初二实数复习
2第二章实数专题复习

第二章《实数》专题复习【实数】 1、 概念:实数是有理数和无理数的统称注意:实数与数轴上的点一一对应 2、分类(1)按定义分 (2)按正负分:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数负整数负有理数零正分数正整数正有理数有理数实数注意:在理解无理数时,抓住“无限不循环”这一点,归纳起来一般有三类:(1)开方开不尽的数,如32,7等;l (2)有特定意义的数,如圆周率π; (3) 有特定结构的数,如010*******.等;3、性质实数a 的相反数是a -;实数a 的倒数是1a ()0a ≠;实数a 的绝对值()()00a a a a a ≥⎧⎪=⎨-<⎪⎩运算法则和运算顺序与有理数的一致。
练习:1、有下列说法正确的是:( )A 无理数就是开方开不尽的数;B 无理数是无限不循环小数;C 带根号的数都是无理数D 无限小数都是无理数2、.在-52,3π,3.14,00.125125125中,无理数有 ;有理数有 ; 实数有 。
32-的相反数是 ;绝对值是 ; 37-的相反数是 4、在△OAB 中,∠OAB=90°,OA=2,AB=1,BC ⊥OB , BC=1,且E 、O 、A 、D 在同一数轴上,OC=OE=OD.点 D 表示的数是 点E 表示的数是5、如右图所示的数轴上,点B 与点C 关于点A 对称,,A B1-,点C 所对应的实数是( )AB 1C 1D【实数的运算】 1、 开方运算 (1)平方根如果一个数的平方等于a ,那么这个数a 就叫做的平方根(或二次方根)。
注意:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”(a ≥0)。
(2)算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
注意:①算术平方根的双重非负性0≥a ,0a ≥()()00a a a a a ⎧≥⎪==⎨-<⎪⎩,()20a a =≥(3)立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
(完整版)实数知识点和练习

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
八年级数学实数复习 共33页

体现了_数__形__结__合_的思想方法.
二、实数的基本概念 三.相反数 只有符号不同的两个数,其中一个
是另一个的相反数。
1)数a的相反数是-a (a是任意一个实数);
2)0的相反数是0.
3)若a、b互为相反数 <====> a+b=0.
-4
4
-2 2
第1章 实数
复习内容: 一、实数的分类 二、有理数的有关概念
1、负数 2、数轴 3、相反数 4、倒数 5、绝对值
6、近似数和有效数字 7、科学记数法
8、方根
9、三种重要的非负性 三.实数 1、有关平方根和立方根 2、实数的运算 3、实数的比较大小 4、数字规律探究
5、零指数,负整指数
要点、考点聚焦 一、实数的分类:
(4)、三角函数型:tan60°,念
一.负数:在正数前面加“—”的数;
1、判断:0既不是正数,也不是负数。
1)a一定是正数;
(× )
2)-a一定是负数;
(× )
3)-(-a)一定大于0; ( × )
4)0是正整数。
(× )
2、(1)如果零上5℃记作5℃,则零下2℃记作_____
注意:绝对值的化简,应先 判断符号内的数或式子的值 是正、负、或0,然后再根据 定义把绝对值的符号去掉。
已 知 xa(a0),求 x时 , 注 意 xa。
即 绝 对 值 的 原 数 是 双 值 性 。
1、已知数轴上的A点所表示的数是2,那么在数 轴上到A点的距离是3的点所表示的数有(B) A.1个 B.2个 C.3个 D.4个
-4 -3 –2 –1 0 1 2 3 4
在数轴上表示相反数的两点以_原__点__对称。
4.3实数(十大题型)(解析版) 八年级数学上学期

八年级上册数学《第4章实数》4.3实数◆1、实数的概念:有理数和无理数统称为实数.◆2、实数的分类:(1)按定义分类.(2)按性质分类.◆1、实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.◆2、与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.◆3、实数的大小比较①正实数大于零,负实数小于零,正实数大于负实数;②两个正实数,绝对值大的数较大;③两个负实数,绝对值大的数反而小.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.◆1、数a的相反数是-a,这里a表示任意一个实数.◆2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示任意一个实数,则|a|=o>0)0(=0)−o<0)◆1、当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.◆2、实数的混合运算顺序与有理数的混合运算的顺序一样,实数运算过程中的运算顺序为:先算乘方、开方、再算乘法、除法,最后算加法、减法,同级运算按照自左向右的顺序进行,有括号先算括号里的.◆3、实数的运算律.①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:ab=ba;④乘法结合律:(ab)c=a(bc)⑤分配律:a(b+c)=ab+ac.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.【例题1】(2022秋•丽水期中)把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③−13,④0.618,⑤−16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{……};分数集合:{……};无理数集合:{……}.