多元函数微分学及应用经典例题
第9章 多元函数微分法及其应用(题库)答案

C ).
x 1 y 1 z 1 1 2 3
第 9 章 多元函数微分法及其应用(题库)答案
第 4 页
共计 10 页
C.
x 1 y 1 z 1 1 2 3
D.
x 1 y 2 z 3 1 1 1
C ).
28.(8-6)曲面 xyz 6 在点 1, 2,3 处的切平面方程是( A. 6 x 3 y 2 y 1 0 C. 6 x 3 y 2 z 18 0
t
22.(8-4)设 z uv sin t ,而 u e , v cos t ,求 解:
dz z du z dv z vet u sin t cos t et cos t sin t cos t . dt u dt v dt t
2 2
B.
x 2 y 1 == 4 2
z4 -1
D. 2 x y 4 z 6 0 C ).
31.(8-6)旋转抛物面 z x y 1 在点 2,1, 4 处法线方程为( A. 4 x 2 2 y 1 z 4 0 C. B.
第 3 页 共计 10 页
dz . dt
第 9 章 多元函数微分法及其应用(题库)答案
23.(8-5)已知方程 x y 1 0 在点 0,1 的某邻域内能唯一确定一个单值可导且 x 0
2 2
时
y 1 的隐函数 y f x ,求这函数的一阶导数在 x 0 的值
z . x
z 2x 3y x
2
z x
2
x 1 y 2
2 1 3 2 8 .
z . y
第八章 多元函数微分学及其应用测试题

多元函数微分学及其应用(时间:150分钟)一、选择题(每小题3分,共15分)1、二重极限21lim 1x x y x y a x +→∞→⎛⎫- ⎪⎝⎭之值为( ).(A ) 0; (B ) 1; (C ) 1e -; (D ) e .2、设函数),(y x f 在),(00y x 处的偏导数),(y x f x 与),(y x f y 存在,则( ).(A ) ),(y x f 在),(00y x 处可微;(B ) ),(y x f 在),(00y x 处连续;(C ) ),(y x f 在),(00y x 处沿任意方向的方向导数存在;(D ) 以上三个结论都不正确.3、已知矩形的周长为2p ,将它绕其一边旋转而形成一个旋转体,当此旋转体的体积为最大时,矩形两边长分别为( ).(A ),22p p ; (B )2,33p p ; (C ) 3,44p p ; (D ) 23,55p p . 4、假设曲线2121522y x z x =-⎧⎪⎨=-⎪⎩在点(1,-1,-2)处的切线与直线533903210,x y z x y z -+-=⎧⎨-+-=⎩的夹角ϕ=( ).(A ) 0 ; (B )4π; (C ) 3π; (D )2π. 5、设(),()f x g x 是可微函数,且满足(,)(25)(25)u x y f x y g x y =++-, (,0)sin 2u x x =,(,0)0y u x =,则(,)u x y =( ).(A )sin 2cos5x y ; (B )sin 5cos 2x y ; (C )cos5sin 2x y ; (D )cos 2sin 5x y .二、填空题(每小题3分,共15分)1、设y x e u xsin -=,则y x u ∂∂∂2在点)1,2(π处的值为 . 2、设y x y x y x z -+++=arctanln 22,则dz = . 3、函数z y x u 1⎪⎪⎭⎫ ⎝⎛=在点(1,1,1)处的梯度为 . 4、已知⎪⎭⎫ ⎝⎛=z y z x ϕ,其中ϕ为可微分函数,则=∂∂+∂∂yz y x z x . 5、已知曲面xy z =上点p 处的法线l 平行于直线2121326:1-=--=-z y x l ,则法线l 的方程为 . 三、计算题(每小题6分,共30分)1、设)sin ,2(x y y x f z -=,其中),(v u f 具有连续的二阶偏导数,求yx z ∂∂∂2. 2、已知),(),,(z y x y x f z ϕ==,其中ϕ,f 均为可微分函数,求dxdz . 3、假设函数(,,)w f x y z =,其中f 具有二阶连续偏导数,(,)z z x y =由方程5551z xy z -+=所确定,求w x ∂∂,22w x ∂∂. 4、设n 是曲面222y x z +=在P (1,2,3)处指向外侧的法向量,求函数xz y x u 22233++=在点P 处沿方向n 的方向导数.5、在曲面222316x y z ++=上求一点,使曲面在此点处的切平面平行于下列两条直线:1361:458x y z l --+==,2:l x y z ==.四、(8分) 设),,(z y x f u =有连续偏导数,且ϕϕθϕθcos ,sin sin ,cos sin r z r y r x ===, 证明:若0=∂∂+∂∂+∂∂z u z y u y x u x ,则u 与r 无关. 五、(8分)一正圆锥的半径以每分钟7厘米的速度增大,而它的高以每分钟20厘米的速度减小,求当半径45r =厘米,高100h =厘米时该正圆锥的体积的变化率,此时体积是在增大还是减小?六、(8分)设椭圆12322=+y x 的内接等腰三角形之底边平行于椭圆长轴,求其最大面积.七、(8分) 试证光滑曲面0),(=--z y x z F 的所有切平面均与一固定非零向量平行.八、(8分)已知,,x y z 为实数,且2||3x e y z ++=,证明不等式2||1x e y z ⋅⋅≤.。
(完整版)多元函数微分法及其应用习题及答案

1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
第9章多元函数微分法及其应用近年试题

0809 B一、填空题(每小题3分,共18分)2、设)ln(xy z =,则其全微分dz = . 11dx dy x y+ 3、函数xy x y u 2222-+=的所有间断点是 .2{(,)|2,,}x y y x x R y R =∈∈二、选择题(每小题3分,共15分)1、22),(y x xyy x f +=,则极限=→→),(lim 00y x f y x ( A )(A )不存在 (B )1 (C )2 (D )0A当点(,)P x y 沿曲线y kx =趋向(0,0)时,222200lim (,)lim x x y kxk x f x y x k x →→==+21kk =+显然,当k 取值不同是,极限也不相同。
所以22(,)(0,0)limx y xyx y →+不存在.2、在曲线32,,t z t y t x =-==所有切线中,与平面433=++z y x 平行的切线( A )(A )只有一条; (B ) 只有两条; (C )至少有3条; (D ) 不存在曲线的切向量2((),(),())=(12,3)T t t t t t ϕψω'''=-,,平面的法向量(1,3,3)n = 22(12,3)(1,3,3)1690t t t t -⋅=-+=,,2(31)0t -=,1.3t =得所以只有一条切线满足条件.3、点()0,0是函数xy z =的( B )(A )极值点;(B ).驻点但不是极值点;(C )是极值点但不是驻点;(D )以上都不对 分析: 令0,0x y z y z x ====,得(0,0)是驻点,但点(0,0)是xy z =的鞍点,不是极值点.四、计算题(每小题8分,共32分)1、设, , ,sin y x v xy u v e z u+===求xz∂∂和y z ∂∂ 解z f f u f vx x u x v x∂∂∂∂∂∂=+⋅+⋅∂∂∂∂∂∂e sin e cos e [sin()cos()]u u x y v y v y x y x y =⋅+=⋅+++e sin e cos u u zf f u f v v x v y y u y v y∂∂∂∂∂∂=+⋅+⋅=⋅+∂∂∂∂∂∂e [sin()cos()]x y x x y x y =⋅+++ 五、解答题(每小题分10,共20分)1、要造一个容积为定数a 的长方形无盖容器,如何设计它的尺寸才能使它的表面积最小?此时最小表面积为多少?解:设长方体的长宽高分别为,,,z y x 则问题就是在条件(,,)0x y z xyz a ϕ=-=下求函数 22S xy xz yz =++ )0,0,0(>>>z y x的最小值. 作拉格朗日函数(,,)22(),L x y z xy xz yz xyz a λ=++++-求其对,,,x y z λ的偏导数,并使之为零,得到 20,20,2()0,0.y z yz x z xz x y xy xyz a λλλ++=⎧⎪++=⎪⎨++=⎪⎪-=⎩因为z y x ,,都不等于零, 得 11,22z x y ==代入0xyz a -=,得x y z ===这是唯一可能的极值点. 由问题本身可知最小值一定存在,所以最小值就在这个可能的极值点处取得.