第03章 热力学第二定律

合集下载

物理化学03章_热力学第二定律

物理化学03章_热力学第二定律
Helmholtz自由能 Gibbs自由能
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。

03章 热力学第二定律

03章 热力学第二定律
第三章 第三章 热力学第二定律 热力学第二定律
Chapter Chapter3 3 The TheSecond SecondLaw Lawof ofThermodynamics Thermodynamics ¾ 不违背第一定律的事情是否一定能成功呢? 例1. H2(g) + 1/2O2(g) H2O(l) ∆rHθm(298K) = -286 kJ.mol-1 加热,不能使之反向进行。 例2. 25 °C及pθ下,H+ + OHH2O(l)极易进行, 但最终[H+][OH-] = 10-14 mol2.dm-6,即 反应不进行到底。 ¾ 第二定律的任务:方向,限度
方法2
1mol H2O(l) 298.2K,pθ Ⅰ
等T, r 等T, p, ir ∆S, ∆H
H2O(g) 298.2K,pθ Ⅲ 等 T, r
H2O(l) 298.2K,3160Pa

等T, p, r
H2O(g) 298.2K,3160Pa
¾ 具有普遍意义的过程:热功转换的不等价性
功不可能无代价,全部 热
① W Q 不等价,是长期实践的结果。
无代价,全部
② 不是 Q W 不可能,而是热全部变 功必须 付出代价(系统和环境),若不付 代价只能部分变功
二、自发过程的共同特征 (General character of spontaneous process) (1) 自发过程单向地朝着平衡。 (2) 自发过程都有作功本领。 (3) 自发过程都是不可逆的。
= r Clausius Inequality (1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。 (2) T是环境温度:当使用其中的“=”时,可认为T 是系统温度。 (3) 与“第二类永动机不可能”等价。

03热力学第二定律

03热力学第二定律

二、热力学第二定律的表述
克劳修斯的说法
不可能把热量从低温物体传向高温物体 而不引起其他变化。
开尔文的说法
不可能从单一热源取热使之完全变为功 而不引起其他变化。
这两种说法的关键是“不引起其他变化”。 制冷中,引起变化——外界消耗功;定温膨胀 引起系统状态变化——气体压力降低。 第二类永动机是造不成的。不违背热力学 第一定律却违背热力学第二定律的“第二类永 动机”:以环境为单一热源,使机器从中吸热 对外作功;由于环境中能量是无穷无尽的,因 而这样的机器就可以永远工作下去。
结论:
(1)两恒温热源间一切可逆循环的热效率都相 等,都等于相同温限间卡诺循环的热效率。它们的 热效率仅取决于热源和冷源的温度。而与工质无关。 提高热源温度和降低冷源温度是提高可逆循环热效 率的根本途径和方法。 (2)相同高、低温热源间的不可逆循环的热效 率恒小于相应可逆循环的热效率。尽量减少循环中 的不可逆因素是提高循环热效率的重要方法。
下面采用反证法证明定理一:
QHA 设有可逆热机和,分别从高温热源吸取热量 和 HB ,对外作功WA 和WB ,向低温热源放出热量 Q Q QLB 和 LA ,则它们的热效率分别为
WA QLA A 1 QHA QHA
WB QLB B 1 QHB QHB
若 A B,假定 A B。由于A和B均为 可逆热机,现使B机逆转。由可逆过程的性质知 , B机逆转的结果是工质从低温热源吸收热量 QHB , 外界输入功 WB ,向高温热源放出热量 QLB 成为一 QLB 台制冷机。为证明方便起见,假定 QLA 且制冷机所需功由热机A提供,从而构成一台联合 运转的机器,如图所示。
平均吸热(放热)温度:工质在变温吸热(放 热)过程中温度变化的积分平均值。 g QH e TdS TH S S

