一个解 (2分)i A γβ= (i=1,2,3)设1223211404()()0033242ηγγγγ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=+-+=-=≠ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (4分)1432η⎛⎫ ⎪- ⎪∴= ⎪- ⎪-⎝⎭ 为基础解系 (6分)()1212111A A 222A γγγγβ⎡⎤+=+=⎢⎥⎣⎦()012121021U γγ⎛⎫ ⎪- ⎪∴=+= ⎪ ⎪⎝⎭ 为特解 (8分)故A X β=的通解为0124312c c X U c c c η+⎛⎫ ⎪-- ⎪=+= ⎪- ⎪-⎝⎭c 为任意常数 (9分) 5、A B E A E B λλ∴-=-322221113(2)()11a E A ab a b a b b λλλλλλλ----=---=-+--+---- (2分)32001(1)(2)3202E B a λλλλλλλλλλ-=--=--=-+- (4分)32222323(2)()32a b a b λλλλλλ∴-+--+-=-+ (6分)比较同次幂系数有22222()0a b a b ⎧⎫--=⎨⎬-=⎩⎭(8分) 解之, 得 0a b == (9分)6、21301113410112003A a a --⎛⎫⎛⎫⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭(3分)当3a =时, ()R A =2<3 有非零解 (5分)基础解系为111η-⎛⎫⎪= ⎪ ⎪⎝⎭(8分)通解为 X c η= c 为任意常数 (9分)7、2422242(2)(8)0224E A λλλλλλ----=---=--=--- (3分)特征值为18λ=, 232λλ== (4分)特征向量为1111η⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,2101η⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3011η⎛⎫⎪= ⎪ ⎪-⎝⎭ (6分)正交单位化为1111β⎛⎫⎪=⎪⎪⎭,2101β⎛⎫⎪=⎪⎪-⎭,3121β-⎛⎫⎪=⎪⎪-⎭ (7分) 标准型为 222123822f y y y =++ (8分)正交变换为0X Y⎪=⎪⎪ ⎪ (9分)四、证明题()()12,,,n B βββ=()()1212,,,,,,n n AB A A A A O ββββββ=== (2分)i A βθ∴= (1,2,,)i n =∴B 的每一列向量为齐次方程组AX θ=的解 (4分)由于()R A n = ∴AX θ=只有零解∴B O = (6分)。