第八讲 一致收敛函数列的性质1
§13..2一致收敛性质.

注 由于连续性是函数的一种局部性质,因此连续函数列 {fn(x)})在区间 I 上内闭一致收敛于 f(x),就足以保证 f(x) 在 I 上连续。
推论 若连续函数列{fn(x)})在区间 I 上内闭一致收敛于 f(x),
则 f(x)在 I 上连续。
2019年5月12日星期日
8
3.可积性
定理13.10 若 fn( x)
(x)
lim
n
a
n
.
即 fn ( x)
f (x)
则 lim lim x x0 n
fn ( x)
lim lim
n x x0
fn ( x)
证 (1)
证明lim n
an存在。
因为 fn( x)
f ( x) 0,N 0,
p N ,x D,都有| fn (x) fn p (x) | .
nx fn(x) 1 n2 x2
f ( x) 0, x [0,1]
但f ( x) 0在[0,1]连续、可积,且 1 f ( x)dx 0, 0
而
1
0 fn( x)dx
1 nx 0 1 n2 x2 dx
1 ln(1 n2 ) 0
1
f ( x)dx.
f ( x) lim n
fn( x0 )
f ( x0 ),
即f(x)在x0也连续。即有:
2.连续性
定理13.9 若 fn( x)
f (x) x I,
且n, f n ( x)在I连续,则f ( x)也在I上连续.
2019年5月12日星期日
6
定理13.9的逆否命题:
若fn(x)的极限函数f(x)在I上不连续,则
高等数学:一致收敛

2n
2
xe
n2 x 2
2(n 1) xe
2
( n 1) 2 x 2
证: 只需证明 x0 [a, b] , lim S ( x) S ( x0 ) .
由于
S ( x) S ( x0 )
x x0
[Sn ( x) rn ( x)] [Sn ( x0 ) rn ( x0 )] Sn ( x) Sn ( x0 ) rn ( x) rn ( x0 )
n 1
un ( x) 一致收敛于和函数S(x)
部分和序列 S n ( x) 一致收敛于S(x)
余项 rn ( x) 一致收敛于 0
机动 目录 上页 下页 返回 结束
几何解释 : (如图)
0, N Z , 当n > N 时, S ( x) S n ( x) 表示 曲线 y S n ( x) 总位于曲线 y S ( x) 与 y S ( x)
之间.
y S ( x)
y S ( x)
y S ( x)
y S n ( x)
I
机动 目录 上页 下页
x
返回 结束
例1. 研究级数 1 1 1 ( x 1)( x 2) ( x 2)( x 3) ( x n)( x n 1)
在区间 [0, +∞) 上的收敛性. 1 1 1 解: (k 1,2,) ( x k )( x k 1) x k x k 1 1 1 1 1 S n ( x) ( )( ) x 1 x 2 x2 x3 1 1 ( ) x n x n 1 1 1 x 1 x n 1
一致收敛函数列与函数项级数的性质

1 n 1
12n
2
(2n 2n2x)dx
而
1
lim
0 n
1
1 0dx
n
fn (x)dx
1 2
0
不相等
(2) 定理的条件是充分的, 但不必要
例3 fn (x) nxenx n 1, 2,... 在区间[0,1]上讨论.
f
(x)
lim
n
fn (x)
lim nxenx
n
0
x [0,1]
但在[0,1]上, fn(x) nxenx n 1, 2,...不一致收敛. 事实上,
{ fn(x)}的每一项在[a,b]上有连续的导数, 且{ fn(x)}在[a,b]上一致收敛,
则
d dx
f
(x)
d (lim dx n
fn (x))
lim n
d dx
fn (x)
3. 可微性
定理13.10 设{ fn (x)}为定义在[a,b]上的函数列, x0 [a,b]为{ fn(x)}的收敛点,
f (x)
f (x0 )
lim lim
xx0 n
fn (x)
f (x0 )
又 lim n
fn (x0 )
f (x0 )
lim
x x0
fn (x)
fn (x0 )
lim lim
n xx0
fn (x)
f (x0 )
所以
lim lim
xx0 n
fn
(x)
lim
n
lim
x x0
fn (x)
★ 在一致收敛条件下, 关于x与n极限可以交换极限顺序
fn (x) nxenx 在[0,1]的最大值为:
13.2一致收敛函数列与函数项级数级数的性质