【分析】利用整数、分数、无理数的定义分类填空.【解答】解:整数有:⑤−16=−4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③−13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1),故答案为:⑤⑥⑦⑧;①③④⑨;②2⑩.【点评】本题考查了实数的定义,解题的关键是掌握整数、分数、无理数的定义.【变式1-1】(2022秋•社旗县期末)实数−13,−6,0,﹣1中,为负整数的是()A.﹣1B.−6C.0D.−13【分析】根据实数的分类进行解答即可.【解答】解:这一组数中的负整数是﹣1.故选:A.【点评】本题考查的是实数,熟知实数的分类是解题的关键.【变式1-2】(2022秋•宁波期中)下列实数:2,39,1,2,−73,0.3⋅,分数有()A.2个B.3个C.4个D.5个【分析】根据实数的分类及分数的定义进行解答即可.−73,0.3⋅共3个.故选:B.【点评】本题考查的是实数,熟知所有的分数都是有理数是解题的关键.【变式1-3】(2022春•宜秀区校级月考)下列说法正确的是()A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B错误,无限不循环的小数是无理数,故C错误,实数分为有理数和无理数,故D正确.故选:D.【点评】考查了实数的概念,以及有理数和无理数概念及分类.【变式1-4】下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是2;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个【答案】B;【分析】直接利用有关实数的性质分别分析得出答案.【解答】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如4=2是有理数.故选:B.【变式1-5】(2022春•夏津县期末)下列说法中错误的是()A.3−27是整数B.−1713是有理数C.33是分数D.9的立方根是无理数【分析】根据立方根,算术平方根,有理数,无理数的意义,即可解答.【解答】解:A、∵3−27=−3,∴3−27是整数,故A不符合题意;B、−1713是有理数,故B不符合题意;C、33是无理数,不是分数,故C符合题意;D、∵9=3,3的立方根是33,33是无理数,∴9的立方根是无理数,故D不符合题意;故选:C.【点评】本题考查了实数,熟练掌握有理数,无理数的意义是解题的关键.【变式1-6】(2022秋•黑山县期中)把下列各数分别填入相应的集合内:33,−4,−34,0,﹣0.2121121112…(相邻两个2之间的1的个数逐次加1)【分析】根据无理数以及正实数的定义,在给定实数中分别挑出无理数以及正实数,此题得解.【解答】解:如图所示:【点评】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【变式2-7】(2023秋•滨湖区期中)将下列各数的序号填入相应的括号内:①﹣2.5;②313;③0;④2;⑤﹣8;⑥10%;⑦−27;⑧﹣1.12121112…;⑨2;⑩−0.345⋅⋅.整数集合:{…};负分数集合:{…};正有理数集合:{…};无理数集合:{…}.【分析】根据实数的分类,即可解答.【解答】解:整数集合:{③⑤⑨…};负分数集合:{①⑦⑩…};正有理数集合:{②⑥⑨…};无理数集合:{④⑧…}.故答案为:③⑤⑨;①⑦⑩;②⑥⑨;④⑧.【点评】本题考查了实数,熟练掌握实数的分类是解题的关键.【例题2】(2022•海淀区校级模拟)实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解答】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.【点评】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式2-1】(2022春•南岸区期中)实数a在数轴上对应点的位置如图所示,若实数b满足a<b<2,则b的值可以是()A.﹣2B.﹣1C.2D.3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:∵1<a<2,∴﹣2<﹣a<﹣1,∵﹣a<b<a,∴b只能是﹣1.故选:B.【点评】本题考查了数轴上的点和实数的对应关系,解决本题的关键是根据数轴上的点确定数的范围.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【变式2-2】(2023秋•昌黎县期中)如图,在数轴上,点A表示实数a,则a可能是()A.−12B.−10C.−8D.−3【分析】根据数轴可得−9<<−4,再逐一分析各选项的数据即可.【解答】解:∵﹣3<a<﹣2,∴−9<<−4,∵9<12,9<10,∴−12<−9,−10<−9,故A,B不符合题意;∵3<4,∴−3>−4,故D不符合题意;∵4<8<9,∴−9<−8<−4,即−3<−8<−2,故选:C.【点评】本题考查的是实数与数轴,实数的大小比较,掌握实数的大小比较的方法是解本题的关键.【变式2-3】(2023秋•新吴区校级期中)如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.【点评】本题考查了实数与数轴,根据正方形的特点找出滚动规律是解题的关键.【变式2-4】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,2.【分析】先计算﹣(﹣1)=1,﹣|﹣4|=﹣4,再利用数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.【解答】解:﹣(﹣1)=1,﹣|﹣4|=﹣4,用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<2<3.