时, 最小表面积S =0910B一、填空题(每小题2分,共10分)2、设函数),(y x f z =是由方程z z y x 4222=++给出,则全微分=dz .2d 224x x ydy zdz dz ++=,2xdx ydydz z+=-.3、曲面14222=++z y x 在点)3,2,1(P 处的切平面方程为 .切平面得法向量(1,2,3)(1,2,3)(2,2,2)n x y z =(2,4,6),=切平面方程为2(1)+4(2)6(3)0,23140.x y z x y z --+-=++-=或 二、选择题(每小题2分,共10分)1、二元函数),(y x f 在点),(00y x 处可微是两个偏导数),(',),('0000y x f y x f y x 都存在的 ( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件.四、计算题(每小题10分,共40分) 1、设v u z ln 2=,而y x u =、y x v 23-=,求:xz∂∂、y z ∂∂. 解:()()22223323ln 2y y x x y x y x x z -+-=∂∂,()()223223223ln 2y y x x y x yx y z ----=∂∂1011B一、填空题(每小题3分,共15分)(1) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(|dz .(1,0)(1,0)(1,0)1|(ln(1))|()|1x y x y x y x dz e xe y dx xe dy y++++=++++++ (1,0)d 2ed (e 2)d zx y ∴=++(2) 旋转抛物面122-+=y x z 在点)4,1,2(处的法线方程是 . 法线的方向向量(2,1,4)(2,1,4)(2,2,1)s x y =-(4,2,1),=-法线方程是214421x y z ---==-. 二、单项选择题(每小题3分,共15分)(4) 设),(y x f z =的全微分为ydy xdx dz += 则点 )0,0( ( C ) .A 不是),(y x f 的连续点;.B 不是),(y x f 的极值点;.C 是),(y x f 的极小值点;.D 是),(y x f 的极大值点.分析:z ,x y x z y ==,得z 1,1,0xx yy xy z z ===,由210,10AC B A -=>=>,则点 )0,0(是),(y x f 的极小值点.三、求偏导数(每小题10分,共20分)(1)设),(3xyxy f x z =,其中f 具有二阶连续偏导数.求 y z ∂∂;22y z ∂∂;y x z ∂∂∂2.解:231223(())z yx f x yf f x x∂''=++-∂23123x f x yf xyf ''=+-3121(())z x xf f y x∂''=+∂ 4212x f x f ''=+ 242122()z x f x f y y ∂∂''=+∂∂421112212211(())(())x f x f x f x f x x ''''''''=⋅++⋅+ 531112222x f x x f xf ''''''=⋅++ y x z ∂∂∂22z y x ∂=∂∂4212()x f x f x∂''=+∂ 3421111222122224(())2(())y y x f x f y f xf x f y f x x ''''''=+⋅+⋅-+++- 3412112242.x f xf x yf yf ''''=++- (2)设),(y x z z =是方程)arc tan(z y x xyz ++=在)1,1,0(-点确定的隐函数,求xz∂∂及)1,1,0(-∂∂yz解:令)arctan(),,(z y x xyz z y x F ++-= …1分则 2)(11z y x xy F z +++-= 2)(11z y x yz F x +++-=2)(11z y x xz F y+++-= …6分 1])(1[1])(1[22-+++-+++-=-=∂∂z y x xy z y x yz F F x z z x ; …8分 11])(1[1])(1[22)1,1,0(-=-+++-+++-=-=∂∂-z y x xy z y x xz F F yz z y…10分六、应用题(本题满分10分)从斜边长为l 的一切直角三角形中,求有最大周长的直角三角形,并求出最大周长.解:设另两边长分别为y x ,,则 222l y x =+,周长 l y x C ++= …2分 设拉格朗日函数 )(),,(222l y x l y x y x F -++++=λλ …4分令 ⎪⎩⎪⎨⎧=-+==+==+=0021021222l y x F y F x F y x λλλ …6分解方程组得l y x 22==为唯一驻点,且最大周长一定存在 …8分 故当l y x 22==时,最大周长为l C )21(+= …10分1112B一、填空题(每小题2分,共10分)1. y x z 2=在点)1,1(处的._______________=dz22,dz xydx x dy =+112.x y dzdx dy ===+2. 设函数y xy ax x y x f 22),(22+++=在点)1,1(-取得极值,则常数_____=a .211(1,1)(4)0x x y f x a y ==--=++=,11(1,1)220y x y f xy ==--=+=,所以 5.a =-例36 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)(1,1)(1,1)(1,1)40220fx a y x f xy y ----⎧∂=++=⎪∂⎪⎨∂⎪=+=⎪∂⎩,因此有410a ++=,即5a =-. 因为22(1,1)4f A x-∂==∂,2(1,1)(1,1)22fB y x y--∂===-∂∂, 22(1,1)(1,1)22fC x y--∂===∂,2242(2)40AC B ∆=-=⨯--=>,40A =>,所以,函数(,)f x y 在(1,1)-处取得极小值.二、选择题(每小题2分,共10分)3. 在点P 处函数),(y x f 的全微分df 存在的充分条件为 ( C ) (A) y x f f ,均存在 (B) f 连续(C) f 的全部一阶偏导数均连续 (D) f 连续且y x f f ,均存在三、计算题(每小题8分,共40分)1. 设),(y x z z =是由方程z z y x 2222=++所确定的隐函数,计算22,x z x z ∂∂∂∂的值. 解:设 222(,,)2F x y z x y z z =++-,则2x F x =,2y F y = ,22,z F z '=-2,221z x x x z z ∂=-=∂--22()1z xx x z∂∂=∂∂-21(1)x z xz z -+=-22231(1)1(1)(1)xz xz x z z z -+-+-==-- 4. 求函数zx yz xy u ++=在点)3,1,2(沿着从该点到点)15,5,5(的方向导数.解 方向(3,4,12)l = 03412{,,}.13133l =1312cos ,134cos ,133cos ===γβα3)3,1,2(,5)3,1,2(,4)3,1,2(===z y x u u u ,1368cos cos cos =++=∂∂γβαz y x u u u l z . 五、证明题(每小题7分,共7分)证明(,)(0,0)(,)0(,)(0,0)x y f x y x y ≠==⎩在)0,0(点偏导数存在,但不可微.证: (,0)0,(0,)0f x f y ==,0(0,0)(0,0)(0,0)limlim00.x x x f x f f x∆→→+∆-===∆ 00(0,0)(0,0)(0,0)limlim 00.y y y f y f f y∆→∆→+∆-===∆ (,)(0,0)f x y 所以函数在处可导....................3分2202200lim ),(lim )0,0()0,0(limy x y x yx y x f y f x f z y x ∆∆∆∆∆∆∆∆ρ∆∆∆ρρρ+=+=--→→→当点(,)P x y ∆∆沿曲线y kx =趋向(0,0)时,22222222000()lim lim lim ()()()()x x y k xx y x y k x x y x y x k x ρ→∆→→∆=∆∆∆∆∆∆==∆+∆∆+∆∆+∆21kk =+. 显然,当k 取值不同是,极限也不相同。
多元微分几何应用典型例题与课外练习