因为函数列 { fn } 在 [a , b]上一致收敛于 f ,所以
对任给的ε> 0 , 存在 N > 0 , 当 n > N 时,对一切
x ∈ [a , b],
都有
| fn ( x ) - f ( x ) | < ε
b
于是当 n > N 时有
| f n ( x ) dx f ( x ) dx |
由柯西准则知数列 { an } 收敛.
设
lim a n A ,
n
x x0
下面证明: lim f ( x ) A . 因为{ fn } 一致收敛于 f ,数列 { an } 收敛于 A , 因此对任给的ε > 0 , 存在 N > 0 , 当 n > N 时, 对任何 x ∈(a , x0 )∪(x0 , b) 有 | fn(x) – f (x) | <ε/3 和 | an – A | <ε/3 同时成立.特别取 n = N +1,有 | fN+1(x) – f (x) | <ε/3 和 | aN+1 – A | <ε/3
n
( iii ) lim f n ( a ) 不存在,
n
则{ f n ( x )} 在 ( a , b )内不一致收敛
定理 13.9(连续性) 设函数列 { fn } 在区间 I 上一致收敛于 f ,且 fn ( n = 1, 2, . . . ) 在 I 上连续, 则 f在 I 上也连续.
证 要证:对任何 x0 ∈I , lim f ( x ) f ( x 0 ) .
x x0
由定理 13.8, lim lim lim f ( x ) x x lim f n ( x ) lim x x f n ( x ) n n
数学分析课件一致收敛函数列与函数项级数的性质

对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。
【一致收敛与收敛】

在数学中,一致收敛性(或称均匀收敛)是函数序列的一种收敛定义,它较逐点收敛更强,并能保持一些重要的分析性质(如连续性)。
定义:设为一集合,为一度量空间。
若对一函数序列,存在满足,对所有,存在,使得
,则称一致收敛到。
注意到,一致收敛和逐点收敛定义的区别在于,在一致收敛中仅与相关,而在逐点收敛中还与相关。
所以一致收敛必定逐点收敛,而反之则不然。
例子:
考虑区间上的函数序列,它逐点收敛到函数,
然而这并非一致收敛。
直观地想像:当愈靠近,使接近所需的便愈大。
可以依此想法循定义直接证明,也可以利用下节关于连续的性质证明,因为在此例中皆连续,而不连续。
性质:假设一致收敛到,此时有下述性质:
(1)连续性:若是集合的闭包中的一个元素,且每个都在上连续,则也在a上连续。
若对集合I的每个紧子集,每个都在上连续,则在上连续。
(2)与积分的交换:令为中的开集,或。
若每个都是黎曼
可积,则也是黎曼可积,而且。
注:在勒贝格积分的框架下能得到更广的结果。
(3)与微分的交换:令为中的开集,或。
若每个皆可微,且一致收敛到函数,则亦可微,且。
一致收敛函数列与函数项级数级数的性质.ppt

又
lim
x x0
fN1( x) aN1
,
所以存在δ > 0 , 当0 < | x – x0 | <δ时,
| fN+1(x) – aN+1 | <ε/3
这样当0 < | x – x0 | <δ时,
| f (x) A|
| f ( x) f N 1( x) | | f N 1( x) aN 1 | | aN 1 A |
? lim
x x0
n1
un ( x)
n1
lim
x x0
un
(
x)
注:对函数序列{Sn ( x)}而言,应为
? lim
x x0
lim
n
Sn
(
x
)
lim
n
lim
x x0
Sn
(
x)
2.求导运算与无限求和运算交换次序问题
? d
dx n1 un ( x)
d n1 dx un ( x)
lim lim
x x0 n
fn
(
x)
lim
n
lim
x x0
fn(x) .
这表明在一致收敛的条件下,极限可以交换顺序.
证 先证数列 { an } 收敛.因为{ fn } 一致收敛,
故对任给的ε > 0 , 存在 N > 0 , 当 n > N 时,对任何 正整数 p ,对一切 x ∈(a , x0 )∪(x0 , b) 有
| fn(x) – f n+p(x) | <ε
从而
lim
x x0
|
一致收敛性

