第1章电路元件和电路定律
电路分析基础第一章 电路模型和电路定律

+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
第一章电路的基本概念和基本定律

开关
实际电路
电源
电路模型 3
(1)电源:供给电能的设备。
把其它形式的能量转换为电能。
(2)负载: 消耗电能的设备。
把电能转换为其它形式的能量
(3)中间环节(又称传输控制环节):
各种控制电器和导线,起传输、分 配、控制电能的作用。
4
1.1.2 电路中的物理量 1、电流
定义 电荷有规律的定向运动即形成电流
(2) 列电路方程:
Uab UR E
UR Uab E
IR
UR R
Uab E R
15Leabharlann R aIR E UR
b U
IR
U
R
E
(3) 数值计算
U 3V
IR
3-2 1
1A
(实际方向与假设方向一致)
U 1V
IR
1 2 1
1A
(实际方向与假设方向相反)
16
(共7 个)
31
(一) 克氏电流定律(KCL)
对任何节点,在任一瞬间,流入节点的电流等于由节点
流出的电流, 即: I 入= I 出 或者说,在任一瞬 间,一个节点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I1 I3 I2 I4 0
(二) 克氏电压定律(KVL)
对电路中的任一回路,沿任意循行方向转一周,其 电位升等于电位降。或各电压的代数和为 0。
I1
a
I2
即: U 0
R1
R2
例如: 回路 #3
电路原理第一章

(2) 设电流参考方向如 (c) 并在c点画上接地符号 并在 点画上接地符号
q 4 I = = − = −2 A t 2
= = W W
ac
电位: 电位:
V V V
a
q
bc
=
8 + 12 4
= 5V
b
q
12 = 4
= 3V
c
= 0
(c为参考点 为参考点) 为参考点
U
ab
所以电压: 所以电压:
= V a − V b = 5 − 3 = 2V
dw ( t ) p (t) = dt
由: u ( t ) = d w ( t )
对于实际电路,根据它的电气特性, 对于实际电路,根据它的电气特性,由电路 元件来抽象出它的电路模型的过程称为电路 的建模。电路的建模时, 的建模。电路的建模时,常需要用到理想化 来化简电路; 来化简电路;另一方面还需注意电器部件在 不同工作条件下的电气特性不一定相同, 不同工作条件下的电气特性不一定相同,因 而相应的电路模型也会不同。 而相应的电路模型也会不同。
选择的参考方向不同, 选择的参考方向不同,则列出的电路方程也 不一样,得到方程的解也不尽相同, 不一样,得到方程的解也不尽相同,但这些 解应该是大小相等而只存在着符号的差异。 解应该是大小相等而只存在着符号的差异。 综合解的符号和参考方向, 综合解的符号和参考方向,这些不同的电路 方程的解所表示的实际电流或电压应该是完 全一致的。 全一致的。 习惯上,电阻、电容、 习惯上,电阻、电容、电感等元件支路上的 端电压和流经电流取为关联参考方向。 端电压和流经电流取为关联参考方向。
抽象的电路元件用来体现单纯的电性质: 抽象的电路元件用来体现单纯的电性质: 导线----导通电流 导线 导通电流 电源----提供电能 电源 提供电能 电阻----消耗电能 电阻 消耗电能 电容----以电场形式储存电能 电容 以电场形式储存电能 电感----以磁场形式储存电能 电感 以磁场形式储存电能 这样就可以用理想化的电路元件来表示实际物 理电器件的某一方面电磁特性, 理电器件的某一方面电磁特性,而以其组合在 电路模型中来综合表示该实际物理电器件及其 构成的电路。 构成的电路。
1 第1章 电路模型和电路定律