【变式2-5】(2022春•海安市校级月考)7、如图:数轴上表示1、5的对应点分别为A、B,且点A为线段BC的中点,则点C表示的数是()A.5−1B.1−5C.5−2D.2−5【分析】设C点表示的数为x,再根据中点坐标公式求出x的值即可.【解答】解:设C点表示的数为x,则r52=1,解得x=2−5.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.【变式2-6】(2023•市南区一模)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.【点评】本题考查了实数与数轴,利用相反数的意义,绝对值的性质,数轴上的点右边的总比左边的大是解题关键.【变式2-7】(2023春•岳池县期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为1+【分析】根据正方形的面积求出正方形的半径,即圆的半径为5,所以E点表示的数为OE的长度,即1+5.【解答】解:∵正方形的面积为5,∴AB为5;∵以A点为圆心,AB为半径,和数轴交于E点,∴AE=AB=5;∵A点表示的数为1,∴OE=OA+AE=1+5故答案为:1+5【点评】本题主要考查了实数与数轴的位置关系,结合正方形面积以及圆的半径考查.解题关键是求出OE的长度.【变式2-8】(2022秋•西安月考)如图,已知实数−5,﹣1,5,3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a﹣b的值.【分析】(1)根据数轴上两点间距离的计算方法进行计算即可得出答案;(2)先根据数轴上两点间距离的计算方法计算出a的值,再求a﹣b即可得出答案.【解答】解:(1)根据题意可得,点C与点D之间的距离为3−5;(2)根据题意可得,a=|﹣1+5|=5−1,b=3−5,a﹣b=5−1﹣(3−5)=25−4.【点评】本题主要考查了实数与数轴及数轴上两点间距离,熟练掌握实数与数轴上的点是一一对应关系及数轴上两点间距离的计算方法进行求解是解决本题的关键.【例题3】实数−3的绝对值是()A.3B.C.−3D.33【分析】直接利用绝对值的性质分析得出答案.【解答】解:实数−3的绝对值是:3.故选:A.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.【变式3-1】−2的相反数是()A.−2B.2CD.2【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得−2的相反数是:2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.【变式3-2】(2023春•潮南区期中)5−2的相反数是()A.﹣0.236B.5+2C.2−5D.﹣2+5【分析】根据相反数的定义即可得出结论.【解答】解:5−2的相反数是2−5.故选C.【点评】本题考查的是相反数,熟知只有符号不同的两个数叫互为相反数是解题的关键.【变式3-3】(2023春•京山市期中)下列各组数中互为相反数的是()A.﹣2与(−2)2B.﹣2与3−8C.﹣2与−12D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、(−2)2=2,﹣2与(−2)2是互为相反数,故本选项正确;B、3−8=−2,﹣2与3−8相等,不是互为相反数,故本选项错误;C、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.【变式3-4】(2023秋•秦都区校级月考)下列说法正确的是()A.2的绝对值是22B.2的倒数是22C.2的相反数是22D.4的平方根为±2【分析】根据绝对值的知识、二次根式的知识、平方根的知识、相反数的知识分别对四个选项进行分析.【解答】解:2的绝对值是2,所以A选项不正确;2的倒数是22,所以B选项正确;2的相反数是−2,所以C选项不正确;4的平方根是±2,所以D选项不正确.故选:B.【点评】本题主要考查了绝对值的知识、二次根式的知识、平方根的知识、相反数的知识.【变式3-5】填空:(1)5的相反数是,绝对值是;(2)3−1的相反数是,绝对值是;(3)若|x|=3,则x=.【分析】根据相反数和绝对值的定义即可得出答案.【解答】解:(1)5的相反数是−5,绝对值是5;(2)3−1的相反数是1−3,绝对值是3−1;(3)∵|x|=3,∴x=±3.故答案为:(1)−5,5;(2)1−3,3−1;(3)±3.【点评】本题考查了实数的性质,算术平方根,掌握绝对值等于3的数有2个是解题的关键.【变式3-6】(2022秋•余姚市校级期中)a是4的算术平方根,b是27的立方根,c是15的倒数.(1)填空:a=,b=,c=;(2)求o+p+2−的值.【分析】(1)直接利用算术平方根的概念以及立方根的概念、倒数的概念分别分析得出答案;(2)直接利用绝对值的性质、立方根的性质、算术的性质分析得出答案.【解答】解:(1)∵a是4的算术平方根,b是27的立方根,c是15的倒数,∴a=2,b=3,c=5;故答案为:2,3,5;(2)原式=2(3+5)+22−2×5=6+25+4−25=10.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.【变式3-7】(2022秋•芗城区校级月考)31−2与33−2互为相反数,求代数式6x﹣9y+5的值.【分析】由题意得方程1﹣2x+3y﹣2=0,求得2x﹣3y=﹣1,再将其代入求解即可.【解答】解:由题意得1﹣2x+3y﹣2=0,整理,得2x﹣3y=﹣1,∴6x﹣9y+5=3(2x﹣3y)+5=3×(﹣1)+5=﹣3+5=2.【点评】此题考查了运用立方根和相反数进行化简、求值的能力,关键是能准确理解并运用以上知识和整体思想.【变式3-8】(2022春•如皋市校级月考)已知|x|=5,y是11的平方根,且x>y,求x+y的值.