8-8方差的假设检验
第8 假设检验(共80张PPT)

8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。
教育与心理统计学第八章:假设检验

临界值
H0值
样本统计量
左侧检验示意图
(显著性水平与拒绝域 )
抽样分布
置信水平
拒绝域
1- 接受域
临界值
H0值
样本统计量
观察到的样本统计量
右侧检验示意图 (显著性水平与拒绝域 )
抽样分布
置信水平
1- 接受域
拒绝域
H0值 观察到的样本统计量
临界值
样本统计量
双侧检验原假设与备择假设的确定
▪ 双侧检验属于决策中的假设检验。即不论是拒绝H0还 是接受H0,都必需采取相应的行动措施。
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误。
假设检验是依据样本提供的信息进行判断,有犯错误 的可能。所犯错误有两种类型:
第一类错误是原假设H0为真时,检验结果把它当成不 真而拒绝了。犯这种错误的概率用α表示,也称作α错 误(αerror)或弃真错误。
型错误
β错误(取伪错误) 1-β(正确决策)
要使犯这两类错误的概率α 和β都尽可能小, α也不能定
的过低 。
在一般研究中,我们总是控制犯型错误
为什么???
假设检验中人们普遍执行同一准则:首先控制弃真错误(α错 误)。假设检验的基本法则以α为显著性水平就体现了这一原
则。
两个理由: 统计推断中大家都遵循统一的准则,讨论问题会比较方便。
0.076mm。试问新机床加工零件 的椭圆度均值与以前有无显著差
异?(=0.05)
属于决策中 的假设!
解:已知:X0=0.081mm, =.25,n=200,
x 0.076
假设检验方法

假设检验-1Hypothesis Testing假设检验方法【例】一种机床加工的零件尺寸绝对平均误差允许值为1.35mm 。
生产厂家现采用一种新的机床进行加工以期进一步降低误差。
为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。
利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(α=0.1),数据见:”Parts .mtw ”左侧检验1.061.220.911.971.982.031.011.241.450.990.590.501.500.741.23 1.131.020.951.121.12 1.161.031.121.100.98 1.122.371.540.961.1950个零件尺寸的误差数据(mm)0.821.601.101.000.970.861.231.171.261.381.70 1.641.081.110.941.061.13 1.811.311.261-Sample Z Test —例题应用Minitab 检验假设检验-31-Sample Z Test—习题1. 请打开“1-Sample Z Test .mtw”C1为某钢丝绳索制造商声称其生产的钢丝绳的平均抗断强度为大于5磅,已经知道总体标准差为1,请判断其声明是否正确?注意:Ⅰ.当小样本时(n<25~30),且总体标准差未知时使用1-Sample T Test.使用1-Sample T Test前,一定要检验正态性.如果非正态时,可以考虑:a.增加样本量,达到n≥25.b.使用非参量设计(绿带教程一般不涉及)Ⅱ. 当大样本时(n≥25~30),使用1-Sample Z Test.不一定要求正态性.如果不知道总体标准差时,可以使用样本标准差代替.Ⅲ.当小样本时(n<25~30),但总体标准差已知时,也是使用1-Sample Z Test.注意:小样本时;一定要保证正态性.第一步设定H0和H a1. H0: 钢丝绳的平均抗断强度≤5H a:钢丝绳的平均抗断强度>5磅2. 取α=0.05假设检验-5第二步比较均值结论One-Sample Z: ValuesTest of mu= 5 vs mu> 5The assumed sigma = 1Variable N Mean StDev SE MeanValues 30 5.435 0.984 0.183Variable 95.0% Lower Bound Z PValues 5.134 2.38 0.009因为P小于0.05,所以对立假设成立。
8方差分析(一)

差值大小产生原因:抽样误差
Xj-X
病例号 1 2 3 4 均值 A药组 1 (4-3) 1 (4-3) 1 (4-3) 1 (4-3) 4 B药组 0 (3-3) 0 (3-3) 0 (3-3) 0 (3-3) 3 C药组 -1 (2-3) -1 (2-3) -1 (2-3) -1 (2-3) 2
N(μC,σ2) N(μB,σ2) N(μA,σ2)
△
△★ △★ 2
◆ ◆△ 3
★ ★ 4
◆ ◆
若μA=μB=μC=μ, 则3个样本来自同一总体
△
△★ △★ 2
◆ ◆△ 3
★A≠XB≠XC的原因是什么?
① 止痛药作用存在 μA≠μB≠μC 不存在 μA=μB=μC ② 抽样误差 一定存在
1 2 1 2 1 2
通常情况下,一般采用双侧检验.
0.05
0.025
0.025
-1.96
-1.64
假设检验的两种类型错误 统计推断目的是通过由有限的样本认 识无限的总体。由于假设检验是根据 “小概率事件实际不可能性原理”来 决定是否拒绝无效假设的,所以不论 是拒绝还是不拒绝无效假设,都没有 100%的把握。因此,在假设检验时可 能犯两类错误。
表
服用A,B,C药的疼痛分值
━━━━━━━━━━━━━━━━━━━━ 分组 A药 B 药 C药 ━━━━━━━━━━━━━━━━━━━━ 3 2 2 5 2 1 3 4 3 5 4 2 ━━━━━━━━━━━━━━━━━━━━ 例数 4 4 4 均值 4 3 2 方差 1.334 1.334 0.666 ━━━━━━━━━━━━━━━━━━━━ X=3
多次采用t检验时的假阳性率
若单次t检验假阳性错误的概率为0.05, 若进行两次t检验不犯假阳性错误的概率为 0.9025,犯假阳性错误的概率为0.0975。 若进行三次t检验不犯假阳性错误的概率为 0.8573,犯假阳性错误的概率为0.1426.
统计学中的假设检验方法