电感元件 只具有储 只具有储 存磁能的 存磁能的 电特性
电容元件 只具有储 只具有储 存电能的 存电能的 电特性
理想电压源 输出电压恒 定,输出电 流由它和负 载共同决定
理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
实际电路与电路模型
S 电 源 负 载 R0 I
+
RL U
电源
+ _US
电路模型(circuit model)
电路模型:由理想电路元件和理想导线互相连接而成。 电路模型:由理想电路元件和理想导线互相连接而成。
实际电路器件品种多,电磁特性多元而复杂, 实际电路器件品种多,电磁特性多元而复杂, 直接画在电路图中困难而繁琐,且不易定量描述。 直接画在电路图中困难而繁琐,且不易定量描述。
p发 = ui
例
U = 5V, I = - 1A 5V,
u
–
P发= UI = 5×(-1) = -5 W 5× p发<0,说明元件实际吸收功率5W <0,说明元件实际吸收功率5W
能量的计算
dw t) ( 两边从根据功率的定义 p(t) = ,两边从-∞到t dt
积分,并考虑w(-∞) = 0,得 积分, 0,
电 电
负 载
–
电
电
电路模型:由理想元件及其组合代表实际电路器件, 电路模型:由理想元件及其组合代表实际电路器件,与 实际电路具有基本相同的电磁性质,称其为电路模型。 实际电路具有基本相同的电磁性质,称其为电路模型。 通常用电路图来表示电路模型
利用电路模型研究问题的特点 1.主要针对由理想电路元件构成的集总参数电路, 1.主要针对由理想电路元件构成的集总参数电路, 主要针对由理想电路元件构成的集总参数电路 其中电磁现象可以用数学方式来精确地分析和计算; 其中电磁现象可以用数学方式来精确地分析和计算; 2.研究与实际电路相对应的电路模型, 2.研究与实际电路相对应的电路模型,实质上就是 研究与实际电路相对应的电路模型 探讨各种实际电路共同遵循的基本规律。 探讨各种实际电路共同遵循的基本规律。 集总参数电路元件的特征 元件中所发生的电磁过程都集中在元件内部进行 其次要因素可以忽略的理想电路元件; 其次要因素可以忽略的理想电路元件;任何时刻从元 件两端流入和流出的电流恒等且由元件端电压值确定。 件两端流入和流出的电流恒等且由元件端电压值确定。
电路的基本原理(第一章)

参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
电路的基本元件和电路定律

第1章 电路的基本元件和电路定律主要内容:介绍电路模型的概念,电压、电流参考方向的概念,功率的计算及概念,电阻、电容、电感、独立电源和受控源等电路元件,最后介绍基尔霍夫定律。
学时安排:本章分4讲,共8学时。
第一讲 电路模型、电压和电流参考方向以及元件功率一、主要内容1、课程的性质和作用 《电路理论》是一门技术基础课程。
通过本课程的学习,能运用所学知识解决一些基本的有关电学方面的问题,同时为后续《电子技术》等课程打下基础。
2、教学安排 第1章 10学时、第2章 4学时、第3章 6学时、第4章 6学时、直流电路习题课 2学时、第5章4学时、第6章 8学时、第七章 4学时、第8章6学时、交流与习题课 2学时、第9章 8学时、第10章 4学时、第11章 8学时、第12章 6学时、一阶与非正弦电路习题课 2学时、第13章 6学时、第14章 8学时、第15章 2学时、总复习 2学时3、电路的作用、组成与任务 电路的作用:完成能量的转换;完成信号的处理。
电路的组成:实际电路是由电气器件相互联接而构成的电流通路。
实际电气器件在一定条件下都可用理想元件来代替。
由理想元件代替实际电气器件组成的电路叫电路模型。
电路是根据电路模型来进行分析的。
电路分析的目的:根据电路结构和已知参数,求电路的电压、电流和功率。
电路是各种各样电器装置的联接体。
本书研究的电路是实际电路的电路模型。
某些实际器件可用一个理想电路元件代替,某些实际器件需用几个理想电路元件的组合来代替。
电路模型就是用理想电路元件代替实际器件组成的电路。
4、电流的参考方向 1)电流的实际方向电流(又叫电流强度)—单位时间内通过的电流,即dt dqi =。
电流的实际方向是单位正电荷定向移动的方向。
2)电流的参考方向 A 用箭头表示,如图1-1(a )所示;B 用双下标表示,如图1-1(b )所示。
如电流A 3=AB i ,则电流实际方向与参考方向一致;如电流A 3-=AB i ,则电流实际方向与参考方向相反。
电路理论课件第一章电路元件和电路定律

