高一数学必修1函数的基本性质

合集下载

沪教版 新课标 高一数学 函数的基本性质(一) 函数的概念

沪教版 新课标 高一数学 函数的基本性质(一) 函数的概念

沪教版新课标高一数学函数的基本性质(一) 函数的概念本文介绍了函数的基本性质,分为三节:函数的概念、函数的奇偶性与单调性以及函数的最值与值域。

其中,第一节详细介绍了函数的定义和三要素:定义域、对应法则和函数值域。

同时解释了符号f(x)的三种含义,以及判定两个函数是否为同一个函数的方法。

此外,文章还讲述了函数图像的基本特征,并阐述了函数定义域的含义和求法。

函数是描述两个变量之间对应关系的数学工具。

具体来说,如果在某个变化过程中有两个变量x和y,对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与之对应,那么y就是x的函数,记作y=f(x)。

其中,x叫自变量,x的取值范围D叫做函数的定义域,和x的值相对应的y的值叫做函数值,函数值的集合叫做值域。

函数由三个基本要素构成,即定义域D、对应法则f以及函数值域。

其中,定义域D和对应法则f起到核心作用,当定义域和对应法则确定时,值域也随之被确定。

符号f(x)有三种含义:表示一个函数、表示一个函数的解析式和表示函数值。

判断两个函数是否为同一个函数,可以通过函数定义来判定,即只要两个函数定义域、对应法则以及值域都相同,则它们为同一个函数。

函数图像是平面直角坐标系中的一个点集,反映了自变量与因变量之间的关系。

函数的定义域是指自变量的取值范围,可以通过对应法则来求得。

需要注意的是,通常用x表示自变量,y表示因变量,但这不是绝对的。

函数的定义域D指的是自变量x的取值范围,也就是函数f的作用对象的取值范围。

这个范围通常是一个数集。

例如,如果一个函数f(x)的定义域为[0,1],那么在表达式f(2x+1)中,2x+1(而不是x)的取值范围必须是[0,1]。

这也是本节的重点知识。

一般来说,函数的定义域可以分为三种情况:1.自然定义域:指使函数解析式有意义的自变量的取值范围。

比如,函数f(x)=√x的定义域是[0,+∞)。

2.给定定义域:函数自带定义域。

高一必修一对数函数知识点

高一必修一对数函数知识点

高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。

对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。

本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。

一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。

其中,a称为底数,x称为指数,y称为对数。

2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。

- 当0<a<1时,对数函数关于x轴对称。

- 当a>1时,对数函数关于y轴对称。

二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。

2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。

- 对数函数的图像经过点(1, 0),即loga(1) = 0。

- 对数函数在x=1时取到最小值,即loga(1) = 0。

- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。

三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。

2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。

五、常用对数的计算常用对数是以10为底的对数,用logx表示。

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。

高一数学必修1函数的基本性质

高一数学必修1函数的基本性质

高一数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f(某)定义域内的任意某都有f(-某)=-f(某),则称f(某)为奇函数;如果对于函数f(某)定义域内的任意某都有f(-某)=f(某),则称f(某)为偶函数。

如果函数f(某)不具有上述性质,则f(某)不具有奇偶性.如果函数同时具有上述两条性质,则f(某)既是奇函数,又是偶函数。

注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个某,则-某也○一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-某)与f(某)的关系;○3作出相应结论:○若f(-某)=f(某)或f(-某)-f(某)=0,则f(某)是偶函数;若f(-某)=-f(某)或f(-某)+f(某)=0,则f(某)是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设f(某),g(某)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶2.单调性(1)定义:一般地,设函数y=f(某)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量某1,某2,当某1<某2时,都有f(某1)<f(某2)(f(某1)>f(某2)),那么就说f(某)在区间D上是增函数(减函数);注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量某1,某2;当某1<某2时,总有f(某1)<f(某2)○(2)如果函数y=f(某)在某个区间上是增函数或是减函数,那么就说函数y=f(某)在这一区间具有(严格的)单调性,区间D叫做y=f(某)的单调区间。