统计学中的假设检验方法统计学中的假设检验方法是一种常见的数据分析技术,用于验证关于总体特征的假设。
通过统计抽样和概率分布的理论基础,可以通过假设检验方法来评估样本数据对于某种假设的支持程度。
本文将介绍假设检验的基本原理、步骤以及一些常见的假设检验方法。
一、假设检验的原理假设检验是基于一个或多个关于总体特征的假设提出的。
一般来说,我们称原假设为零假设(H0),表示研究者对于总体特征没有明确的预期;对立假设(H1或Ha)则用来说明研究者认为存在显著的差异或关联关系。
假设检验的基本原理是通过对抽样分布的计算和统计量进行假设检验,从而得出是否拒绝零假设的结论。
根据样本数据的统计量计算出的P值,可以作为评估假设支持程度的标准。
一般来说,当P值小于显著性水平(一般为0.05)时,我们会拒绝零假设。
二、假设检验的步骤假设检验的步骤一般包括以下几个方面:1. 明确研究问题和假设:首先要明确研究者所关注的问题和假设,以及零假设和对立假设的表述。
2. 选择适当的检验方法:根据样本数据的类型和问题的特征,选择适当的假设检验方法。
常见的假设检验方法包括t检验、卡方检验、方差分析等。
3. 设置显著性水平:根据研究者对错误接受零假设和拒绝真实假设的容忍度,设置显著性水平。
一般来说,0.05是常用的显著性水平。
4. 计算统计量和P值:根据样本数据计算统计量,并通过统计分布计算对应的P值。
P值表示了在零假设成立的情况下,获得观察到的统计量或更极端结果的概率。
5. 做出结论:根据P值和显著性水平的比较,得出是否拒绝零假设的结论。
如果P值小于显著性水平,我们会拒绝零假设,认为样本数据支持对立假设;反之,我们无法拒绝零假设。
三、常见的假设检验方法1. 单样本t检验:单样本t检验用于比较一个样本的平均值是否显著不同于一个已知的总体平均值。
适用于连续型数据,例如身高、体重等。
2. 独立样本t检验:独立样本t检验用于比较两个独立样本的平均值是否显著不同。
统计学-第八章 假设检验

假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)
2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;
统计学原理——假设检验与方差分析

二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
n1 P 40010.2 320 f 5
所以为大样本分布,检验统计量 Z 近似服从 正态分布。样本数据显示:
p 100 0.25 400
Z p P0 0.25 0.20 0.05 2.5
P 1 P 0.21 0.2 0.02
n
400
在显著性水平 0.05 情况下,查表可知,
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00 ,当显著性水平为0.05时,原假设是否被 拒绝。
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
(3) H0:μ = μ0 H1:μ<μ
假设检验(龙)

均值、方差和比例的假设检验
例题2: 玻璃管外径正常来料服从N(12.40,0.062)。某日在近期来料抽查了 10支,其测量值为: 12.43 ,12.31 ,12.49 ,12.41 ,12.50 , 12.39 ,12.44 ,12.47 ,12.41 ,12.46。发现外径尺寸有变化, 如果标准差不变,试问此批玻璃管外径是否正常?( α=0.05)
准差不得超过0.05mm。现随机抽取9支玻璃管,测得外径数据为: 12.43 , 12.31 ,12.49 ,12.41 ,12.50 ,12.39 ,12.44 ,12.47 ,12.41 。 测得样本的标准差为s=0.058,试问在α=0.05的显著水平上能否认为该批 导线电阻标准差发生变化? 解:(1)建立假设:H0:σ=0.05,H1:σ≠0.05 (2)由于μ未知,选用χ2检验 (3)根据显著性水平α=0.05及备择假设知拒绝域为: {χ2≤2.18}或{χ2≥17.53}
,从总体X中抽取
xn x 的样本为x1,x2,…, ,样本均值为 ,样本的方差为
6.检验判断(可从三处直接判断原假设是否成立):
1)将检验统计量的值与拒绝域的临界值比较,若落在拒绝域中拒绝原 假设,否则不能拒绝原假设 2)根据检验统计量计算p值,当p值很小时(如小于0.05),拒绝原假设, 否则不能拒绝原假设.(所谓p值,就是当原假设成立时,出现目前状况 或对原假设不利状况(即对备择假设更有利的状况)的概率。由此可以 有个最一般的原则:如果p<α,择拒绝原假设)。 3)根据样本观测值得到总体参数的臵信区间,如果原假设的参数值未 落在该臵信区间,拒绝原假设,否则不能拒绝原假设。目前,大多数 统计软件都提供p值和相应的臵信区间。
解:(1)建立假设:H0:μ=12.40,H1:μ≠12.40