第03章 热力学第二定律

第03章 热力学第二定律

第3章 热力学第二定律练 习1、发过程一定是不可逆的。

而不可逆过程一定是自发的。

上述说法都对吗为什么 答案:(第一句对,第二句错,因为不可逆过程可以是非自发的,如自发过程的逆过程。

)2、什么是可逆过程自然界是否存在真正意义上的可逆过程有人说,在昼夜温差较大的我国北方冬季,白天缸里的冰融化成水,而夜里同样缸里的水又凝固成冰。

因此,这是一个可逆过程。

你认为这种说法对吗为什么 答案:(条件不同了)3、若有人想制造一种使用于轮船上的机器,它只是从海水中吸热而全部转变为功。

你认为这种机器能造成吗为什么这种设想违反热力学第一定律吗答案:(这相当于第二类永动机器,所以不能造成,但它不违反热力学第一定律)4、一工作于两个固定温度热源间的可逆热机,当其用理想气体作工作介质时热机效率为 η1,而用实际气体作工作介质时热机效率为 η2,则A .η1>η2B .η1<η2 C.η1=η2 D.η1≥η2 答案:(C )5、同样始终态的可逆和不可逆过程,热温商值是否相等体系熵变 ΔS 体 又如何 答案:(不同,但 ΔS 体 相同,因为 S 是状态函数,其改变量只与始、终态有关)6、下列说法对吗为什么(1)为了计算不可逆过程的熵变,可以在始末态之间设计一条可逆途径来计算。

但绝热过程例外。

(2)绝热可逆过程 ΔS =0,因此,熵达最大值。

(3)体系经历一循环过程后,ΔS =0 ,因此,该循环一定是可逆循环。

(4)过冷水凝结成冰是一自发过程,因此,ΔS >0 。

(5)孤立系统达平衡态的标态是熵不再增加。

答案:〔(1) 对,(2) 不对,只有孤立体系达平衡时,熵最大,(3)不对,对任何循环过程,ΔS=0 不是是否可逆,(4) 应是ΔS总>0,水→冰是放热,ΔS<0,ΔS>0,(5) 对〕7、1mol H2O(l)在、下向真空蒸发变成、的 H2O(g),试计算此过程的ΔS总,并判断过程的方向。

答案:(ΔS总=·K-1·mol-1>0)8、试证明两块重量相同、温度不同的同种铁片相接触时,热的传递是不可逆过程。

物理化学03热力学第二定律

物理化学03热力学第二定律
99-11-24 10
2. 卡诺定理
工作在相同高温热源与低温热源之间的任意热机, 其效率不可能高于相同热源间的可逆卡诺热机的效 率。即 R
T1热源
Q‘1 W W可 Q2 Q1
卡诺定理的证明: 根据热力学第二定律,用反证法可证明。
调整两个热机使所做的功相等 可逆机的效率:

Q’2


W R Q1
• 例:木炭在氧气中燃烧,热力学能转变为热,生成CO2, 其逆过程是CO2吸收相同的热量,转变为C和O2,是不违 反热力学第一定律的,但能否自动的进行呢?
99-11-24 2
同在能量守恒的前提下, 热的自发传递是单方向的; 功可全部转化为热, 而热转化为功却是有限制的.
• 热 从 高 温 传 向 低 温 • 功 转 化 为 热
99-11-24 13
Q1 Q2 0 T1 T2
把卡诺循环的结果推广到任意的可逆循环
§3.3 熵
1. 熵的导出
p a 2
1
b
上下对应的各对红线的热温熵之和显 然等于零, 所有红线的热温熵之和, 即整个 折线循环的总热温熵也就为零. 当折线取得 无限短和无限多时, 就无限趋近于曲线循环. 故 任意可逆循环的热温熵之和也为零.
•要解决过程的方向性的问题,必须依赖于热力 学第二定律。
99-11-24
3
§3-1 热力学第二定律
1. 自发过程与非自发过程
• 在一定的条件下,不需要消耗环境的作用就能 自动进行的过程,称为自发过程。 • 如水往低处流,冰熔化,墨水在清水中扩散, 常温下能自动进行的化学反应等等。 • 自发过程的逆过程是不能自动进行的,称为非 自发过程。 • 自发过程的共同特征是不可逆的。 [课堂讨论]:以气体真空膨胀为例,说明自发过 程是不可逆过程。