n xD n xD
数学分析选讲
多媒体教学课件
三、函数项级数的一致收敛性判别法 定理5(维尔斯特拉斯判别法)设函数项级数un(x)定义 在数集D上, Mn为收敛的正项级数,若对一切xD,有
n 1
由f(x)的连续性,
1 1 k lim f n( x) lim f( x ) f( x t) dt. 0 n n n k 0 n n 1
数学分析选讲
多媒体教学课件
n 1
| fn ( x)
1
0
1 1 k f ( x t )dt || f ( x ) f ( x t )dt | 0 n k 0 n
n n充分大时, x 2 n 2 单调递减收敛于0.故原级数为莱布
尼兹级数.且
n 1 1 | rn ( x ) || 2 , 2 x ( n 1) n 1
故原级数一致收敛.
数学分析选讲
多媒体教学课件
例4 证明函数列
x f n ( x ) n ln(1 )( n 1, 2,) n
k 1 n k n
k | f ( x ) f ( x t ) | dt | n
数学分析选讲
多媒体教学课件
由于
k k 1 t [ , ] n n
所以
k k 1 | x ( x t ) || t | , n n n
故取n 充分大,使1/ n <,则
k | f ( x ) f ( x t ) | . n
n 1
在[a, b]上一致收敛.
数学分析选讲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析第十三章函数列与函数项级数
一致收敛函数列的性质1
第八讲
数学分析第十三章函数列与函数项级数
一致收敛函数列的性质
定理13.8(极限交换定理)
{}n f 设函数列在上一致收敛于,00(,)(,)a x x b ⋃()f x 且
对每个n , 0
lim ()n n x x f x a →=,→∞
lim n n a 则和→0
lim ()x x f x 均存在且
相等:00
lim lim ()lim lim ().
n n x x n n x x f x f x →→∞
→∞→=即
{}n a 证先证是收敛数列. 故存在正整数N , 当n >N 及对任意正整数p , 对一切00(,)(,),x a x x b ∈⋃有|()()|.(1)
n n p f x f x ε+-<0ε>,{}n f 由于一致收敛,
对任意0
lim ()lim ,
n x x n f x a →→∞=
数学分析第十三章函数列与函数项级数
定理指出: 在一致收敛的条件下, {()}n f x 中关于独立变量x 与n 的极限可以交换次序, 即
,()(,)n f x a b 类似地若在lim ()
n x a
f x +→上一致收敛, 且存在, ++→∞→∞
→→=lim lim ()lim lim ();n n n n x a
x a
f x f x ()(,)lim (),
n n x b
f x a b f x -→若在上一致收敛,且存在--
→∞
→∞→→=lim lim ()lim lim ().n n n n x b
x b
f x f x 则有则有00
lim lim ()lim lim ().
(2)
n n x x n n x x f x f x →→∞
→∞→=
数学分析第十三章函数列与函数项级数
定理13.9(连续性)
若函数列{}n f 在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.
证0.x I 设为上任一点于是由定理13.8 知0
lim ()x x f x →也存在, 且
0lim ()lim lim ()n x x x x n f x f x →→→∞
=0().
f x x 因此在上连续0
0lim ()(),n n x x
f x f x →=由于0
lim lim ()
n n x x f x →∞→=0lim ()
n n f x →∞
=0(),
f x =
数学分析第十三章
函数列与函数项级数
{}n
x (1,1]-例如函数列的各项在上都是连续的,其极限函数
0,11,()1,1
x f x x -<<⎧=⎨
=⎩1x =在时不连续,
{}n
x (1,1]-所以在上不一致收敛.注定理13.9可以逆过来用:但列在区间I 上其极限函数不连续, 若各项为连续函数的函数I 上一定不一致收敛.
则此函数列在区间推论
{}n f I f 若连续函数列在区间上内闭一致收敛于,f I 则在上连续.。