人教版高一数学必修一函数的基本性质最大(小)值课件PPT

人教版高一数学必修一函数的基本性质最大(小)值课件PPT
●你是否曾遇到过这种情形,离下课还有一点时间时,你对学生 说:“如果你们保持安静,我就不会再布置更多的任务了。”学生 会有哪些反应? 你是否曾发现自己预先安排的内容已经讲完了,却还没到下课时 间,于是决定给学生布置课堂任务来填补这段空白,此时学生有哪 些反应?
以上这些问题,我们或多或少都曾经历过。我们也都知道,如果 在课堂上学生没有事情可做的话,他们就会自己找事。而且往往 学生自己找来的事都不会是什么好事。
x∈[1,+∞).
(Ⅰ)当a= (Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立, 试求实数a的取值范围.
课堂小结
1. 最值的概念;
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
课后作业
1. 阅读教材P.30 -P.32; 2.《习案》:作业10
思考题:
1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函数f(x)的最值.
你是否曾注意到,有些学生能够立刻着手行动,并且完成的速度也 很快
你是否曾注意到,有些学生再怎样努力,也无法在规定时间内完成 任务。
你是否曾注意到,学生做练习的时候,往往也是最容易出现课堂 纪律问题的时候。比如,有些学生会在完成自己的任务之后,询问 接下来要做什么,有些学生没有专心完成课堂任务,而是做些违纪 动作,还有些学生不停地抱怨自己不明白要做什么?
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最大值.

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

高一数学必修一多项式函数的基本性质

高一数学必修一多项式函数的基本性质

高一数学必修一多项式函数的基本性质多项式函数是高中数学中的重要内容之一,掌握多项式函数的基本性质对于研究数学和解决实际问题具有重要意义。

本文将介绍多项式函数的一些基本性质。

一、多项式函数的定义多项式函数是指由常数和变量的乘积再进行有限次的加法运算所得到的函数。

它由若干项组成,每一项包含一个系数和变量的幂次。

多项式函数的一般形式可表示为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$$其中,$a_n, a_{n-1}, \ldots, a_1, a_0$ 是常数,$x$ 是变量,$n$ 是非负整数,称为多项式的次数。

二、多项式函数的性质1. 多项式函数的次数:多项式函数的次数等于其中最高次幂的指数,记作 $\deg f(x)$。

例如,$f(x) = 2x^3 + 5x^2 - 3x + 1$ 的次数为 3。

2. 多项式函数的零次项和首项:多项式函数 $f(x)$ 中次数为$n$ 的项称为首项,系数为 $a_n$;次数为 0 的项称为常数项或零次项,系数为 $a_0$。

3. 多项式函数的导函数:多项式函数 $f(x)$ 的导函数是将每一项的幂次减 1,然后再乘以原来的系数。

例如,$f(x) = 2x^3 + 5x^2 - 3x + 1$ 的导函数为 $f'(x) = 6x^2 + 10x - 3$。

4. 多项式函数的奇偶性:若多项式函数中的所有项都是偶次项或奇次项,则多项式函数为偶函数或奇函数。

若多项式函数中同时存在奇次项和偶次项,则多项式函数既不是偶函数也不是奇函数。

例如,$f(x) = x^4 - x^2$ 是偶函数,$g(x) = x^3 - x$ 是奇函数。

5. 多项式函数的图像特征:多项式函数的图像是连续的、光滑的曲线。

对于 $n$ 次多项式函数 $f(x)$,当 $n$ 是奇数时,图像的起始方向和终止方向相反;当 $n$ 是偶数时,图像的起始方向和终止方向相同。

高一数学必修一函数的基本性质(单调性)精品PPT课件

高一数学必修一函数的基本性质(单调性)精品PPT课件
图像在定义域内呈上升趋势; 图像经过原点。
观察图像变化规律
图像在对称轴左边呈下降, 在对称轴后边呈下降趋势。
x
y
O
x
y
O
x
y
O
自变量递增,函数递减
x
y
O
x
y
O
x
y
O
自变量递增,函数递增
增函数、减函数的概念:
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数.
2.两种方法:
判断函数单调性的方法 有图象法、定义法. 下一课时我们会重点练习
课堂小结
1.阅读教材P.27 -P.30; 2.教材课后练习:1、2、3.
课后作业
谢谢欣赏
一般地,设函数f(x)的定义域为I.
增函数、减函数的概念:
函数最大值→图像最高点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最大值 .
函数最小值→图像最低点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最小值 .
-2
3
2
1
-1
y
-3
-4
4
O
x
2
-2
3
1
-3
-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

(3)设复合函数y = f [g(x )],其中u =g(x ) , A 是y = f [g(x )]定义域的某个区间,B 是映射g : x →u =g(x ) 的象集: ①若u =g(x ) 在 A 上是增(或减)函数,y = f (u )在B 上也是增(或减)函数,则函数y = f [g(x )]在A 上是增函数;②若u =g(x )在A 上是增(或减)函数,而y = f (u )在B 上是减(或增)函数,则函数y = f [g(x )]在A 上是减函数。