热力学第二定律

热力学第二定律

内容:所有工作于同温热源与同温冷源之间的热机, 可逆机效率最大。
数学式:
W Q1 Q2 T2 T1
Q2
Q2
T2
< 任意机 = 可逆机
或 Q1 Q2 0 可逆循环热温熵之和等于零
T1 T2
不可逆循环热温熵之和小于零

QB 0
TB
定理证明:
用反证法,假设
I R
由图可知:
WW Q1' Q1
循环净结果: 热从低温热源自动传到高温热源而无其它变化,
违背了克劳修斯说法。
∴ 假设不成立,即 I R
卡诺定理推论:
所有工作于同温热源与同温冷源间的可逆机,热 机效率都相同而与工作介质无关。
定理的意义:
1) 指出了热机的效率,说明热不能100%转化为功; 2) 为热力学第二定律熵函数S的提出奠定了基础。
第三章 热力学第二定律
热力学第二定律解决的问题: 预测一定条件下一个过程进行的自发方向和限度。
自发过程: 无外力作用条件下(即不消耗外功)能够进行的过程。
限度: 一定条件下,过程能够进行到的最大程度。
§3-1 自发过程的共同特征
一、几个自发过程实例 1. 热传递
高温物体(T2) 热自动传递 低温物体(T1)
熵判据关键点: ①隔离体系中可能发生的过程,总是向熵增大方向进行
——过程进行的方向 ②一定条件下熵增至其最大值
——过程的限度
五、熵和“无用能”
高温热源 T2
Q
Q
R1 W1
T1
Q
Q-W1
R2 W2 Q -W2
低温热源 T0
图2-7 能量的退化
卡诺热机R1:
R1
W1 Q

第三章热力学第二定律

第三章热力学第二定律


自发过程的共同特征
a.自发过程单向的朝着平衡 b.自发过程都有做功本领 c.自发过程都是不可逆的
2.热、功转换
具有普遍意义的过程:热功转化的不等价性。
无代价,全部


不可能无代价,全部
热机效率
3.热力学第二定律的两种经典表述
不可能把热量从低温 热源传到高温热源, 而不引起其他变化。
克劳修斯
不可能从单一热源吸热 使之完全变为功,而不 留下其它变化。
12.2
V2 22.4 J K 1 S (O 2 ) nR ln 0.5 8.315ln 12.2 V1

相变化过程
(1)可逆相变
在相平衡压力p和温度T下
B()

T, p 可逆相变

B()
Qr H S T T
(2)不可逆相变
不在相平衡压力p和温度T下的相变 B( , T, p) S 1 T, p S 不可逆相变 B(, T, p) S3 2
S
T2
T1
(4)绝热可逆过程
(5)绝热不可逆过程
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
恒容 S1
( p ',V1 , T2 )
恒温 S2
S S1 S2 nCV ,m ln
T2 V nR ln 2 T1 V1
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
求各步骤及途径的Q,△S。 (1)恒温可逆膨胀: (2)先恒容泠却至使压力降至100kPa,再恒压加热至T2; (3)先绝热可逆膨胀到使压力降至100kPa,再恒压加热 至T2;
例:1 mol 理想气体T=300K下,从始态100 kPa 经下列各过程, 求Q,△S及△S i so。 (1)可逆膨胀到末态压力为50 kPa; (2)反抗恒定外压50 kPa 不可逆膨胀至平衡态; (3)向真空自由膨胀至原体积的两倍。

物理化学 第三章 热力学第二定律

物理化学 第三章  热力学第二定律
Siso S(体系) S(环境) 0
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i

Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆

Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题
1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。

这说法对吗?
2.空调、冰箱不是可以把热从低温热源吸出,放给高温热源吗?这是否与第二定律矛盾呢?
3.能否说系统达平衡时熵值最大,Gibbs 自由能最小?
4.某系统从始态出发,经一个绝热不可逆过程到达终态。

为了计算熵值,能否设计一个绝热可逆过程来计算?
*5.C p,m 是否恒大于C V ,m ?
6.将压力为101.3kPa ,温度为268.2K 的过冷液体苯,凝固成同温、同压的固体苯。