多元微分几何应用典型例题与课外练习一、典型例题例1 求曲线sin ,1cos ,4sin 2t x t t y t z =−=−=在点2t π=处的切线方程和法平面方程.解 因()1cos ,()sin ,()2cos 2t x t t y t t z t ′′′=−==,故在 2t π=处的切向量为.又在 2t π=处0001,1,2x y z π=−==11211x y π+−−==.法平面方程为1102x y z π+−+−−=,即402x y π++−−=.例2 求曲线 2221y xz x⎧=⎨=+⎩在点处的切线及法平面方程.解:因 22,21yy zz ′′==−,所以11x y y y=′==,则在点处的切向量为1(1,,24−. 故过处的切线方程为 121142x z −−==−, 法平面方程为11((2)024x y z −+−−=. 即40y +−= .注:该题也可用基本方法中的方法2做,请读者自己完成,并作比较.例3 求曲线 2223023540x y z x x y z ⎧++−=⎨−+−=⎩在点(1, 1, 1)处的切线和法平面方程.解: 设x 为参数,将曲线所给方程组的各方程两边对x 求导得222302350x yy zz y z ′′++−=⎧⎨′′−+=⎩ 解得10415649,106106x z x y y z y z y z−−+−′′==−−−−,(1,1,1)(1,1,1)91,1616y z ′′=−=.则在点(1, 1, 1)处的切向量为 91(1,,1616−. 所给曲线在(1, 1, 1)处的切线方程为 1119111616x y z −−−==−,即1111691x y z −−−==− , 法平面方程为911(1)(1)01616x y z −−−+−= ,即169240x y z +−−=. 例4 求椭球面222236x y z ++=在(1, 1, 1)处的切平面方程与法线方程.解 设222(,,)236F x y z x y z =++−,由于 2,4,6x y z F x F y F z ′′′===在全平面上处处连续,在(1, 1, 1)处 2,4,6x y z F F F ′′′===,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为2(1)4(1)6(1)0x y z −+−+−=,即 236x y z ++=所求法线方程为111246x y z −−−==,即111123x y z −−−==. 例5 求曲面222x z y =+平行于22z x y =+的切平面方程.解:设切点为 0000(,,)X x y z . 曲面 222x z y =+,因此,2z z x y x y ∂∂==∂∂.则曲面在 0000(,,)X x y z 处的法向量为00(,2,1)x y .曲面在点0X 处的切平面方程为00000()2()()0x x x y y y z z −+−−−=又切平面与已知平面22z x y =+平行,因此0021221x y −==−,解得切点坐标为000(,,)(2,1,3)x y z =,所求切平面方程为2(2)2(1)(3)0x y z −+−−−=, 即2230x y +−=.例 6 求曲面 sin cos ,sin sin ,cos (0,02)x a y a z a ϕθϕθθϕπθπ===<<<<在点000(,)P ϕθ处的切平面方程和法线方程.解 点000(,)P ϕθ对应曲面上的点 0000(,,)X x y z 其中00000000sin cos ,sin sin ,cos x a y a z a ϕθϕθθ===.0022000000sin 0(,)sin sin cos cos cos sin (,)P a z x a a a ϕϕθϕθϕθϕθ−∂==−∂000022000cos sin cos cos (,)sin cos sin 0(,)P a a y z a a ϕθϕθϕθϕϕθ∂==−∂0000022000000cos cos cos sin (,)sin cos cos sin sin sin (,)P a a x y a a a ϕθϕθϕϕϕθϕθϕθ−∂==−∂则曲面在点000(,)P ϕθ处的法向量为222000000(sin cos ,sin sin ,sin cos )a a a ϕθϕθϕϕ. 曲面在点0X 处的切平面方程为22000000002000sin cos (sin cos )sin sin (sin sin )sin cos (cos )0a x a a y a a z a ϕθϕθϕθϕθϕϕθ−+−+−=即00000sin cos sin sin cos x y z a ϕθϕθϕ++=所求的法线方程为00000222000000sin cos sin sin cos sin cos sin sin sin cos x a y a z a a a a ϕθϕθθϕθϕθϕϕ−−−==即0000000000sin cos sin sin cos sin cos sin sin cos x a y a z a ϕθϕθθϕθϕθϕ−−−==. 例7 求过直线3250x y z x y z −−=⎧⎨++=⎩,且与曲面2252228x y z −+=相切之切平面方程.解 过直线的平面方程可设为325()0x y z x y z λ−−−+++=,即(3)(2)(1)50x y z λλλ++−+−−=,其法向量为(3,2,1)λλλ+−−.记225(,,)2228F x y z x y z =−+−,则 4,4,2x y z F x F y F ′′′==−=设所求的切平面的切点为000(,,)x y z ,则曲面上0002(,,)x y z 处的法向量为00(4,4,2)x y −,且有0002200000(3)(2)(1)50(1)5222(2)8321(3)442x y z x y z tx y λλλλλλ⎧⎪++−+−−=⎪⎪−+=⎨⎪+−−⎪===⎪−⎩由(1)、(3)解得000222115,,248t t x y z t t t+−==−=−, 代入(2)得 2430t t −+=. 解得 121,3t t ==,故 123,7λλ==,则所求切平面方程为3253()0x y z x y z −−−+++=,或3257()0x y z x y z −−−+++=,即625x y z ++= 或 10565x y z ++=.例8 试证曲面 (yz xf x=上任一点处的切平面都过原点,其中()f u 为可微函数.2()()()()()zy y y y y y f xf f f x x x x x x x ∂′′=+⋅−=−⋅∂,1()()z y y xf f yx x x ∂′′=⋅=∂. 故曲面上点 0000(,,)X x y z 处的法向量为 (,,1)yf f f x′′−+−. 则过曲面上点 0000(,,)X x y z 的切平面方程为00000000000[()()]()()()y y y yz z f f x x f y y x x x x ′′−=−−+− 整理后得 000000000000[()()]()(y y y y yz z f f x f y x f x x x x x ′′−=−+−. 注意到0000(y z x f x =,从上述方程得切平面方程为 00000000[()()]()0y y y yf f x f y z x x x x ′′−+−=. 可知其必定过原点. 二、课外练习题1、求曲线 231,1,x t y t z t =+=−=在点(2, 1, 1)处的切线和法平面.2、求空间曲线22221010x y x z ⎧+=⎨+=⎩在点0(3,1,1)X 处的切线方程和法平面方程. 3、求曲面1xy yz zx ++=上点 (1,2,3)−−处的切平面和法线方程.4、求曲面 ,,v u x ye y ve z u v ===+在0u v ==处的切平面.5、设f 是可微函数,证明曲面 (,)0f cx az cy bz −−=上任意一点的法线与一定向量垂直.。
(完整版)多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
多元函数的微分学典型例题

