福建省厦门市2015-2016学年高一数学下学期期中试题
2015-2016年福建省厦门六中高一(下)期中数学试卷和答案

2015-2016学年福建省厦门六中高一(下)期中数学试卷一、选择题:(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填在答题卡的指定位置上.)1.(5分)直线的倾斜角α=()A.30°B.60°C.120°D.150°2.(5分)已知A(2,0,1),B(1,﹣3,1),点M在x轴上,且到A、B两点的距离相等,则M的坐标为()A.(﹣3,0,0)B.(0,﹣3,0)C.(0,0,﹣3)D.(0,0,3)3.(5分)下列四个命题中错误的是()A.若直线a、b互相平行,则直线a、b确定一个平面B.若四点不共面,则这四点中任意三点都不共线C.若两条直线没有公共点,则这两条直线是异面直线D.两条异面直线不可能垂直于同一个平面4.(5分)平面α,β和直线m,给出条件:①m⊂α;②m⊥α;③m∥α;④α∥β;⑤α⊥β.为使m∥β,应选择下面四个选项中的条件()A.①⑤B.①④C.②⑤D.③⑤5.(5分)过点(3,﹣4)且在坐标轴上的截距相等的直线方程为()A.x+y+1=0B.4x﹣3y=0C.x+y+1=0或4x﹣3y=0D.4x+3y=0或x+y+1=06.(5分)已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的度数为()A.90°B.45°C.60°D.30°7.(5分)两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4B.C.D.8.(5分)已知实数x,y满足方程x2+y2=1,则的取值范围是()A.B.C.D.9.(5分)在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是()A.B.C.D.10.(5分)已知点A(﹣2,0),B(0,4),点P在圆C:(x﹣3)2+(y﹣4)2=5上,则使∠APB=90°的点P的个数为()A.0B.1C.2D.311.(5分)下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④12.(5分)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A.B.2+C.4+D.二、填空题(本题共4小题,每题5分,共20分,请将所选答案写在答题卷上)13.(5分)如图正方形OABC的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是.14.(5分)已知圆锥的表面积为9πcm2,且它的侧面展开图是一个半圆,则圆锥的底面半径为.15.(5分)过点P(,1)且与圆x2+y2=4相切的直线方程.16.(5分)下面给出四个命题的表述:①直线(3+m)x+4y﹣3+3m=0(m∈R)恒过定点(﹣3,3);②线段AB的端点B的坐标是(3,4),A在圆x2+y2=4上运动,则线段AB的中点M的轨迹方程+(y﹣2)2=1③已知M={(x,y)|y=},N={(x,y)|y=x+b},若M∩N≠∅,则b∈[﹣,];④已知圆C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)与x轴相交,与y轴相离,则直线ax+by+c=0与直线x+y+1=0的交点在第二象限.其中表述正确的是((填上所有正确结论对应的序号)三、解答题(共6题,共70分,解答应写出文字说明、证明过程或演算步骤.请将所选答案写在答题卷上)17.(10分)已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3).(1)求AB边上的高线所在的直线方程;(2)求三角形ABC的面积.18.(12分)已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.19.(12分)如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.(1)求证:EF∥面ABC;(2)求证:EF⊥面PAC;(3)求三棱锥B﹣PAC的体积.20.(12分)如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;(2)证明:E G⊥D F.21.(12分)如图,在四棱锥P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.(1)求证:平面PAB∥平面EFG;(2)证明:平面EFG⊥平面PAD;(3)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明.22.(12分)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.2015-2016学年福建省厦门六中高一(下)期中数学试卷参考答案与试题解析一、选择题:(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填在答题卡的指定位置上.)1.(5分)直线的倾斜角α=()A.30°B.60°C.120°D.150°【解答】解:直线的斜率等于﹣,即直线倾斜角的正切值是﹣,又倾斜角大于或等于0度且小于180°,故直线的倾斜角为150°,故选:D.2.(5分)已知A(2,0,1),B(1,﹣3,1),点M在x轴上,且到A、B两点的距离相等,则M的坐标为()A.(﹣3,0,0)B.(0,﹣3,0)C.(0,0,﹣3)D.(0,0,3)【解答】解:设点M(x,0,0),则∵A(2,0,1),B(1,﹣3,1),点M到A、B两点的距离相等,∴=∴x=﹣3∴M点坐标为(﹣3,0,0)故选:A.3.(5分)下列四个命题中错误的是()A.若直线a、b互相平行,则直线a、b确定一个平面B.若四点不共面,则这四点中任意三点都不共线C.若两条直线没有公共点,则这两条直线是异面直线D.两条异面直线不可能垂直于同一个平面【解答】解:A、由两条直线平行确定一个平面判断正确,故A不对;B、根据三棱锥的四个顶点知,任意三点都不共线,故B不对;C、若两条直线没有公共点,则这两条直线异面或平行,故C对;D、根据线面垂直的性质定理知,这两条直线平行,即不可能,故D不对.故选:C.4.(5分)平面α,β和直线m,给出条件:①m⊂α;②m⊥α;③m∥α;④α∥β;⑤α⊥β.