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=5,∴x=±5,∵y是11的平方根,∴y=±11,∵x>y,∴当x=5,则y=−11,故x+y=5−11,当x=−5,则y=−11,故x+y=−5−11,综上所述:x+y的值为5−11或−5−11.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.【例题4】(2023•潍坊)在实数1,﹣1,0,2中,最大的数是()A.1B.﹣1C.0D.2【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:∵﹣1<0<1<2,∴在实数1,﹣1,0,2中,最大的数是2,故选:D.【点评】本题主要考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【变式4-1】(2022•沂源县一模)在3,−3,0,2这四个数中,最小的一个数是()A.3B.−3C.0D.2【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小即可求解.【解答】解:在3,−3,0,2这四个数中,最小的一个数是−3.故选:B.【点评】此题考查了实数大小比较,可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.【变式4-2】三个数﹣π,﹣3,−3的大小顺序是()A.﹣3<﹣π<−3B.﹣π<﹣3<−3C.﹣π<−3<−3D.﹣3<−3<−π【分析】先对无理数进行估算,再比较大小即可.【解答】解:﹣π≈﹣3.14,−3≈−1.732,因为3.14>3>1.732.所以﹣π<﹣3<−3.故选:B.【点评】本题考查了同学们对无理数大小的估算能力及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.【变式4-3】(2023秋•农安县期中)将数“22,5,−2,0,﹣1.6”按从小到大的顺序排列,并用“<”连接起来是:.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵22=8>5,−2≈−1.57>﹣1.6,∴﹣1.6<−2<0<5<22,故答案为:﹣1.6<−2<0<5<22.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.【变式4-4】设a为实数且0<a<1,则在a2,a,,1这四个数中()A.1>>>2B.2>>>1C.>>1>2D.1>>>2【分析】根据正数比较大小的法则进行解答即可.【解答】解:∵0<a<1,∴0<a2<a<<1,1>1,∴1>>a>a2.故选:D.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.【变式4-5】比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.5<37<2D.37<2<5【分析】把2转化为4,38,即可比较大小.【解答】解:∵2=4,∴5>2,∵2=38,∴2>37,∴5>2>37,即37<2<5,故选:D.【点评】本题考查了实数大小的比较,解决本题的关键是把2转化为4,38.【变式4-6】比较大小:− 1.5.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:(−3)2=3,(﹣1.5)2=2.25,∵3>2.25,∴−3<−1.5.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.【例题5】已知:x<21<y(x,y是两个连续整数),则x,y的值为()A.x=2,y=3B.x=3,y=4C.x=4,y=5D.x=5,y=6【分析】根据16<21<25,即可得出x、y的值.【解答】解:∵16<21<25,∴x=4,y=5;故选:C.【点评】本题考查了估算算术平方根的大小,解题的关键是用有理数逼近算术平方根.【变式5-1】(2023秋•郁南县期中)估算57的值应在()A.6~7之间B.7~8之间C.8~9之间D.不能确定【分析】利用无理数的估算即可求得答案.【解答】解:∵49<57<64,∴7<57<8,即57的值在7~8之间,故选:B.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.【变式5-2】(2022春•香洲区期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【解答】解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:18,∵16<18< 4.52,∴4<18<4.5,∴大正方形的边长最接近的整数是4.故选:A.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题的关键.【变式5-3】(2022春•江津区校级月考)若x、y为两个连续的整数,且x<39<y,则x+y=.【分析】通过36<39<49求解.【解答】解:∵36<39<49,∴6<39<7,∴x=6,y=7,∴x+y=13.故答案为:13.【点评】本题考查了估算算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-4】(2023秋•青龙县期中)估算2+14的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间【分析】先估算出14的取值范围,进而可得出结论.【解答】解:∵9<14<16,∴3<14<4,∴5<2+14<6.故选:B.【点评】本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解题的关键.