方差的参数估计与假设检验

合集下载

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。

点估计是用估计量的某个取值直接作为总体参数的估计值。

点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

统计学家在某种程度上确信这个区间会包含真正的总体参数。

在区间估计中置信度越高,置信区间越大。

置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。

置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。

(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。

(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。

(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。

(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。

(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。

(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。

假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。

参数估计和假设检验

参数估计和假设检验


c2
=
(n
-1)S
sபைடு நூலகம்
2 0
2
= 8 0.032 0.02 2
=18>ca2 (n-1) = c02.05(8) =15.507
故拒绝 H0,即该机床加工精度已显著下降。 应立即停工检修,否则废品率会大大增加。
在本问题的检验中,a 应取得大一些还是小一些?
两个总体方差的检验( F 检验 )
原假设为 H0:s12=s22。当 H0为真时,统计量
原假设为 H0:m1 - m 2 = 0
7
s12 = s22 = s2 ,但 s2 未知 ( t 检验 )
可以证明,当 H0 为真时,统计量
t= Sw
X1 - X2 1/ n1 +1/ n2
~ t ( n1 +n2 -2 )
其中:
S2w
= (n1
-1)S12 +(n2 -1)S22 n1 +n2 -2
两种安眠药延长睡眠时间对比试验(小时)
病人 安眠药
1
2
34
5678
9 10

1.9 0.8 1.1 0.1 –0.1 4.4 5.5 1.6 4.6 3.4

0.7 –1.6 –0.2 –1.2 –0.1 3.4 3.7 0.8 0.0 2.0
在a =0.20下,检验两个总体的方差是否存在显
著差异。
参数估计和假设检验



【 例 】新工艺是否有效?
某厂生产的一种钢丝抗拉强度服从均值为 10560(kg/cm2 ) 的正态分布,现采用新工艺生 产了一种新钢丝,随机抽取10根测得抗拉强 度为:
10512, 10623, 10668, 10554, 10776 10707, 10557, 10581, 10666, 10670

假设检验与方差分析

假设检验与方差分析
这是不合理的,应拒绝原假设。
三、假设检验的步骤
1、提出原假设(null hypothesis)和备择假设 (alternative hypothesis)
原假设为正待检验的假设:H0; 备择假设为可供选择的假设:H1 一般地,假设有三种形式:
(1)双侧检验:
H0 : 0; H1 :0 (2)左侧检验:
这两个例子中都是要对某种“陈述”做出判
断:
例1要判明工艺改革后零件平均 长度是否仍为4cm;
进行这种判断 的信息来自
例2要判明该批产品的次品率是 所抽取的样本
否低于3%。
所谓假设检验,就是事先对总体参数或总体分 布形式作出一个假设,然后利用样本信息来判断 原假设是否合理,即判断样本信息与原假设是否 有显著差异,从而决定是否接受或否定原假设
对比来构造检验统计量。
可以证明,若H0为真,则
2
(n 1)S 2
2 0
~
2 (n 1)
因此,可构造2 统计量进行总体方差
的假设检验。
当H0成立时,S2/02 接近于1,2的 值在一个适当的范围内,
当H0不成立时,S2/02远离1,2的值 相当大或相当小。
在例2中,由于所抽样本只为10,为小样本,因 此无法构造Z统 计量进行总体比例的假设检验。
如果总体X~N(,2),在方差已知的情况下,对总体均 值进行假设检验。
由于
因此,可通过构造Z统计量来进行假设检验:
注意: 如果总体方差未知,且总体分布未知,但如果是大样
本(n>=30),仍可通过 Z 统计量进行检验,只不过总体 方差需用样本方差 s 替代。
例3:根据以往的资料,某厂生产的产品的使用寿命服从正 态分布N(1020, 1002)。现从最近生产的一批产品中随机抽取16 件,测得样本平均寿命为1080小时。问这批产品的使用寿命 是否有显著提高(显著性水平:5%)?