多元函数的微分学典型例题例 1 设 2 2 y xy x z + - = .求它在点 ) 1 , 1 ( 处沿方向v = ) sin , cos ( a a 的方向导 数,并指出:(1) 沿哪个方向的方向导数最大? (2) 沿哪个方向的方向导数最小? (3) 沿哪个方向的方向导数为零?解 1 ) 1 , 1 ( = x z , 1 ) 1 , 1 ( = y z . ) 1 , 1 (v z¶ ¶ a a sin cos + = .因此(1) 函数 a a a j sin cos ) ( + = 在 4pa = 取最大值,即沿方向 ) 1 , 1 ( 的方向导数最大.(2) 函数 a a a j sin cos ) ( + = 在 4 pa - = 取最小值,即沿方向 ) 1 , 1 ( - - 的方向导数最小.(3) 43pa - = 是函数 a a a j sin cos ) ( + = 的零点,即沿方向 ) 1 , 1 (- 的方向导数为零.例 2 如果函数 ) , ( y x f 在点 ) 2 , 1 ( 处可微, 且从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 方向的方向 导数为2,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 方向的方向导数为 2 - .求 (1) 该函数在点 ) 2 , 1 ( 处的梯度;(2) 该函数在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向导数. 解 (1) 设 x f 和 y f 分别表示函数 ) , ( y x f 在点 ) 2 , 1 ( 处关于x 和 y 的偏导 数,从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 的方向为 1 l ,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 的方向为 2 l ,则 1 l 和 2 l 的方向余弦分别为 ) 0 , 1 ( 和 ) 1 , 0 ( - ,于是就有x f l f = ¶ ¶ 12 0 1 = × + × y f ,故 2 = x f ; 2 1 0 2 - = × - × = ¶ ¶ y x f f l f ,故 2 = y f . 因此 ) 2 , 2 ( ) 2 , 1 ( = gragf .(2) 在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向余弦为 ÷ ø öç è æ 5 4,5 3 ,设该方向为l ,则 l f ¶ ¶ ) 2 , 1 ( 5145 4 2 5 3 2 = ´ + ´ = .例 3 验证函数) , ( y x f ïî ï í ì = + ¹ + + = . 0 ,0 , 0 , 2 2 22 22 y x y x yx xy 在原点 ) 0 , 0 ( 连续且可偏导,但它在该点不可微.验证 注意不等式 | | 2 2 xy y x ³ + ,就有0 | | 0 2 2 22 2 2 22 ® + = + + £ + £y x y x y x y x xy , ) , ( y x ® ) 0 , 0 ( .故而 0 ) , ( lim)0 , 0 ( ) , ( = ® y x f y x f = ) 0 , 0 ( .因此, ) , ( y xf 在原点 ) 0 , 0 ( 连续. x f ) 0 , 0 ( = 0lim® x 0 )0 , 0 ( ) 0 , ( = - xf x f ,由变量对称性得 y f ) 0 , 0 ( 0 = .即该函数在原点 ) 0 , 0 ( 可偏导.假如 ) , ( y x f 在原点 ) 0 , 0 ( 可微,就应有) , ( y x f = - ) 0 , 0 ( f x f ) 0 , 0 ( + x y f ) 0 , 0 ( ) ( 2 2 y x y + +o ,即 ) , ( y x f = ) ( 2 2 y x + o .但这是不可能的,因为沿路径 ) 0 ( ¹ = k kx y ,就有= + ® 2 2 )0 , 0 ( ) , ( ), ( limyx y x f kx x = + ® 2 2 ) 0 , 0 ( ) , ( lim y x xykx x 0 1 lim 2 2 2 2 2 0 ¹ + = + ® k k x k x kx x .可见, ) , ( y x f ¹ ) ( 2 2 y x + o .因此, ) , ( y x f 在原点 ) 0 , 0 ( 不可微. 例 4 验证函数) , ( y x f ï îï íì = + ¹ + + + = . 0 , 0 , 0 , 1 sin ) ( 2 2 22 22 2 2 y x y x y x y x 的偏导函数 ) , ( y x f x 和 ) , ( y x f y 在原点 ) 0 , 0 ( 不连续,但它却在该点可微.验证x f ) 0 , 0 ( = 0lim® x 0 1sin lim ) 0 , 0 ( ) 0 , ( 2 0 = = - ® xx x f x f x ; ) , ( y x ¹ ) 0 , 0 ( 时,) , ( y x f x 22 2222222121 2sin()cos () x x x y x y x y x yæö =++- ç÷ +++ èø 2 2 2 2 2 2 1cos2 1 sin2 y x y x x y x x + + - + = .因此, ) , ( y x f x ï î ï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x x y x x 由变量对称,得) , ( y x f y ï îï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x y y x y ) , ( y x f x 在点 ) 0 , 0 ( 不连续.事实上,沿路径 x y = , ® ) , ( x x ) 0 , 0 ( 时,2 2 2 2 1 cos 2 2 2 1 sin2 ) , ( x x x x x x x f x - = 中,第一项趋于零,而第二项 22 1cos 1 x x - 的极限不存在(比如取 pk x k 2 1=, +¥ ® k 时有 0 ® k x ,而2 2 1cos 1 kk x x -¥ ® ).可见, x y x f ) 0 , 0 ( ) , ( lim ® ) , ( y x 不存在,因此 ) , ( y xf x 在点 ) 0 , 0 ( 不连续.同理可证 ) , ( y x f y 在点 ) 0 , 0 ( 不连续. 但由于0 1sin ) , ( 0 2 2 22 2 2 22 ® + £ + + =+ £y x y x y x y x y x f ,® ) , ( y x ) 0 , 0 ( ,就有 0 ) , ( 22® + yx y x f ,于是就有0 ) , ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2222® + =+ - - - yx y x f yx yf x f f y x f y x , ® ) , ( y x ) 0 , 0 ( ,即 ) ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2 2 y x y f x f f y x f y x + + + = - o . 可见 f 在点 ) 0 , 0 ( 可微. 例 5 证明函数) , ( y x f ï îïí ì = + ¹ + + = . 0 , 0 , 0 , 2 22 22 42 2 y x y x y x xy 在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在,但它在该点不连续,因此不可 微.证 设 ) sin , cos ( a a = l 则= - = ¶ ¶ ® tf t t f l f t )0 , 0 ( ) sin , cos ( lim 0 a a 32 2244 0 2cos sin lim ( cos sin )t t t t t a a a a ® = +3 0 , , , 22 2tan sin , , . 22p p a p p a a a ì= ï ï = íï ¹ ï î 可见在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在.但沿路径 2y x = ,有 = ® ) , ( lim )0 , 0 ( ) , ( 2y x f y y f y y y y y ¹ = + ® 1 2 lim 4 4 22 0 ) 0 , 0 ( 可见 f 在 原点 ) 0 , 0 ( 并不连续,因此不可微. 例 6 计算下列函数的高阶导数或高阶微分: (1) x yz arctan = ,求 2 2 x z ¶ ¶ , y x z ¶ ¶ ¶ 2 22 y z ¶ ¶ ;解 x z ¶ ¶ 2 2 2 2 2 1 y x y x y x y + - = + -= , y z ¶ ¶ 22 22 1 1 y x x xy x + = + =. 2 2 x z ¶ ¶ 2 2 2 ) ( 2 y x xy + = , y x z ¶ ¶ ¶ 2 2 2 2 2 2 ) ( y x x y + - = , 2 2 y z ¶ ¶ = 22 2 )( 2 y x xy+ - . (2) xyxe z = ,求 y x z ¶ ¶ ¶ 2 3 和 23 y x z¶ ¶ ¶ .