2013全国数学建模竞赛题目A-B

合集下载

2013全国数模竞赛A题优秀论文祥解

2013全国数模竞赛A题优秀论文祥解

2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。

针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。

图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。

针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。

可见占用车流量大的车道使道路通行能力降低更多。

针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。

我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。

本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。

针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。

关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

2013高教社杯全国大学生数学建模竞赛题目

2013高教社杯全国大学生数学建模竞赛题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)D题储药柜的设计储药柜的结构类似于书橱,通常由若干个横向隔板和竖向隔板将储药柜分割成若干个储药槽(如图1所示)。

为保证药品分拣的准确率,防止发药错误,一个储药槽内只能摆放同一种药品。

药品在储药槽中的排列方式如图2所示。

药品从后端放入,从前端取出。

一个实际储药柜中药品的摆放情况如图3所示。

为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送过程中不会出现并排重叠、侧翻或水平旋转。

在忽略横向和竖向隔板厚度的情况下,建立数学模型,给出下面几个问题的解决方案。

1.药房内的盒装药品种类繁多,药盒尺寸规格差异较大,附件1中给出了一些药盒的规格。

请利用附件1的数据,给出竖向隔板间距类型最少的储药柜设计方案,包括类型的数量和每种类型所对应的药盒规格。

2. 药盒与两侧竖向隔板之间的间隙超出2mm的部分可视为宽度冗余。

增加竖向隔板的间距类型数量可以有效地减少宽度冗余,但会增加储药柜的加工成本,同时降低了储药槽的适应能力。

设计时希望总宽度冗余尽可能小,同时也希望间距的类型数量尽可能少。

仍利用附件1的数据,给出合理的竖向隔板间距类型的数量以及每种类型对应的药品编号。

3.考虑补药的便利性,储药柜的宽度不超过2.5m、高度不超过2m,传送装置占用的高度为0.5m,即储药柜的最大允许有效高度为1.5m。

药盒与两层横向隔板之间的间隙超出2mm的部分可视为高度冗余,平面冗余=高度冗余×宽度冗余。

在问题2计算结果的基础上,确定储药柜横向隔板间距的类型数量,使得储药柜的总平面冗余量尽可能地小,且横向隔板间距的类型数量也尽可能地少。

4. 附件2给出了每一种药品编号对应的最大日需求量。

在储药槽的长度为1.5m、每天仅集中补药一次的情况下,请计算每一种药品需要的储药槽个数。

2013全国大学生数学建模竞赛B题获奖论文(国二)

2013全国大学生数学建模竞赛B题获奖论文(国二)

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容 请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2013 年 9 月 16 日
赛区评阅编号(由赛区组委会评阅前进行编号):
2013 高教社杯全国大学生数学建模竞赛
编 号 专 用 页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
关于碎纸片拼接问题的探讨
摘要
碎纸片的拼接在许多领域有重要应用, 由于传统的人工拼接方式效率低且精确度不 高,所以人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。本文通过建立数 学模型针对不同拼接情况提出具体解决方案。 对于问题一,由于贪婪算法有局部最优带来整体最优的特点,所以本文建立基于贪 婪算法的纵切碎纸片拼接优化模型Ⅰ。首先,将图像信息用像素矩阵 A 表示,将图片的 拼接问题转化为图片边缘像素列的匹配问题。其次,由于拼接方案与图片的排列位置有 关, 所以选取 0-1 变量 xij 为决策变量; 选取拼接缝上各点像素之差的和最小为目标函数; 由于英文字母等图像信息在拼接缝处不对称, 故在目标一的基础上选取拼接缝上各点与 相邻上下两点的像素之差的和最小为目标函数二; 以图片边缘必须含有字迹信息为约束 条件,以此建立纵切优化模型Ⅰ。然后,基于贪婪算法的准则选取边缘信息量最大的图 片为基准对其左右进行拼接,再以新拼接的图片为基准重复上述操作。最后,可得中英 文拼接完整图且无需人工干预; 若图片边缘信息均为空白则要等到其他图片拼接完成后 再在剩下的空缺处填补此类图片。结果表明,可以完成对碎纸片的准确拼接。 对于问题二,选取文字特征如下:汉字的字高以及字宽是确定的,在拼接时通过记 录边缘像素列宽度以判断拼接后是否满足字高字宽的约束,而英文字母的高度不一致, 但通过像素列可知同行字母的中心点位于同一直线上, 故可利用拼接后字母中心点是否 共线判断能否拼接。在求解过程中采用降维的思想,建立基于 3 个子模型的纵横切拼接 优化模型Ⅱ。第一步,对图片按横切行分类,选取纸片第 1 行中首次出现字迹的上下端 位置 xi1、xi2 为决策变量;选取不同纸片间(xi1-xj1)与(xi2-xj2)的和最小为目标函数;以拼接 后字高 s 为约束条件,建立子模型 a。第二步,对每行中纸片进行行内拼接,继承模型 Ⅰ中的思想,新增字宽、字间距及行间距等条件的约束,建立子模型 b。第三步,拼接 m 行纸片构成完整图像,同样利用模型Ⅰ中思想,新增字高、页边距等限制,建立子模 型 c。对于拼接过程中出现的边缘无字迹信息以及不符合文字特征的情况,对其进行人 工拼接。在验证过程中,由于英文字母高度不一致但字母中心点位置固定,故通过设定 字母中心点位置的阈值来判断图片隶属的行数。经验证,中文拼接共需要 14 次人工干 预,英文拼接需要 24 次人工干预。 对于问题三,要拼接双面纵横切的 m×n 的碎纸片,二维拼接问题升级为三维,同 样采用降维的思想,建立基于 3 个子模型的纵横切双面拼接优化模型Ⅲ。第一步,将同 张图片的正反面组合成一幅图像,由于打印的字号以及行间距是确定的,所以一张图片 正反面首行文字中心点距离页面顶端的距离之差随之固定,且能够反映图片的特征, 故 选取图片正反面首行的字中心点距离页面顶端的距离 xi1 和 xi2 为决策变量;选取同一横 切行中各图片 xi1 − xi 2 的差值之和最小为目标函数; 对于每一行中 xi1 − xi 2 要满足设定的 阈值限制,以此建立子模型(1)。第二步,将处于同一横切行中的组合图片重新拆分, 依 据问题二中模型 b 中的方法进行行内拼接。第三步,依据问题二中的模型 c 中的方法进 行行间拼接。最后,利用所给图片进行验证可得完整图像。其中, 124b 和 015a 两张图 片拼接处出现异常。 最后,本文对所建模型进行了客观的评价,并结合实际对模型的推广加以分析。