【变式5-5】(2023秋•秦都区期中)估计23−2的值在()A.2到3之间B.1到2之间C.3到4之间D.4到5之间【分析】先估算出23的大小,进而估算23−2的范围.【解答】解:∵16<23<25,∴4<23<5,∴2<23−2<3,∴23−2的值在2和3之间.故选:A.【点评】本题考查了估算无理数的大小,估算无理数大小要用逼近法.【变式5-6】(2022•南关区校级开学)已知x,y为两个连续的整数,且x<20<y,则5x+y的值为.【分析】先求出20的范围,求出x、y的值,求出5x+y的值,根据平方根的定义求出即可.【解答】解:∵4<20<5,∴x=4,y=5,∴5x+y=5×4+5=25,∴5x+y的平方根是±5,故答案为:±5.【点评】本题考查了算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-7】(2023秋•二七区校级月考)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2−1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将2减去其整数部分,差就是2的小数部分.请解答:(1)23的整数部分是,小数部分是;(2)如果7+1的小数部分为,9−17的整数部分为b,求+−7的平方根;(3)已知10+7=+,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)根据算术平方根的定义,估算无理数23的大小即可;(2)根据算术平方根的定义估算无理数7+1,9−17的大小即可确定a、b的值,再代入计算即可;(3)根据算术平方根的定义估算无理数10+7的大小确定整数部分x,小数部分是y,再求出x﹣y的相反数即可.【解答】解:(1)42=16,52=25,而16<23<25,∴4<23<5,∴23的整数部分是4,小数部分为23−4,故答案为:4,23−4;(2)∵22=4,32=9,而4<7<9,∴2<7<3,∴3<7+1<4,∴7+1的整数部分是3,小数部分为7+1﹣3=7−2,即a=7−2;∵4<17<5,∴﹣5<−17<−4,∴4<9−17<5,∴9−17的整数部分是4,即b=4,∴a+b−7=7−2+4−7=2,∴+−7的平方根是±2;(3)∵2<7<3,∴12<10+7<13,∴10+7的整数部分是12,小数部分是10+7−12=7−2,又∵10+7=+,其中x是整数,且0<y<1,∴x=12,y=7−2,∴x﹣y的相反数是y﹣x=7−14.【点评】本题考查估算无理数的大小,掌握算术平方根、平方根的定义是正确解答的前提.【例题6】通过估算,比较下列各组数的大小:(1)6(2(3)5−121;(4)3+12112.【分析】(1)利用平方运算,比较大小即可解答;(2)根据算术平方根的意义,比较大小即可解答;(3)先估算出5的值的范围,再估算出5−1的值的范围,进行计算即可解答;(4)先估算出3的值的范围,再估算出3+1的值的范围,进行计算即可解答.【解答】解:(1)∵62=36,(35)2=35,∴36>35,∴6>35,故答案为:>;(2)∵8<10,∴8<10,故答案为:<;(3)∵4<5<9,∴2<5<3,∴1<5−1<2,∴12<5−12<1,故答案为:<;(4)∵1<3<4,∴1<3<2,∴2<3+1<3,∴132,故答案为:<.【点评】本题考查了数的大小比较,熟练掌握估算算术平方根的值的大小是解题的关键.【变式6-1】(2023春•西城区校级期中)比较大小:(1;(2)5−11.【分析】(1)先把4写成算术平方根的形式,然后根据算术平方根的被开方数越大,那个数就越大进行解答;(2)先估算5的大小,然后进行判断即可.【解答】解:(1)∵4=16,17>16,∴17>4;(2)∵2<5<3,∴5−1>1,故答案为:(1)>;(2)>.【点评】本题主要考查了实数的大小比较,解题关键是能够正确的估算无理数的大小.【变式6-2】(2022秋•新津县校级月考)比较大小:3−1212,23.【分析】(1)比较出两个数的差的正负,即可判断出它们的大小关系.(2)首先比较出两个数的平方的大小关系;然后根据:两个正实数,平方大的,这个数也大,判断出原来的两个数的大小关系即可.【解答】解:(1)∵3−12−12=32−1<0,∴3−12<12.(2)(32)2=18,(23)2=12,∵18>12,∴32>23.故答案为:<、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个正实数,平方大的,这个数也大.【变式6-3】(2023春•前进区月考)比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.37<2<5D.37<5<2【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【解答】解:∵26=64,(5)6=[(5)2]3=125,(37)6=[(37)3]2=49,而49<64<125,∴(37)6<(5)6<26,∴37<2<5.故选:C.【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.【变式6-4】比较下列各组数的大小:(1)120与11.(2)5+12与2.【分析】(1)根据11=121,即可进行比较;(2)先通分,可得2=42,再比较分子5+1与4的大小即可求解.【解答】解:(1)∵11=121,120<121,∴120<11.(2)∵2=42,5+1<4,∴5+12<2.【点评】此题主要考查了算术平方根的估算能力,两个正数的算术平方根的比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的式子的值就大.【变式6-5】比较下列各组数的大小(1)8与10;(2)65与8;(3)5−12与0.5;(4)5−12与1.