已知苯的凝固点T f 为278.7K ,如何设计可逆过程?
7.下列过程中,Q 、W 、△U 、△H 、△S 、△G 和△A 的数值哪些为零?哪些的绝对值相等?
(1)理想气体真空膨胀;(2)*实际气体绝热可逆膨胀;(3)水在冰点结成冰;(4)理想气体等温可逆膨胀;(5)H 2(g)和O 2(g)在绝热钢瓶中生成水。

*8.箱子一边是1molN 2(100kPa),另一边是2molN 2(200kPa),298K 时抽去隔板后的熵变值如何计算?
9.指出下列理想气体等温混合的熵变值。

(1)1molN 2(g,1V) + 1molN 2(g,1V) = 2molN 2(g,1V)
(2)1molN 2(g,1V) + 1molAr(g,1V) = (1molN 2 + 1molAr)(g,1V)
(3)1molN 2(g,1V) + 1molN 2(g,1V) = 2molN 2(g,2V)
10.四个热力学基本公式适用的条件是什么?是否一定要可逆过程?
概念题
1 理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变△S sys 及环境的熵变△S sur 因为:
(A )△S sys >0,△S sur =0 (B )△S sys <0,△S sur =0
(C )△S sys >0,△S sur <0 (D )△S sys <0,△S sur >0
2 在绝热条件下,用大于气缸内的压力迅速推动活塞压缩气体,此过程度熵变:
(A )大于零 (B )小于零 (C )等于零 (D )不能确定
3 H 2(g)和O 2(g)在绝热钢瓶中化合,生成水的过程:
(A )△H =0 (B )△U =0
(C )△S =0 (D )△G =0
4 在大气压力和273.15K 下水凝结为冰,判断下列热力学量中哪一个一定为零:
(A )△U (B )△H (C )△S (D )△G
5 在N 2和O 2混合气体的绝热可逆压缩过程中,系统的热力学函数变化值在下列结论中正确的是:
(A )△U =0 (B )△A =0 (C )△S =0 (D )△G =0 6 单原子分子理想气体的 ,温度由T 1变到T 2 时,等压过程系统的熵变△S p 和等容过程系统的熵变△S V 之比是:
(A )1:1 (B )2:1 (C )3:5 (D )5:3
7 水在373K ,101325 Pa 的条件下气化为同温同压的水蒸气,热力学函数变量为△U 1,△H 1,△G 1;现把 的水(温度、压力同上)放在恒温373K 的真空箱中,控制体积,使系统终态蒸气压也为101325 Pa ,这时热力学函数变量为△U 2,△H 2,△G 2。

这两组热力学函数的关系为:
(A ) (B )
(C ) (D ) R C m V 23,=kg 3101-⨯kg 310
1-⨯212121,,G G H H U U ∆>∆∆>∆∆>∆212121,,G G H H U U ∆<∆∆<∆∆<∆212121,,G G H H U U ∆=∆∆=∆∆=∆2
12121,,G G H H U U ∆=∆∆>∆∆=∆
8 298K 时,1mol 理想气体等温膨胀,压力从1000kPa 变到100kPa ,系统Gibbs 自由能变化值为:
(A )0.04 kJ (B )-12.4 kJ (C )1.24 kJ (D )-5.70 kJ
9 对于不做非体积功的隔离系统,熵判据为:
(A ) (B ) (C ) (D ) *10 某气体的状态方程 ,其中a 为大于零的常数,该气体经恒温膨胀,其热力学能:
(A )不变 (B )增大 (C )减小 (D )不能确定
11 封闭系统中,某过程的 ,应满足的条件是:
(A )等温、可逆过程 (B )等容、可逆过程
(C )等温等压、可逆过程 (D )等温等容、可逆过程
12 热力学第三定律可以表示为:
(A )在0K 时,任何晶体的熵等于零 (B )在0K 时,任何完整晶体的熵等于零
(C )在0℃时,任何晶体的熵等于零 (D )在0℃时,任何完整晶体的熵等于零 概念题答案
1 C
2 A 3B 4 D 5 C 6 D 7 C 8 D 9 D 10 A 11 A 12 B 0)(,≥U T dS 0)(,≥U p dS 0)(,≥p
U dS 0)(,≥V U dS ap RT pV m +=R W A =∆。

相关文档
最新文档