(4)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

(5)简单性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

3.最值(1)定义:最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最大值。

最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最大值。

注意:○1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M )。

(2)利用函数单调性的判断函数的最大(小)值的方法:○1 利用二次函数的性质(配方法)求函数的最大(小)值; ○2 利用图象求函数的最大(小)值; ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减则函数y =f (x )在x =b 处有最大值f (b ); 如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增则函数y =f (x )在x =b 处有最小值f (b );4.周期性(1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x+T )= f (x ),则称f (x )为周期函数;(2)性质:①f (x+T )= f (x )常常写作),2()2(T x f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为||ωT。

四.典例解析【奇偶性典型例题】例1.以下五个函数:(1))0(1≠=x x y ;(2)14+=x y ;(3)x y 2=;(4)x y 2log =; (5))1(log 22++=x x y ,其中奇函数是____ __,偶函数是__ ____,非奇非偶函数是 _________点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)。

题型二:奇偶性的应用例2.设f (x )是定义在R 上的奇函数,若当x ≥0时,f (x )=lo g 3(1+x ),则f (-2)=____ _。

例3.已知()f x 奇函数,当x ∈(0,1)时,1()lg 1f x x=+,那么当x ∈(-1,0)时,()f x 的表达式是 .例4.若奇函数()f x 是定义在(1-,1)上的增函数,试求a 的范围:2(2)(4)0f a f a -+-<.解:由已知得2(2)(4)f a f a -<--因f(x)是奇函数,故 22(4)(4)f a f a --=-,于是2(2)(4)f a f a -<-.又()f x 是定义在(-1,1)上的增函数,从而223224121132141a a a a a a a a a ⎧⎧-<<-<-⎪⎪-<-<⇒<<⇒<⎨⎨⎪⎪-<-<<<<⎩⎩即不等式的解集是2)【单调性典型例题】例1.(1)()(21),f x a x b R =-+设函数是上的减函数则a 的范围为( )A .12a ≥B .12a ≤C .12a >-D .12a < (2)函数2([0,)y x bx c x =++∈+∞)是单调函数的充要条件是( )A .0b ≥B .0b ≤C .0b >D .0b <(3)已知()f x 在区间(,)-∞+∞上是减函数,,a b R ∈且0a b +≤,则下列表达正确的是( )A .()()[()()]f a f b f a f b +≤-+B .()()()()f a f b f a f b +≤-+-C .()()[()()]f a f b f a f b +≥-+D .()()()()f a f b f a f b +≥-+-提示:0a b +≤可转化为a b ≤-和b a ≤-在利用函数单调性可得.(4) 如右图是定义在闭区间上的函数()y f x =的图象,该函数的单调增区间为例2.画出下列函数图象并写出函数的单调区间(1)22||1y x x =-++ (2)2|23|y x x =-++例3.根据函数单调性的定义,证明函数在上是减函数.例4.设)(x f 是定义在R 上的函数,对m 、R n ∈恒有)()()(n f m f n m f ⋅=+,且当0>x 时,1)(0<<x f 。

(1)求证:1)0(=f ; (2)证明:R x ∈时恒有0)(>x f ;(3)求证:)(x f 在R 上是减函数; (4)若()(2)1f x f x ⋅->,求x 的范围。

解:(1)取m=0,n=12则11(0)()(0)22f f f +=,因为1()02f > 所以(0)1f = (2)设0x <则0x -> 由条件可知()f x o ->又因为1(0)()()()0f f x x f x f x ==-=->,所以()0f x > ∴R x ∈时,恒有0)(>x f(3)设12x x <则121211()()()()f x f x f x f x x x -=--+ =1211()()()f x f x x f x -- =121()[1()]f x f x x -- 因为12x x <所以210x x ->所以21()1f x x -<即211()0f x x -->又因为1()0f x >,所以121()[1()]0f x f x x --> 所以12()()0f x f x ->,即该函数在R 上是减函数.(4) 因为()(2)1f x f x ⋅->,所以2()(2)(2)(0)f x f x f x x f ⋅-=->所以220x x -<,所以20x x x ><的范围为或例5:(复合函数单调性)1.函数y =的增区间是( ).A . [-3,-1]B . [-1,1]C . (,3)-∞-D . [1,)-+∞2.函数y =80212--x x 的单调递增区间为( )A .(,8)-∞-B .(,1)-∞C .(1,)+∞D .(8,)-+∞题型五:周期问题例6.已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-。

相关文档
最新文档