解 x z ¶ ¶ = ) 1 ( xy e xye e xyxy xy + = + , 2 2 x z ¶ ¶ ) 2 ( ) 1 ( xy ye y e xy ye xy xy xy + = + + = ;yx z¶ ¶ ¶ 2 ) 2 ( ) 1 ( xy xe xe xy xe xy xy xy + = + + = . y x z ¶ ¶ ¶ 2 3 = = ¶ ¶ ¶¶ x y x z 3 = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ y x z x 2 xyxy xy xy e xy xye xye xy e ) 2 3 ( ) 2 ( + = + + + ;2 3 y x z ¶ ¶ ¶ = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ = y x z y 2 ( )= + + xy xy xe xy xe x ) 2 ( xye y x x x ) 3 ( 2 + . (3) ) ln(xy x z = ,求 z d 2 ; 解 x z 1 ) ln( ) ln( + = + = xy xy xy xy, xy z y xy x 1 = = , x xy y z xx 1= = ;y z y x xy x = = 2 , yy z 2 yx- = .2222222 2 12 xx xy yy d z dx dy z z dx z dxdy z dy x y x dx dxdy dy x y yæö¶¶ =+=++ ç÷ ¶¶ èø =+- .(4) ) ( sin 2 by ax z + = ,求 z d 3 .解 x z ) ( 2 sin by ax a + = , xx z ) ( 2 cos 2 2 by ax a + = , = 3x z ) ( 2 sin 4 3 by ax a + - ,) ( 2 sin 4 2 axby b a z xxy - = ; y z ) ( 2 sin by ax b + = , ) ( 2 cos 2 2 by ax b z yy + = ,= = yyx xyy z z ) ( 2 sin 4 2 by ax ab + - . = 3 y z ) ( 2 sin 4 3 by ax b + - .z d 3 = = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ z y dy x dx 33223322333 x x y xy y z dx z dx dy z dxdy z dy +++ ) ( 2 sin 12 ) ( 2 sin 4 2 3 by ax b a by ax a + - + - = ) ( 2 sin 12 2 by ax ab + - 3 4sin 2()b ax by -+ ) ( 2 sin ) ( 4 3 by ax b a + + - = .例 7 利用链式规则求偏导数 :(1) ÷ ÷ øö ç ç è æ = , y x xy f u .求 x u¶ ¶ , y u ¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 y u ¶ ¶ .解 设 xy t = , yxs = .x u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = x s s f x t t f s f y t f y ¶ ¶ + ¶ ¶ 1 , y u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = y s s f y t t f sfy x t f x ¶ ¶ - ¶ ¶ 2 ;y x u ¶ ¶ ¶ 2 ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ = y s s t f y t t f y t f 2 2 2 22 22 11 f f t f s y s y s t y s y æö¶¶¶¶¶ -++ ç÷ ¶¶¶¶¶¶ èø = ÷ ÷ øö ç ç è æ ¶ ¶ ¶ - ¶ ¶ + ¶ ¶ s t f y x t f x y t f 2 2 2 2 22 222 11 f f x f x y s y s t y s æö¶¶¶ -+- ç÷ ¶¶¶¶ èø 2 2 t f xy ¶ ¶ = s t f y x ¶ ¶ ¶ - 2 3 s fy t f ¶ ¶ - ¶ ¶ + 2 1 .2 2 y u ¶ ¶ ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ = y u y 2 f x f x y t y s æö ¶¶¶ =- ç÷ ¶¶¶èø 23 2 2 2 2 y xs f y x y s s t f y t t f x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = = ÷ ÷ øöç ç è æ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ ¶ y s s f y t t s f 2 2 2 23 2 2 2 2 2 y xs f y x s t f y x tf x x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ - ¶ ¶ = = ÷ ÷ ø ö ç ç è æ ¶ ¶ - ¶ ¶ ¶ 2 2 2 2 s f y x t sf x s f y x s f y x s t f y x t f x ¶¶ +¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 3 2 2 2 2 2 2 2 2 2 22 2 . (2) ) ( 222z y x f u + + = .求 x u ¶ ¶ , y u ¶ ¶ , z u¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 xu ¶ ¶ .解 设 2 2 2 z y x t + + = .x u ¶ ¶ ( 2 ) ( f x x tt f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + , y u ¶ ¶ ( 2 ) ( f y yt t f ¢ = ¶ ¶ ¢= ) 2 2 2 z y x + + , z u ¶ ¶ ( 2 ) ( f z zt t f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + ;y x u ¶ ¶ ¶ 2 = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ( )= + + ¢ ¶ ¶) ( 2 2 2 2 z y x f x y 4( xyf ¢¢ ) 2 2 2 z y x + + ; 22 xu ¶ ¶ = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u x ( ) 222 2() xf x y z x ¶¢ ++ ¶ 2( f ¢ = ) 2 2 2 z y x + + 2 4x + ( f ¢¢ ) 2 2 2 z y x + + . 例 8 设函数 ) , ( y x f z = 具有二阶连续导数.写出 2 2 x z ¶ ¶ 2 2 y z ¶ ¶ + 在坐标变换2 2 y x u - = , xy v 2 = 下的表达式.解x z ¶ ¶ = u z ¶ ¶ x u ¶ ¶ + v z ¶ ¶ x v ¶ ¶ x 2 = u z ¶ ¶ + y 2 vz¶ ¶ ,2 2 x z ¶ ¶ 2 = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + x v v u z x u u z x 2 2 2 2 22 2 2 z u z v y v u x v x æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø 2 2 24 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 222 4 v z y ¶ ¶ + 2 + u z ¶ ¶ .y z ¶ ¶ = u z ¶ ¶ y u ¶ ¶ + v z ¶ ¶ y v ¶ ¶ y 2 - = u z ¶ ¶ + x 2 vz¶ ¶ ,2 2 y z ¶ ¶ 2 - = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ - y v v u z y u u z y 2 2 2 2 22 2 2 z u z v x v u y v y æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø u z vz x v u z xy u z y ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 2 4 8 4 222 2 2 2 2. 