(3) 用双下标表示:如 UAB , 由A指向B的方向为电压 (降)的参考方向
A
UAB
B
1-2 电压和电流的参考方向 小结:
(1) 电压和电流的参考方向是任意假定的。分析电路前
必须标明。
(2) 参考方向一经假定,必须在图中相应位置标注 (包 括方向和符号),在计算过程中不得任意改变。参 考方向不同时,其表达式符号也不同,但实际方向 不变。
1-5 电感元件
def L
i
=N 为电感线圈的磁链
L 称为自感系数
电感 L 的单位:H(亨) (Henry,亨利)
H=Wb/A=V•s/A=•s
线性电感的 ~i 特性是过原点的直线
Oi
L= /i tg
1-5 电感元件
线性电感电压、电流关系: u, i 取关联参考方向:
上述功率计算不仅适用于元件,也使用于任 意二端网络。
电阻元件在电路中总是消耗(吸收)功率,而电 源在电路中可能吸收,也可能发出功率。
例 U1=10V, U2=5V。 分别求电源、电阻的功率。
I 5
+ UR –
U1
U2
I=UR/5=(U1–U2)/5=(10–5)/5=1 A PR吸= URI = 51 = 5 W PU1发= U1I = 101 = 10 W PU2吸= U2I = 51 = 5 W
Ubc= b–c c = b –Ubc= –1.5 V
Uac= a–c = 1.5 –(–1.5) = 3 V
结论:电路中电位参考点可任意选择;当选择不同的电
位参考时,电路中各点电位均不同,但任意两点间 电压保持不变。
1-2 电压和电流的参考方向
4. 电动势(eletromotive force):局外力克服电场力把单位正电荷
第1章-电路模型和电路定律