【分析】(1)根据8<10,即可解答;(2)根据8=64,即可进行比较;(3)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可;(4)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可.【解答】解:(1)∵8<10,∴8<10;(2)∵64=8,64<65,∴65>64,∴65>8;(3)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12>12.(4)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12<1.【点评】本题考查了数的大小比较的应用,主要考查学生能否选择适当的方法比较两个数的大小.【例题7】(2022秋•大竹县校级期末)实数a、b在数轴上对应点的位置如图,则|a﹣b|−2的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用算术平方根与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|−2=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、算术平方根与绝对值的性质.此题难度适中,注意2=|a|.【变式7-1】实数a、b在数轴上所对应的点如图所示,则|3−b|+|a+3|+2的值.【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【解答】解:由数轴可得:a<−3,0<b<3,故|3−b|+|a+3|+2=3−b﹣(a+3)﹣a=3−b﹣a−3−a=﹣2a﹣b.故答案为:﹣2a﹣b.【点评】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.【变式7-2】实数a、b、c在数轴上的位置如图,化简(−p2−|a+c|+(−p2−|b|【分析】利用数轴首先得出各式的符号,进而化简得出答案.【解答】解:如图所示:a﹣b<0,a+c<0,c﹣b<0,b>0,则原式=b﹣a+a+c+b﹣c﹣b=b.【点评】此题主要考查了实数与数轴,正确判断出各式的符号是解题关键.【变式7-3】(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:2+|a+b|+3(+p3−|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.【点评】此题主要考查了实数运算以及实数与数轴,正确化简各式是解题关键.【变式7-4】实数a,b,c表示在数轴上如图所示,完成下列问题,试化简:(−p2−|−U+3(−p3.【分析】根据题意可得:b<0<a<c,从而可得a﹣c<0,b﹣a<0,然后利用二次根式的性质,绝对值,立方根的意义进行化简计算,即可解答.【解答】解:由题意得:b<0<a<c,∴a﹣c<0,b﹣a<0,∴(−p2−|−U+3(−p3=c﹣a﹣(a﹣b)+b﹣c=c﹣a﹣a+b+b﹣c=2b﹣2a.【点评】本题考查了整式的加减,实数与数轴,准确熟练地进行计算是解题的关键.【变式7-5】(2022秋•保定月考)如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点B 表示3,设点A所表示的数为m.(1)实数m的值是;(2)求(m+2)2+|m+1|的值.【分析】(1)根据实数与数轴上的点是一一对应关系进行计算即可得出答案;(2)把(1)中m的值代入进行计算即可得出答案.【解答】解:(1)根据题意可得,m=3−2;故答案为:3−2;(2)m+1=3−2+1=3−1,∵1<3<2,∴0<3−1<1,(m+2)2+|m+1|=(3−2+2)2+|3−1|=(3)2+3−1=3+3−1=2+3.故答案为:2+3.【点评】本题主要考查了实数与数轴及绝对值,熟练掌握实数与数轴上的点是一一对应关系及绝对值的性质进行求解是解决本题的关键.【变式7-6】(2022秋•青龙县月考)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A 表示−2,设点B所表示的数为m.(1)实数m的值是;(2)求(m+1)(1﹣m)的值;(3)在数轴上还有C,D两点分别表示实数c和d,且|c+3|与−5互为相反数,求c+3d的平方根.【分析】(1)根据点A沿数轴向右爬了2个单位长度到达点B,即可得到m的值;(2)根据(1)的结果求值即可;(3)根据非负数的性质得到c,d的值,代入代数式求值,再求平方根即可得出答案.【解答】解:(1)∵一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示−2,∴m=−2+2,故答案为:−2+2;(2)(m+1)(1﹣m)=1﹣m2=1﹣(−2+2)2=1+42−6=42−5;(3)∵|c+3|与−5互为相反数,∴|c+3|+−5=0,∵|c+3|≥0,−5≥0,∴c+3=0,d﹣5=0,∴c=﹣3,d=5,∴c+3d=(﹣3)+3×5=﹣3+15。
八年级上第二章实数复习

(1)
4+x
(2)
4+ x
2
(3)
1 3 2 1 x−
例3:解下列方程: :解下列方程: 2 3 (x 1. 9(3 − y ) 2 = 4 2. 27 − ) + 125 = 0
解: (3 − y ) = 4 9
2
解:
4 3− y = ± 9
1 2 y = 2 或y = 3 3 3
2 3 27( x − ) = −125 3 2 3 125 (x − ) = − 3 27
)
=2 2− 3
= 3− 2
原式 = 2 2 − 3 + 2 + 3 − 3 − 2) ( =2 2− 3+ 2+ 3− 3+ 2 =2 2+ 2+ 2− 3+ 3− 3
=4 2− 3
5.已知实数 、b、c,在数轴上的位置如下图所示, 已知实数a、 、 ,在数轴上的位置如下图所示, 已知实数 试化简: 试化简:
3
a
注意: 注意:
这个根指数3 这个根指数3是绝对不可省 的.