则2 2 x z ¶ ¶ 22 y z ¶ ¶ + 2 2 2 4 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 2 22 4 v z y ¶ ¶ + 2 + u z ¶ ¶ = ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ + u z v z x v u z xy u z y 2 4 8 4 2 2 2 2 2 2 2÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ + 2 2 2 22 2 ) ( 4 v z u z y x . 例 9 (1)写出函数 ) , ( y x f 9 8 6 2 23 2 2 3 3 + - - - - + = y x xy y x y x 在点 ) 2 , 1 ( 的Taylor 展开式.解= ) 2 , 1 ( f 16 - , = ) 2 , 1 ( x f 13 - , = ) 2 , 1 ( y f 6 - ; = ) 2 , 1 ( xx f 10, = ) 2 , 1 ( xy f 12 - , = ) 2 , 1 ( yy f 8;= ) 2 , 1 ( 3 x f 18, = ) 2 , 1 ( xxy f 4 - , 4 ) 2 , 1 ( - = xyy f , 6 ) 2 , 1 ( 3 = y f .更高阶的导数全为零 .因此, ) , ( y x f = + ) 2 , 1 ( f + - ) 1 )( 2 , 1 ( x f x ( 1 , 2 )(2)y f y - + - + 2 ) 1 )( 2 , 1 ( x f xx + - - ) 2 )( 1 )( 2 , 1 ( 2 y x f xy 2( 1 , 2 )(2) yy f y - 3 3 ( 1 , 2 )(1) x f x +- 3 ) 2 ( ) 1 )( 2 , 1 ( 3 2 + - - + y x f xxy 2) 2 )( 1 )( 2 , 1 ( - - y x f xyy 3 3 ( 1 , 2 )(2)y f y +- 22 1613(1)6(2)5(1)12(1)(2)4(2)x y x x y y =-----+----+- 3 2 2 3 ) 2 ( ) 2 )( 1 ( 2 ) 2 ( ) 1 ( 2 ) 1 ( 3 - + - - - - - - - + y y x y x x .(2) 求函数 ) , ( y x f y x e + = 在点 ) 0 , 0 ( 的n 阶Taylor 展开式,并写出余项.解x f ¶ ¶ y x e + = , y f ¶ ¶ yx e + = ,一般地,有 k h k h yx f ¶ ¶ ¶ + y x e + = ,则 1 ) 0 , 0 ( 00 = = ¶ ¶ ¶ + + e yx f kh k h . 因此, ) , ( y x f 在点 ) 0 , 0 ( 的n 阶Taylor 展开式为) , ( y x f å = + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ = n k kf y y x x k 0 ) 0 , 0 ( ! 1 )! 1 ( 1 + n 1( , )n x y f x y x y q q + æö ¶¶ + ç÷ ¶¶ èø å = + + = nk k y x k 0 ) ( ! 1 )! 1 ( 1 + n yx n e y y x x 1q q + + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ , ) 1 0 ( < <q .例 10 求下列方程所确定的隐函数的导数或偏导数:(1) 0 arctan = - + a y a y x ,求 dx dy 和 2 2 dxy d ;解 0 1 1 2 = ¢ - ÷ øöç è æ + + ¢+ a y a y x a y ,即 a y y x a y a ¢ = + + ¢ + 2 2 ) ( ) 1 ( ,即 dx dy 22 ) ( y x a + = . 由 2 2 ) ( y x y a + ¢ = ,再求导 0 ) 1 )( ( 2 ) ( 2 = ¢ + + ¢ + + ¢ ¢ y y x y y x y ,解得 2 ) ( ) 1 )( ( 2 y x y y x y y + ¢ + + ¢ - = ¢ ¢ ,代入 = ¢ y 22)( y x a + ,得 2 2 dx y d 22 23 () () x y a a x y ++ = + . (2) 0 = -xyz e z,求 x z ¶ ¶ 、 y z ¶ ¶、 2 2 xz ¶ ¶ 和 y x z ¶ ¶ ¶ 2 ;解 方程 0 = -xyz e z 两端对x 求导,得 0 = - - x z x xyz yz e z , x z ¶ ¶ xye yzz - = ;方程 0 = -xyz e z 两端对y 求导,得 0 = - - z z y xyz xz e z , y z ¶ ¶ xye xzz - = .0 = - - x z x xyz yz e z 再对x 求导,得 0 2 = - - - - + xx x x zx z xx xyz yz xz z e z e z ,解得2 2 x z ¶ ¶ xy e e z z y x z z zx x - - + + = 2 ) ( 32 2 2 2 ) ( ) ( xy e e z y xy e z y ze zzz z - - - + = . 同理得y x z ¶ ¶ ¶ 2 32 2 2 2 )( ) ( xy e e z x xy e z x ze zzz z - - - + = . (3) 0 ) , , ( = + + + x z z y y x f ,求 x z ¶ ¶ 和 yz ¶ ¶.解 设 y x u + = , z y v + = , x z w + = ,方程 0 ) , , ( = + + + x z z y y x f 两端对x 求导,得 = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x w w f x v v f x u u f 0 1 = ÷ ø ö ç è æ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ x z w f x z v f u f,解得 x z¶ ¶ w v u w f f f f + + - = ;同理得 y z ¶ ¶ wv v u f f f f + + - = .例 11 求下列方程组所确定的隐函数的导数或偏导数 :(1) ï î ï í ì = + + = - - . 4 32 ,0 22 2 2 22 a z y x y x z 求 dx dy , dx dz , 2 2 dx y d 和 2 2 dx z d ; 解 方程对x 求导,注意 y 和z 是x 的函数,就有 î íì = ¢ + ¢ + = ¢ - - ¢ . 0 6 4 2 , 0 2 2 z z y y x y yx z *) 解得 dx dy ) 3 1 ( 2 6 z y xz x + + - = , dx dzzx z y xy 3 1 ) 3 1 ( 2 2 + = + = .方程 *)在对x 求导,有 ï î ï íì = ¢ + ¢ ¢ + ¢ + ¢ ¢ + = ¢ - ¢ ¢ - - ¢ ¢ . 0 6 6 4 4 , 0 2 2 2 2 2 2 z z z y y yx y y y z 解得 2 2 dx yd ) 3 1 ( 4 12 6 ) 3 1 ( 4 2 2 z y z z z y x + + ¢ + + ¢ + - = , 2 2 dxz d ) 3 1 ( 2 6 ) 1 ( 4 4 2 2 z y z y xy y y y + ¢ - - + ¢ + = ;代入 dx dy 和 dxdz的表达式,即得2 2 dx y d 2 22 3 ) 3 1 ( 2 3 ) 3 1 ( 4 ) 6 1 ( 4 ) 3 1 ( 4 12 z y x z y z x z y z x + -+ + - + + - = , 2 2 dx z d 222 3 ) 3 1 ( 3 ) 3 1 ( 2 ) 6 )( 1 ( ) 4 (2 1 z x z y xz x y x + - + + + + - = . (2) î í ì - = + = . ) , (, ) , , ( 2y v x u g v y v x u f u 求 x u ¶ ¶ 和 y v ¶ ¶ . 