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。

总体参数是指总体的其中一种性质,比如总体均值、总体方差等。

样本数据是从总体中随机抽取的一部分数据,用来代表总体。

参数估计的目标是使用样本数据来估计总体参数的值。

常见的参数估计方法有点估计和区间估计。

(1)点估计点估计是通过一个统计量来估计总体参数的值。

常见的点估计方法有样本均值、样本方差等。

点估计的特点是简单、直观,但是估计值通常是不准确的。

这是因为样本的随机性导致样本统计量有一定的误差。

因此,点估计通常会伴随着误差界限,即估计值的置信区间。

(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。

常见的区间估计方法有置信区间和可信区间。

置信区间是指当重复抽样时,包含真实总体参数的概率。

置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

可信区间是指在一次抽样中,包含真实总体参数的概率。

可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。

例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。

2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。

在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。

在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。

然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。

假设检验包含两种错误,即第一类错误和第二类错误。

第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。

第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。

常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。

估计量方差的估计

估计量方差的估计

估计量方差的估计估计量方差的估计是统计学中一个重要的概念,它在数据分析和假设检验中起到了关键的作用。

方差是衡量数据变异程度的指标,估计量方差的估计则是通过样本数据对总体方差进行估计。

本文将介绍方差的概念、估计量方差的估计方法以及其在实际应用中的意义。

我们来了解一下方差的概念。

方差是随机变量离其期望值的偏离程度的平方的平均数,用来衡量数据的离散程度。

在统计学中,方差是用来描述总体或样本的变异程度的重要统计量。

方差越大,数据的离散程度越大,反之亦然。

然而,在实际应用中,我们往往无法得知总体的方差,只能通过样本来对总体方差进行估计。

这就引出了估计量方差的估计方法。

常用的估计量方差的估计方法有样本方差估计和无偏估计。

样本方差估计是最简单和常用的方法之一。

它是通过样本数据计算得出的,公式为样本方差等于每个观测值与样本均值的差的平方的和除以样本容量减一。

样本方差估计的优点是计算简单,但由于样本方差通常会低估总体方差,所以在小样本情况下可能会存在偏差。

为了解决样本方差估计的偏差问题,我们引入了无偏估计。

无偏估计是指估计量的期望值等于被估计参数的真实值。

在方差的估计中,无偏估计是指样本方差除以样本容量减一再乘以总体容量。

无偏估计的优点是能够更准确地估计总体方差,但计算过程相对较复杂。

除了样本方差估计和无偏估计,还有其他一些估计量方差的估计方法,如最大似然估计和贝叶斯估计等。

这些方法在不同的情况下有着不同的适用性和性能。

估计量方差的估计在实际应用中有着广泛的应用。

首先,它可以用于假设检验中的t检验和方差分析等统计方法。

这些方法需要对总体方差进行估计,以判断样本之间是否存在显著差异。

其次,估计量方差的估计还可以用于构建置信区间,评估统计结果的可靠性。

此外,在质量控制和工程设计等领域中,估计量方差的估计也有着重要的应用。

估计量方差的估计是统计学中一个重要的内容。

通过样本数据对总体方差进行估计,可以帮助我们了解数据的变异程度,进行假设检验和置信区间估计等统计推断。

统计学中的假设检验方法应用

统计学中的假设检验方法应用

统计学中的假设检验方法应用假设检验是统计学中一种常用的推断方法,用于检验关于总体参数的假设。

它基于样本数据,通过对比样本观察值与假设的理论值之间的差异,来确定是否拒绝或接受一些假设。

假设检验在实际应用中广泛使用,以下是一些常见的应用:1.平均值检验:平均值检验用于检验总体平均值是否等于一些特定值。

例如,一个医疗研究想要检验其中一种药物的疗效,可以控制一个实验组和一个对照组,然后收集两组患者的项指标数据(如血压)并计算均值,然后利用假设检验来判断两组是否存在显著差异。