一、算术平方根、平方根、立方根 3、性质及区别 算术平方根:算术平方根双重非负性; 算术平方根:算术平方根双重非负性;算术平方根 等于本身的数 平方根:非负数有算术平方根;正数的两个平方根 平方根:非负数有算术平方根; 互为相反数; 互为相反数;平方根等于本身的数 立方根:任何数都有立方根; 立方根:任何数都有立方根;立方根等于本身的数
16 25
二、实数 2、实数 实数和数轴上点的对应关系
和实数相关的概念。例如: 和实数相关的概念。例如:− π 的 倒 数 是 - π
1
每一个实数都可以用数轴上的一个点来表示;反过来, 每一个实数都可以用数轴上的一个点来表示;反过来,数 轴上的每一点都表示一个实数。 轴上的每一点都表示一个实数。即实数和数轴上的点是一 一对应的。 一对应的。
初二实数复习
二元一次方程组1、什么叫做方程:方程:含有未知数的等式,即:⒈方程中一定有一个或一个以上含有未知数2.方程式是等式,但等式不一定是方程等式的基本性质1等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
2、什么叫一元一次方程一元一次方程合并同类项移项⒈依据:等式的性质一⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-}。
性质2.下列四个式子中,是方程的是()3.下列说法中,正确的是()25.(1999•烟台)下列方程,以﹣2为解的方程是()究一、1、情景导航给出的问题中,哪些量是已知量?哪些量是未知量?有哪些等量关系?如果设老牛驮x个包裹,小牛牛驮y个包裹,可以列出哪些方程?2、我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?若设有鸡x 只,兔有y 只,又该如何列方程?讨论:观察列出的方程有什么特点?归纳:1)含有_____未知数,并且所_________________都是__________的方程,叫做二元一次方程。
2)把含有___________的两个______________________组成的方程,叫做二元一次方程组。
探究二、思考:同时满足 是哪一组数?归纳:1)一般的,使二元一次方程两边的值相等的___________的值,叫做二元一次方程的解。
二元一次方程的解有___________个。
2)二元一次方程组中各个方程的____________________,叫做这个二元一次方程组的解。
三、合作展示,纠错点拨1、下列方程①3x-5y=1, ②x=3y+1, ③3x -12=y , ④xy+2x-y=0, ⑤x=4, ⑥2x 2-y=9, ⑦01=+y x其中二元一次方程有_________________________________ 。
八年级数学实数复习经典
(2) 27 的整数部分是
,小数部分是
.
(3)满足 2 x 3 的整数是
(4)绝对值小于 7 的整数是
1
例 4:( 1) 3
的倒数是 _______,相反数是 _______,绝对值是 _______.
27
(2)2- 5 的相反数是 ____,绝对值是 ______ . 2 - 1的相反数是 _ ___,绝对值是 _____.
2
2a 1
a 1 3 a3 .
第1页 共1页
7、
和
统称为实数 .实数与
一一对应 .
无理数的三种形式: ( 1)
( 2)
( 3) 例 1:把下列各数填入相应的集合内,
4 2 ,- 3 9 ,3.1415, 10 ,0.6,0, 3 125 , ,
3
3
16
, 0.01001000100001 ……, 7.303003
() D.5 个
()
A . 64
B.一 27
3、下列说法中不正确的是(
).
C.一 343
D. 343
A.10 的平方根是 ± 10
B.- 2 是 4 的一个平方根
C. 4 的平方根是 2
9
3
D.0.01 的算术平方根是 0.1
4、若 2x 1 3 1 x 有意义,则 x 的取值范围是
()
1
A.x≥
2
例 2:近似数 1.8 ×10 5精确到
例 3:近似数 3.0 的准确数 a 的取值范围是 __
__ __.
相关练习选做:
1、已知下列各数: 13, , 0J,一 4, (一 3)2,一 3 , 3. 14— ,其中有平方根的数的
完整版)实数知识点总结
完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。
8.正整数又称自然数。
9.有理数包括正整数、零、负整数、正分数和负分数。
10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。
考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。
2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
6.如果a与b互为倒数,则有ab=1,反之亦成立。
7.倒数等于本身的数是1和-1,零没有倒数。
考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
3.正数a的正的平方根叫做a的算术平方根,记作“a”。
4.正数和零的算术平方根都只有一个,零的算术平方根是零。
5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。
考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。
八年级数学实数的复习
a b
(2)若 a>b,则
2 2
3
a 3 b或a3 b3
(3)若 a、b 都为正数,且 a>b 时,则 a >b 例:通过估算比较下列各组数的大小 比较两个数的大小: 方法一:估算法。如 3< 10 <4
方法二:作差法。如 a>b 则 a-b>0.