解 设 y v s + = , x u t - = , y v r 2 = ,方程对x 求导,注意u 和v 是x 的函 数,就有î íì + = + + = . ) , ( ) , (, ) , , ( ) , , ( ) , , (2 x r x t x x s x x u x r r t g t y v t g v s s x u f s x u f u s x u f u 即î íì + - = + + = . 2 ) , ( ) 1 )( , (, ) , , ( ) , , ( ) , , ( x r x t x x s x x u x yvv r t g u r t g v v s x u f s x u f u s x uf u 解得x u¶ ¶ ), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( r t g s x u f r t yvg s x u f r t g s x u f r t yvg s x u f t s r u t s r x - - - + - - = ; 方程对 y 求导,注意u 和v 是x 的函数,就有ï îï í ì + + = + + = . ) 2 )( , ( ) , ( , 1) )( , , ( ) , , ( 2 v yvv r t g u r t g v v s x u f u s x u f u y r y t y y s y u y 解得y v ¶ ¶), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( 2 r t g s x u f r t yvg s x u f r t g s x u f v r t yvg s x u f t s r u r s r s - - - - - -= . 例 12 设函数 ) , ( y x f z = 具有二阶连续偏导数. 在极坐标 q cos r x = , q sin r y = 变换下,求 + ¶ ¶ 2 2 x f 2 2 yf¶ ¶ 关于极坐标的表达式.解2 2 y x r + = , xy arctan = q .所以= ¶ ¶ x f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x f x r r f q q 2 2 2 2 y x y f y x x r f + ¶ ¶ - + ¶ ¶ q qq q ¶ ¶ - ¶ ¶ = f r r f sin cos , = ¶ ¶ y f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y f y r r f q q 2 2 2 2 y x x f y x y r f + ¶ ¶ + + ¶ ¶ q q q q ¶ ¶ + ¶ ¶ = f r r f cos sin ; 2 2 x f ¶ ¶ ÷ ø ö ç è æ ¶ ¶ - ¶ ¶ ¶¶ = q q q f r r f x sin cos r ¶ ¶ = q cos sin cos f f r r q q q ¶¶ æö - ç÷ ¶¶ èø q q ¶ ¶ -r sin sin cos f f r r q q q ¶¶ æö- ç÷¶¶ èør fr f rf r r f r csos r f ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = q q q q q q q q q q 2 22 2 2 2 2 2 2 2sin cos sin 2 sin sin 2 cos ; 类似有22 yf ¶ ¶ r f r f r f r r f r csos r f ¶ ¶ + ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ + ¶ ¶ = q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2cos cos sin 2 cos sin 2 sin . 于是得 + ¶ ¶ 2 2 x f 2 2 yf ¶ ¶ = r fr f r r f ¶ ¶ + ¶ ¶ + ¶ ¶ 1 1 2 2 2 2 2 q .例 13 证明:通过线性变换 y x u l + = , y x v m + = ,可以北将方程A 2 2 x f ¶ ¶B 2 + y x f ¶ ¶ ¶ 2C + 0 2 2 = ¶ ¶ yf,( 0 2 < - B AC )化简为 0 2 = ¶ ¶ ¶ v u f.并说明此时l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根.证 由 y x u l + = 和 y x v m + = 得x f ¶ ¶ v f u f ¶ ¶ + ¶ ¶ = , y u ¶ ¶ vfu f ¶ ¶ + ¶ ¶ = m l . 2 2 x f ¶ ¶ + ¶ ¶ = 2 2 u f + ¶ ¶ ¶ v u f 2 2 2 v f ¶ ¶ , 2 2 y f ¶ ¶ lm l 2 2 2 2 + ¶ ¶ = u f + ¶ ¶ ¶ v u f 2 222 v f ¶ ¶ m , = ¶ ¶ ¶ v u f 2 ) ( 2 2 m l l + + ¶ ¶ u f + ¶ ¶ ¶ v u f 2 2 22 vf ¶ ¶ m . 代入A 2 2 x f ¶ ¶ B 2 + y x f ¶ ¶ ¶ 2 C + 0 2 2 = ¶ ¶ yf ,化简得) 2 ( 2l l C B A + + 2 2 u f ¶ ¶ + ) 2 ( 2 m m C B A + + 2 2 vf ¶ ¶] 2 ) ( 2 2 [ lm m l C B A + + + + 0 2 = ¶ ¶ ¶ vu f.可见,当且仅当l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根时,方 程就化成 0 2 = ¶ ¶ ¶ vu f.例 14 求椭球面 498 3 2 2 2 2 = + + z y x 的平行于平面 7 5 3 = + + z y x 的切平面.解 所求切平面的法向量为 ) 6 , 4 , 2 ( z y x ,应有 56 3 4 1 2 z y x = = k 令== ,就有 2 k x = , k y 4 3 = , k z 6 5 = ,代入方程 498 3 2 2 2 2 = + + z y x ,有 498 2483 2 = k ,得12 ± = k . 在点M ) 10 , 9 , 6 ( 和N ) 10 , 9 , 6 ( - - - 的切平面与平面 7 5 3 = + + z y x 平 行.在点M ) 10 , 9 , 6 ( 的法向量为 ) 60 , 36 , 12 ( ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = - + - + - z y x ,即 0 83 5 3 = - + + z y x ;在点N ) 10 , 9 , 6 ( - - - 的法向量为 ) 60 , 36 , 12 ( - - - ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = + - + - + - z y x ,即 0 83 5 3 = + + + z y x .综上,椭球面 498 3 2 2 2 2 = + + z y x 上,平行于平面 7 5 3 = + + z y x 的切平面 有两块,它们是 0 83 5 3 = ± + + z y x .例15 证明曲面 a z y x = + + ) 0 ( > a 上任一点的切平面在各坐标轴上的 截距之和等于a .证 设M ) , , ( 0 0 0 z y x 为曲面 a z y x = + + 上任的一点,曲面在该点的切面为0 2 2 2 00 00 00 = - + - + - z z z y y y x x x ,即0 ) ( 0 0 0 0 00 = + + - + + z y x z z y y x x , 亦即0 0 0 0 = - + + a z z y y x x .化为截距式即为 1 0 0 0= + + az zay y ax x . 可见在各坐标轴上的截距之和为a az ay ax = + + 0 0 0 = + + ) ( 0 0 0 z y x a .例 16 在 ] 1 , 0 [ 上用怎样的直线 b ax + = x 来代替曲线 2 x y = ,才能使它在平方 误差的积分 = ) , ( b a J ò - 10 2 ) ( dx y x 为极小意义下的最佳近似.解 = ) , ( b a J = - - ò 10 22) ( dx b ax x 51 32 23 2 2 + - - + + b a ab b a .现求其中极小值.