2.方差检验:方差检验用于检验不同总体的方差是否相等。

例如,一个制造业公司想要比较两个供应商提供的原材料的质量是否一致,可以从这两个供应商中分别抽取样本,然后对比两组样本的方差,通过假设检验来判断两个供应商的方差是否有显著差异。

3.比例检验:比例检验用于检验两个总体比例是否相等。

例如,一个选举调查机构想要了解两个候选人在选民中的支持率是否相同,可以进行随机抽样并询问选民的偏好,然后利用假设检验来判断两个候选人的支持率是否存在显著差异。

4.相关性检验:相关性检验用于检验两个变量之间的相关关系是否显著。

例如,一个市场研究公司想要了解广告投入与销售额之间的关系,可以收集一定时间内的广告投入和销售额的数据,并进行相关性检验来判断两者之间是否存在显著的线性关系。

5.回归分析:假设检验在回归分析中也有广泛应用。

通过假设检验可以判断回归模型中的参数估计是否显著,进而判断自变量对因变量的影响是否存在统计学意义。

例如,一个经济学研究想要检验GDP(自变量)对于失业率(因变量)的影响,可以建立回归模型并通过假设检验来判断GDP系数是否显著。

在应用中,假设检验的步骤通常包括以下几个部分:明确研究问题、建立原假设和备择假设、选择适当的检验统计量、设定显著水平、计算检验统计量的观察值、根据观察值和临界值的比较结果进行决策、得出结论。