方法三:乘方法.如比较 2 6与3 3 的大小。 例:比较下列两数的大小
a。
( ) B、 4 2 ; D、0 没有平方根;
B、 3.14 3.14 。
2
2 (3) (3) 的算术平方根是
(4)若 x x 有意义,则 x 1 _______
____。
(5)已知△ABC 的三边分别是 a, b, c, 且 a , b 满足 a 3 (b 4) 2 0 ,求 c 的取值范围。
容 理数的有___。 (填序号) (2)有五个数:0.125125„,0.1010010001„,- , 4 , 3 2 其中无理数有 ( )个
2 、 3
⑦0.3030003000003„„(相邻两个 3 之间 0 的个数逐次增加 2) 、其中是有理数的有____;是无
【算术平方根】 :
1. 定义:如果一个正数 x 的平方等于 a,即 x 2 a ,那么,这个正数 x 就叫做 a 的算术平方根,
A、任何有理数均可用分数形式表示 ; C、1 和 2 之间的无理数只有 2 ;
(2)a,b 在数轴上的位置如图所示,则下列各式有意义的是(
a
A、 a b
ቤተ መጻሕፍቲ ባይዱ
0
B、 ab
b
C、 a b D、 b a
(3)比较大小(填“>”或“<”). 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》复习导学案
(一): 【知识梳理】
1. 实数的概念及分类: 和 统称为实数; 整数(包括:
正整数、0、负整数)和 (包括:有限小数和无限环循小数)统称为有理
数。
叫无理数 他的常见三种类型是(1)、
(2) (3)
2. 数轴:规定了 、 和 的直线叫数轴. 和
数轴上的点一一对应。
在数轴上表示无理数时要运用 构建直
角三角形。
3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记
作 , ∣a ∣ 0。
的绝对值是它本身; 的
绝对值是它的相反数;若∣a ∣= a,则a 0;若∣a ∣= -a,则a 0;
4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的
相反数是 , 若-a=a, 则a =
5. 倒数: 叫做互为倒数,倒数等于本身的数
是
6. 有效数字:一个近似数,从 边笫一个不是0的数字起,到最末
一个数字止,所有的数字,都叫做这个近似数的有效数字.
7. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这
种记数法叫做科学记数法. 如:407000= ,0.000043=
8. 大小比较:(1) > 0 > (2) 两个负数,绝对值大的反而 .
(3)数轴上 边的数总大于边 的数(4)两个无理数比较大小通
常用 法和 法,有时还会用 法。
(二)【习题检测】
1、-5的相反数是____, 倒数是____,-12的绝对值是=_____.
2、写出一个有理数和一个无理数,使它们都是小于-1的数 .
3、港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )
A .107.2610⨯ 元
B .972.610⨯ 元
C .110.72610⨯ 元
D .117.2610⨯元
4、.实数a b ,在数轴上对应点的位置如图所示,
a 1
-0
则必有( )
A .0a b +>
B .0a b -<
C .0ab >
D .
0a b < 5、下列各式中,正确的是( )
A .3152<<
B .4153<<
C .5154<<
D .161514<<
6、下列说法错误的是:( )A 、无理数是无限小数;B 、任何一个无理数都
可以用数轴上的点表示;C 、开方开不尽的数是无理数;D 、2π 是分数。
7.一组有规律排列的式子:―a
b 2,25a b ,―38a b ,411a b …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)
三、 练习:
一、选择题
1.计算(-2)2-(-2) 3的结果是( )
A. -4
B. 2
C. 4
D. 12
2.下列各式正确的是( )
A .33--=
B .32
6-=- C .(3)3--= D .0(π2)0-= 3.若23(2)0m n -++=,则2m n +的值为( )
A .4-
B .1-
C .0
D .4
4.下列实数中,无理数是( )
B.2π
C.13
D.12
5.估计68的立方根的大小在( )
A.2与3之间
B.3与4之间
C.4与5之间
D.5与6之间
6.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过5410
-⨯秒到达另一座山峰,已知光速为8310⨯米/秒,则两座山峰之间的距离用科学...
记数法...
表示为( ) A .31.210⨯米 B .31210⨯米 C .41.210⨯米 D .5
1.210⨯米 7.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳
米,如将这种病毒排成1毫米长,则病毒的个数是( )
A.102个 B 104个 C 106个 D 108个
二、解答题:
1、解方程(1)4)3(92=-y (2)()01253273=++x
2、若()x x -=-222,则x 的取值范围是
3、已知115+的小数部分为m ,115-的小数部分为n ,则=+n m
4、下列说法正确的是( )
A 、16的平方根是4±
B 、6-表示6的算术平方根的相反数
C 、 任何数都有平方根
D 、2a -一定没有平方根
5、若335=-m ,则=m
6、若0=+x x ,则x 的取值范围是 ;()x x -=-4433
,则x 的取值范围是
7、已知x x y 21121-+-+=,求y x 32+的平方根
8、如果一个数的平方根是1+a 和72-a ,求这个数
9、已知732.13≈,477.530≈,(1)≈300 ;(2)≈3.0 ;
(3)0.03的平方根约为 ;(4)若77.54≈x ,则=x
练习:已知442.133≈,107.3303≈,694.63003≈,求(1)≈33.0 ;
(2)3000的立方根约为 ;(3)07.313≈x ,则=x
基础训练:
1、下列实数中是无理数的为( )A. 0 B. 3.5-
2、 的相反数是 ,绝对值
3绝对值等于 的数是 , 的平方是 4
5求绝对值
6、判断下列说法是否正确:
1.实数不是有理数就是无理数。
( )
2.无限小数都是无理数。
( )
3.无理数都是无限小数。
( )
4.带根号的数都是无理数。
( )
5.两个无理数之和一定是无理数。
( )
6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
( )
7、已知a 、b 、c
a b b c ++
8a
和b 之间,即a b <<,那么a 、b 的值是
c
a O b。