ï ï îï ï íì- + = - + = .3 2 2 ,2 1 3 2 a b J b a J b a 解得有唯一驻点M ÷ ø ö ç èæ- 6 1 , 1 .0 3 1 1 2 3 2 | ) ( > = - ´ = - M ab bb aa J J J ,又 0 32| > = Maa J ,因此, ) , ( b a J 在点 M ÷ ø ö ç è æ- 6 1 , 1 取极小值.因为 ) , ( b a J 在R 2 中仅有唯一的极小值,可见该极小值还是最小值.因此,在 ] 1 , 0 [ 上用直线 61- = x x 来代替曲线 2 x y = ,才能使它在平方误差的积分为极小的意义下是最佳的近似.例 17 要做一圆柱形帐篷,并给它加一个圆锥形的顶.问在体积为定值时,圆柱的半径R ,高H 及圆锥的高h 满足什么关系时,所用的布料最省?解 设体积为定值V ,则 ÷ ø ö ç èæ+ = h H R V 3 1 2 p ,得 h R V H 3 1 2 - = p .帐篷的全面积为2 2 2 2 322 2 ) , ( h R R Rh R V h R R RH h R S + + - =+ + = p p p p , 0 > R , 0 > H . R S 0 3 2 2 2 2 2 22 2 = + + + + - - = hR R h R h R V p p p ,(*)0 3 2 2 2 = + + - = hR RhR S h p p .(**)由(**)式的得 h h R 232 2 = + ,代入(*)式,有R S 0 6 4 5 12 242 2 = + + - = h R R h R Vh p p ,由 0 6 2 > h R ,应有 0 12 5 4 2 2 2 = - + Vh h R R p p . 这就是驻点出应满足的关系式.由于该问题在于有最小值,这也是帐篷的全面 积 ) , ( h R S 取最小值时,圆柱的半径R 与圆锥的高h 所应满足的关系式. 例 18 抛物面 2 2 y x z + = 被平面 1 = + + z y x 截成一椭圆.求原点到这个椭圆的 最长距离与最短距离.解 这是求函数 2 2 2 ) , , ( z y x z y x d + + = 在约束条件 0 2 2 = - - y x z 与0 1= - + + z y x 之下的条件极值问题 .构造 Lagrange 函数= ) , , , , ( m l z y x L l - + + 2 2 2 z y x m + - - ) ( 2 2 y x z ) 1 ( - + + z y x .(5) . 0 1 (4) , 0 (3) , 0 2) 2 ( , 0 2 2 ) 1 ( , 0 2 2 2 2 ï ï ï î ïï ïí ì = - + + = = - + = = + - = = + + = = + + = z y x Lz y x L z L y y Lx x L z y x m l m l m l m l 由(1)和(2)有 0 ) 1 )( ( 2 = + - l y x ,由于 1 - ¹ l (否则由(1)得 0 = m ,据(3)得 2 1 - = z ,代入(4) ,导致 0 212 2 = + + y x 无解),得 y x = .把 y x = 代入(4)和(5) ,解得 2 3 1 2 , 1 ± - =x , 231 2, 1 ± - = y , 3 2 2 1 m = - = x z .即得两个 驻点A ÷ ÷ ø ö ç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 和B ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 . 而该 问题必有最大值和最小值,因此,点A 和B 就是最大和最小值点.由于d ÷ ÷ ø öç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 3 5 9- = ; d ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 3 5 9+ = . 可见点A 和B 分别是最小和最大值点.即原点到这个椭圆的最长距离为 3 5 9+ ,最短距离为 3 5 9- .例 19 求椭圆 12 3 2 2 = + y x 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大.解 所指内接等腰三角形的一半(如图) 是 ABC D ,设C 的坐标为(,) x y ,则三角(0,2)A yx(0,)B y o(,)C x y形 ABC D 面积为 ) 2 ( y x - 之半,于是所求内接等腰三角形的面积为 ) 2 ( y x - .问题是求函数 ) 2 ( ) , ( y x y x S - = 在约束条件 12 3 2 2 = + y x 之下的条件极值. 设Lagrange 函数为) 12 3 ( ) 2 ( ) , , ( 2 2 - + + - = y x y x y x L l l ,( 0 > x , 2 2 < < - y ),则ï î ïí ì = - + = = + -= = + - = (3) . 0 12 3 (2) , 0 6 ) 1 ( , 0 22 2 2 y x L y x L x y L y x ll l 从方程(1)和(2)中消去l ,得 y y x 6 3 2 2 - = ,代入(3) ,得 0 2 2 = - - y y ,解得 231± = y . 2 = y 时, 0 ) 2 , ( = x S .因此,得唯一的驻点 ) 1 , 3 ( - .该问题有最大值,当底边右端点的坐标为 ) 1 , 3 ( - 时,所得内接等腰三角形的面 积最大.。
(完整版)多元函数微分学及其应用习题解答

(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 解方程组
.
解得
,
,
.
当
任意一个成立时, 都有
. 所以, 当边长为
有最大体积
.
十七. 求原点到曲面
的最短距离.
解. 设曲面上达到最短距离的点为(x , y , z ), 则
达到最小值.
令
, 由(3) 若 = 1
代入(1), (2) 得 得到
, 解得
. 代入曲面方程
,
,
由(3) 若
由(3) 解得
一. 设 f , g 为连续可微函数,
, 求
.
解. ,
.
所以
二. 设 解. 原式两边对 y 求导.
, 其中 为可微函数, 求
.
. 所以
三. 设 解. 由上述表达式可知 x, z 为自变量, 所以
.
四. 求下列方程所确定函数的全微分:
1.
;ห้องสมุดไป่ตู้
2.
.
解. 1.
, 所以
, 所以
所以
2.
, 所以
, 所以
所以
.
解.
,
,
= 0
十一. 设
, 试确定常数 , 使
.
解.
=
所以
=
+
= 于是 = 1.
= 0
十二. 若
满足
, 其中 f ( u )有连续的二阶导数, 求 z .
解.
,
同理
所以
.
令
, 得常微分方程
于是
.
,
,
即
十三. 求曲面
的平行于平面
的切平面方程.
解. 设切点为
,
,
. 所求切面的法矢量为
. 所以
解得
为最大
为最小
当 y = 0 时,
[ -3, 0],
解得
为最大
为最小
当
时
[0, -3]
当
时 z 有最小值
. 即
当
时 z 有最大值
.即
当
时 z 有最大值
.即
综上所述:
=
为最大值,
为最小值.
十六. 在椭球面
内作内接直角平行六面体, 求其最大体积.
解. 设直角平行六面体在第一卦限的顶点为
. 该题为
下的最大住值. 令
五. 设
, 其中 f 具有二阶连续偏导数, 求
.
解.
=
六. 已知
.
解.
=
=
=
七. 设
确定, 求
.
解. 以上两式对 x 求导, 得到关于
的方程组
由克莱姆法则解得
,
八. 设
解.
=
于是
=
= 0
九. 设
, 其中 f ( u , v ) 具有二阶连续偏导数,
二阶可导, 求
.
解.
=
十. 已知
,
,
p ( t ) 连续, 试求
. 由(1), (2) 得到
. 代入曲面方程
, 得到
,
,
,
所以所求的最短距离为
.
十八. 当
时, 求函数 上的最大值, 并证明对任意的成立不等式
在球面
解. 构造函数
,
解得
因为在球面上当
.
所以当
时, u 达到最大值.
对于任意正实数
,令
. 原题条件极值问题转化为
注意到
. 于是
即
.
,
代入曲面方程得:
,
所以
当
解得
所求切面方程为
,
即
;
当
解得
所求切面方程为
,
即
.
十四. 求圆周 方程.
处的切线与法平面
解. 圆周
在
处
,
,
.
所以在
处圆周的方向矢量为{16, 9, -1}.
所求切线:
,
所求法平面:
, 即
.
十五. 试求 最小值.
上的最大值与
解.
,
解得
,
.
当 x = 0 时,
[ -3, 0],