需要注意的是,假设检验的结果并不能确定假设是正确的或错误的,它只是根据样本数据提供了统计学上的证据。

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。

参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。

下面将详细介绍这两种方法以及它们的应用。

1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。

在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。

参数估计的目标是利用样本数据去估计总体参数的值。

最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。

-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。

置信区间的计算方法通常是基于样本统计量的分布进行计算。

在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。

-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。

-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。

2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。

在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。

假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。

原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。

-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。

-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。

-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。

在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。

常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。

常用参数检验方法

常用参数检验方法

常用参数检验方法参数检验是在统计学中常用的一种方法,用于评估统计模型中的参数的显著性。

常见的参数检验方法包括假设检验、置信区间和P值。

假设检验是参数检验的一种方法,它基于一个假设,即原假设(null hypothesis)和备择假设(alternative hypothesis)。

原假设是我们要证伪的假设,而备择假设是我们要支持的假设。

常见的假设检验方法有:t检验、F检验、卡方检验等。

t检验是用于比较两个样本均值是否有显著差异的方法。

它可以用于两个独立样本的比较(独立样本t检验)或同一样本的比较(配对样本t 检验)。

F检验用于比较两个或多个样本方差是否有显著差异的方法。

它通常用于方差分析(ANOVA)中,比较不同组之间的平均差异是否显著。

卡方检验是用于比较两个或多个分类变量之间的关联性是否显著的方法。

它可以用于两个分类变量的比较(卡方独立性检验)或多个分类变量的比较(卡方拟合度检验)。

置信区间是参数估计的一种方法,它给出了参数的一个估计范围,通常以一定的置信水平表示。

常见的置信区间包括均值的置信区间、比例的置信区间等。

均值的置信区间给出了总体均值的一个估计范围。

它可以用于比较两个样本均值的差异是否显著。

比例的置信区间给出了总体比例的一个估计范围。

它可以用于比较两个样本比例的差异是否显著。

P值是参数检验结果的一个度量,它表示在原假设成立的情况下,观察到比实际观测结果更极端的结果出现的概率。

如果P值小于一些显著性水平(通常是0.05),则可以拒绝原假设。

P值的计算通常依赖于具体的参数检验方法。

在假设检验中,P值可以用于判断观测结果是否具有统计显著性。

总之,参数检验是统计学中一种常用的方法,用于评估统计模型中参数的显著性。

常见的参数检验方法包括假设检验、置信区间和P值。

这些方法可以帮助我们判断观测结果是否具有统计显著性,并进行合适的推断和决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 作两总体方差齐性检验(P123)
ห้องสมุดไป่ตู้
H0: σ2≤σ0 H1: σ2>σ02
总体方差的区间估计 和假设检验
• n=35,Sn-1=6,求总体方差的95%CI。(P140) • 其总体方差是否为9? • N=25,Sn-1=4,其总体方差是否等于81?( P141)
F 分布
2 X ~ • 若 X1 ~ , 2 n2 • 且X1与X2相互独立,则称随机变量 X 1 / n1 F X 2 / n2 所服从的分布为 F分布,( n1, n2)为F 分布的自由度,记为
分子自由度为第 一自由度,分母 自由度为第二自 由度
2 1 2 1
F≥Fα/2
两总体均服 从正态分布
H0:σ12≥σ22 H1:σ12<σ22
F≥Fα
H0:σ12≤σ22 H1:σ12>σ22
两总体方差齐性检验
• n1=20,σ1=5;n2=20,σ2=3.检验方差齐性 (P145)。
两总体均数之差的方差齐性检验
• 设(X1,X2,…,Xn)是抽自正态分布 总体X~N(μ,σ2)的一个容量为n的简单随 机样本,则
(X
i 1
n
i
X)
2
2


(n 1) S
2

2
~
2 n 1
正态总体方差的区间估计
待估 参数
已知条件
置信区间
备注
σ2
2 2 (n 1) S (n 1) S 自由度 , 2 2 2 X~N(μ,σ ) ,n 1 df=n-1 1 , n 1 2 2
第七章 总体方差的 参数估计与假设检验
有关样本方差的抽样分布
• χ2分布 用于单样本方差的抽样分布 • F 分布 用于两个样本方差的抽样分布
χ2分布的定义
• 设随机变量X1,X2,…,Xn相互独立,且 都服从标准正态分布,则称随机变量
2 2 2 X 12 X 2 ... X n X i2 i 1 n
为服从自由度df为n的χ2分布,记作
~
2
2 n
χ2分布图
2 χ 分布的特点
• 是连续变量的分布 • 所有取值大于等于零的正偏态,右侧无限 延伸,但永不与基线相交
• 随自由度的变化而形成一簇分布形态
• 具有可加性 • 随着自由度增大, χ2分布形态趋于正态分 布,即χ2 →N(n, 2n)
单样本方差的抽样分布
(n1 1) S
F

2 1 2 2
2 1 2 2
/(n1 1) /(n2 1)
(n2 1) S
S ~ F( n1 1,n2 1) S

2 1 2 2
总体方差之比的假设检验
已知条件 假设
H0:σ12=σ22 H1:σ12≠σ22
检验统计量
H0的拒绝域
2 2 2 2
max(S , S ) F min(S , S )
2 n1
X1 / n1 F ~ F( n1 , n2 ) X 2 / n2
F 分布图
F分布的特点
• 连续变量的分布
• 所有取值大于等于零的正偏态,右侧无 限延伸,但永不与基线相交 • 随着分子和分母自由度的不同而不同 • 自由度增大,偏态程度减弱, • 服从倒数性质
双样本方差的抽样分布
• 若(X1,X2,…,Xn1)是独立地抽自总 体X1~N(μ1,σ12)的一个容量为n1的样本, (Y1,Y2,…,Yn2)是独立地抽自总体 X2~N(μ2,σ22)的一个容量为n2的样本, 当σ12=σ22时,统计量
总体方差的假设检验
已知条件 假设
H0:σ2=σ02 H1:σ2≠σ02
检验统计量
H0的拒绝域
2

2
(n 1) S

2
χ2≥χ2α/2,n-1 χ2≤χ21-α/2,n-1 χ2≤χ21-α,n-1
X~N(μ,σ2)
H0: σ2≥σ02 H1: σ2<σ02
df=n-1 χ2≥χ2α,n-1
相关文档
最新文档