2013年全国数学建模竞赛A题

2013年全国数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年月日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号)车道被占用对城市道路通行能力的影响摘要道路堵塞时车辆排队长度和排队持续时间时交通管理与控制部门制定和实施管理控制措施的重要依据,对道路堵塞时车辆排队和排队时间计算方法进行研究具有重要的实际意义和应用价值。

本文以交通事故为例讨论车道被占用对城市道路通行能力的影响,从而对交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设计路边停车位等问题提供理论依据。

2013高教社杯全国大学生数学建模竞赛A题论文.

2013高教社杯全国大学生数学建模竞赛A题论文.

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。

2013年数学建模B题

2013年数学建模B题

碎纸片的拼接复原摘要本文主要研究了规则碎纸片的拼接复原问题。

首先利用二值法、Freeman链码和环形像素点匹配等算法建立基于像素点数值匹配模型,然后利用MATLAB 软件对碎纸片像素点进行数字化处理,得到各碎纸片的像素点数值矩阵,再利用MATLAB软件编程进行矩阵特征优化匹配得到复原图。

(图5、图6、图7、图8 、图9、图10)对于问题一,要解决纵向切割二维规则碎片拼接,利用MATLAB软件对碎纸片进行像素点数字化处理,根据像素点数值利用二值法和Freeman链码算法找到相邻的碎纸片,编程求解得到碎纸片的拼接复原图,对于顺序错乱的碎片进行人工干预,结合MATLAB软件求解,最后得到碎纸片的拼接复原图。

(见附录1)对于问题二,要解决横纵切割碎片的拼接,使用环形像素点匹配算法对碎纸片进行跟踪匹配,在SSDA算法的基础上确定最左侧为初始模板。

根据碎片对应的行像素特征的粗细搜索匹配,选出最佳匹配区域作为目标的当前位置,然后对模板进行逐一更新,得出每一行后再按行拼接得出复原图。

(见附录2)对于问题三,要解决横纵切割碎片的正反面拼接,根据环形像素点匹配算法和像素行算法思想进一步扩展,对碎片进行匹配得到11条行碎片,根据问题一的算法思想,进行行之间的匹配拼接,得到初始复原图后,人工微调程序输出顺序和正反面互换语句,运行程序输出完整单面图。

正反顺序对照后确定为最优复原图。

(见附录3)关键字:Freeman链码环形像素点匹配二值法一、问题的背景及重述1.1问题的背景在考古研究、公安调查取证、自动装配、虚拟现实、测量建模等领域中,经常需要把大量的碎片物体拼接成一个或几个完整物体,如考古出土的一些破损的珍贵文物需要重现历史文物的形貌;公安机关调查取证中有可能发现被撕毁的报纸、照片、文件,对这些碎片物体加以复原有利于案件的侦破。

在很多情况下,由于事先对碎片的数目和形状都无法估计,如果通过手工进行拼接,不仅费时费力,而且也不能保证能得到较好效果的复原物体。

(完整word版)2013年数学建模b题

(完整word版)2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将。

建中的任一列与矩阵值,序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

、;分别作为新生成的矩阵、。

,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。

随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。

试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。

问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。

我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。

实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。

表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。

之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。

“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。

实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。

对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。

但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。

在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。

为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题车道被占用对城市道路通行能力的影响
车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:
1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横
断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通
事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队
长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的
关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,
路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经
过多长时间,车辆排队长度将到达上游路口。

附件1:视频1
附件2:视频2
附件3:视频1中交通事故位置示意图
附件4:上游路口交通组织方案图
附件5:上游路口信号配时方案图
注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3
视频1中交通事故位置示意图附件4
附件5
上游路口信号配时方案
本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:
试题专题页面:
/service/jianmo/index.shtml
试题下载地址:
/service/jianmo/sxjmtmhb/2013/0525/969401.shtml
2013高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
B题碎纸片的拼接复原
破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:
1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预
的时间节点。

复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

【数据文件说明】
(1)每一附件为同一页纸的碎片数据。

(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。

(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。

(4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反
两面。

该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。

【结果表达格式说明】
复原图片放入附录中,表格表达格式如下:
(1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格;
(2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格;
(3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格;
不能确定复原位置的碎片,可不填入上述表格,单独列表。

相关文档
最新文档