1.6 电容元件 (capacitor)
1、电容器
++ ++ ++ ++ +q –--– –--– –q
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电压 u 成正比。
2、电路符号
C
3. 元件特性 i
与电容有关两个变量: C, q 对于线性电容,有: q =Cu
1.7 电感元件
1 、线性定常电感元件
iL
变量: 电流 i , 磁链
+
u
–
def ψ L
i
L 称为自感系数 L 的单位:亨(利) 符号:H (Henry)
2 、韦安( ~i )特性
0
i
3 、 电压、电流关系:
i
+–
ue –+
i , 右螺旋 e , 右螺旋 u , e 非关联 u , i 关联
交流: iS是确定的时间函数,如 iS=Imsint
(b) 电源两端电压是任意的,由外电路决定。
(3). 伏安特性
i
+
iS
u
_
u
IS
O
i
(a) 若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与 端电压无关。
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
+ u
+ C
C
def
q
u
C 称为电容器的电容
–
–
电容 C 的单位:F (法) (Farad,法拉)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流参考方向的两种表示
• 用箭头表示:箭头的指向为电流的参考方向。 • 用双下标表示:如 iAB ,电流的参考方向由A指向B。
例
I 10V
A I1
10
B I2
电路中电流 I 的大小为1A, 其方向为从A流向B。 (此为电流的实际方向)
若参考方向如 I1 所示,则I1=1A
若参考方向如 I2 所示,则I2= -1A
U
第1章电路元件和电路定律
三、小结
(1) 分析电路时必须首先选定电压和电流的参考方向。
第1章 电路元件和电路定律
本章内容 1.1 电路和电路模型 1.2 电流、电压、电动势及其参考方向 1.3 电路元件的功率 1.4 电阻元件 1.5 电源元件 1.6 基尔霍夫定律 1.7 受控电源
本章重点 • 电路模型 • 电压、电流的参考方向 • 电路元件特性 • 基尔霍夫定律
返回目录
1.1 电路和电路模型
SI制中,一些常用的十进制倍数的表示法
符号 T G M k c m n p 中文 太 吉 兆 千 厘 毫 微 纳 皮 数量 1012 109 106 103 10–2 10–3 10–6 10–9 10–12
2. 电压(voltage) 电场中某两点A、B间的电压(降)UAB 等于将点电荷q
从A点移至B点电场力所做的功WAB与该点电荷q的比值,即
长。
返回目录
1.2 电流、电压、电动势及其参考方向
一、电流、电压、电动势 1. 电流 带电质点有规律的运动形成电流。 电流的大小用电流强度表示。 电流强度:单位时间内通过导体横截面的电量。
def Δq dq i(t) lim
Δt0 Δt dt
单位名称:安(培) 符号:A (Ampere,安培;1775 –1836,France)
二、电路模型 (circuit model)
1. 理想电路元件 由实际元件抽象出来具有某种单一电磁性质的假想元件。
几种基本的理想电路元件 电阻(resistor)元件:表示消耗电能的元件。
电感( inductor )元件:表示各种电感线圈产生磁 场、储存能量的作用。
电容( capacitor )元件:表示各种电容器产生电场、 储存能量的作用。
例 已知 Uab=1.5 V,Ubc=1.5 V
a
(1) 以a点为参考点, a =0
Uab= a– b b = a –Uab= –1.5 V
1.5 V Ubc= b– c c = b –Ubc= –1.5–1.5 = –3 V
b
Uac= a– c = 0 –(–3)=3 V
1.5 V (2) 以b点为参考点, b=0
(potential drop) B
所以 eBAuAB
二、 电流、电压的参考方向(reference direction) 1. 电流的参考方向
实际方向 实际方向
参考方向:任意选定的一个方向即为电流的参考方向。
i
参考方向
A
B
电流的参考方向与实际方向的关系
i
参考方向
i
参考方向
实际方向
i> 0
实际方向
4. 电动势(electromotive force) 外力(非静电力)克服电场力把单位正电荷从负极经电
源内部移到正极所作的功称为电源的电动势。
eBA
dW dq
e 的单位与电压相同,也是 V (伏)
A
电动势eBA表示B点到A点电位的升高 eBAAB
(potential rise)
电压UAB 表示A点到B点电位的降低 uAB AB
因此,同一支路的电流可用两种方法表示。
2. 电压(降)的参考方向
+
实际方向
– – 实际方向
+Байду номын сангаас
参考方向
+
U
–
+
实际方向 –
U> 0
参考方向
+
U
–
–
+ 实际方向
U <0
例
10V
A U12 10
电路中电压UAB=10V,方向
从A指向B(实际方向)。
B
若电压参考方向如 U1 所示,电压参考方向与实 际方向相同,则 U1 =10V。
c
Uab= a– b a = b +Uab= 1.5 V
Ubc= b– c c = b –Ubc= –1.5 V
Uac= a– c = 1.5 –(–1.5) = 3 V
结论:电路中电位参考点可任意选择;当选择不同的电 位参考点时,电路中各点电位将改变,但任意两点 间电压保持不变。
一、 电路 (circuits) 电路是电工设备构成的整体,它为电流(current)的流通提
供路径。 电路主要由电源、负载、连接导线及开关等构成。 电源(source):提供能量或信号。 负载(load):将电能转化为其它形式的能量,或对信号
进行处理。 导线(line)、开关(switch)等:将电源与负载接成通路。
电位用 (或U) 表示,单位与电压相同,也是V(伏)。
a
b
设c点为电位参考点,则 c =0
a =Uac, b =Ubc, d =Udc
d
c
两点间电压与电位的关系
前例
a
b
仍设c点为电位参考点, c=0
Uac = a , Udc = d
d
c
Uad= Uac- Udc= a–d
结论:电路中任意两点间的电压等于该两点间的 电位差(potential difference)。
若电压参考方向如 U2 所示,电压参考方向与实 际方向相反,则 U2 = -10V。
电压参考方向的三种表示方式
(1) 用正负极性表示: 由正极指向负极的方向为电压(降)的参考方向。
+
U
(2) 用双下标表示:
如 UAB,由A指向B的方向为电压(降)的参考方向。
A
UAB
B
(3) 用箭头表示: 箭头指向为电压(降)的参考方向。
uAB
dWAB dq
A
B
单位名称: 伏(特) 符号:V (Volt,伏特;1745 – 1827,Italian)
3. 电位(potential) 在分析电路问题时,常在电路中选一个点为参考点
(reference point),把任一点到参考点的电压(降)称为该点 的电位。 参考点的电位为零,参考点也称为零电位点。
电源( source )元件:表示各种将其它形式的能量转 变成电能的元件。
2. 电路模型
由理想电路元件组成的电路,其与实际电路具有基本相同 的电磁性质。
例
开关
1 0 B A S E - T w a ll p la t e
灯泡
电
Ri
Rf
池
US
导线 实际电路
电路模型
3. 集总参数电路 实际电路的尺寸必须远小于电路工作频率下的电磁波的波