为使m∥β,应选择下面四个选项中的条件()A.①⑤B.①④C.②⑤D.③⑤【解答】解:∵m⊂α,α∥β,∴m∥β.故①④⇒m∥β.故选:B.5.(5分)过点(3,﹣4)且在坐标轴上的截距相等的直线方程为()A.x+y+1=0B.4x﹣3y=0C.x+y+1=0或4x﹣3y=0D.4x+3y=0或x+y+1=0【解答】解:当直线过原点时,方程为y=x,即4x+3y=0.当直线不过原点时,设方程为x+y=a,把点(3,﹣4)代入可得a=﹣1,故直线的方程为x+y+1=0.故选:D.6.(5分)已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的度数为()A.90°B.45°C.60°D.30°【解答】解:设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中线.由此可得,GF∥AB且GF=AB=1,GE∥CD,且GE=CD=2,∴∠FEG或其补角即为EF与CD所成角.又∵EF⊥AB,GF∥AB,∴EF⊥GF因此,Rt△EFG中,GF=1,GE=2,由正弦的定义,得sin∠GEF==,可得∠GEF=30°.∴EF与CD所成的角的度数为30°故选:D.7.(5分)两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4B.C.D.【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d===.故选:D.8.(5分)已知实数x,y满足方程x2+y2=1,则的取值范围是()A.B.C.D.【解答】解:如图,设过P(2,0)的直线的斜率为k,则直线方程为y=k(x﹣2),即kx﹣y﹣2k=0,由坐标原点O(0,0)到直线kx﹣y﹣2k=0的距离等于1,得,解得:k=.∴的取值范围是[].故选:C.9.(5分)在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使该三角形绕直线BC 旋转一周,则所形成的几何体的体积是()A.B.C.D.【解答】解:如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.∵AB=2,BC=1.5,∠ABC=120°,∴AE=ABsin60°=,BE=ABcos60°=1,V1==,V2==π,∴V=V1﹣V2=,故选:A.10.(5分)已知点A(﹣2,0),B(0,4),点P在圆C:(x﹣3)2+(y﹣4)2=5上,则使∠APB=90°的点P的个数为()A.0B.1C.2D.3【解答】解:设P(x,y),要使∠APB=90°,那么P到AB中点(﹣1,2)的距离为,而圆上的所有点到AB中点距离范围为[,],即[,3],所以使∠APB=90°的点P的个数只有一个,就是AB中点与圆心连线与圆的交点;故选:B.11.(5分)下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④【解答】解:①如图所示,取棱BC的中点Q,连接MQ,PQ,NQ,可得四边形MNPQ为正方形,且AB∥NQ,而NQ⊂平面MNPQ,AB⊄平面MNPQ,∴AB∥平面MNPQ,因此正确.②由正方体可得:前后两个侧面平行,因此AB∥MNP,因此正确.故选:A.12.(5分)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A.B.2+C.4+D.【解答】解:由题意知,底面放三个钢球,上再落一个钢球时体积最小.于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为,且由正四面体的性质可知:正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,∴小正四面体的中心到底面的距离是×=,正四面体的中心到底面的距离是+1 (1即小钢球的半径),所以可知正四面体的高的最小值为(+1)×4=4+,故选:C.二、填空题(本题共4小题,每题5分,共20分,请将所选答案写在答题卷上)13.(5分)如图正方形OABC的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是8cm.【解答】解:由题意正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以OB=cm,对应原图形平行四边形的高为:2cm,所以原图形中,OA=BC=1cm,AB=OC==3cm,故原图形的周长为:2×(1+3)=8cm,故答案为:8cm14.(5分)已知圆锥的表面积为9πcm2,且它的侧面展开图是一个半圆,则圆锥的底面半径为cm.【解答】解:设圆锥的底面的半径为r,圆锥的母线为l,则由πl=2πr得l=2r,而S=πr2+πr•2r=3πr2=9π故r2=3解得r=cm.故答案为:cm.15.(5分)过点P(,1)且与圆x2+y2=4相切的直线方程.【解答】解:∵把点P(,1)代入圆x2+y2=4成立,∴可知点P(,1)是圆x2+y2=4上的一点,则过P(,1)的圆x2+y2=4的切线方程为.故答案为.16.(5分)下面给出四个命题的表述:①直线(3+m)x+4y﹣3+3m=0(m∈R)恒过定点(﹣3,3);②线段AB的端点B的坐标是(3,4),A在圆x2+y2=4上运动,则线段AB的中点M的轨迹方程+(y﹣2)2=1③已知M={(x,y)|y=},N={(x,y)|y=x+b},若M∩N≠∅,则b∈[﹣,];④已知圆C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)与x轴相交,与y轴相离,则直线ax+by+c=0与直线x+y+1=0的交点在第二象限.其中表述正确的是①②④((填上所有正确结论对应的序号)【解答】解:①直线(3+m)x+4y﹣3+3m=0(m∈R)得m(x+3)+3x+4y﹣3=0,由得,即直线恒过定点(﹣3,3);故①正确,②设AB的中点M(x,y),A(x1,y1),又B(3,4),由中点坐标公式得:,即.∵点A在圆x2+y2=4上运动,∴.即(2x﹣3)2+(2y﹣4)2=4,整理得:+(y﹣2)2=1.∴线段AB的中点M的轨迹为+(y﹣2)2=1,故②正确,③集合M表示圆心为原点,半径为1的上半圆,集合N表示直线y=x+b,如图所示,当直线y=x+b过A点时,把A(1,0)代入得:b=﹣1;当直线y=x+b与圆相切,且切点在第二象限时,圆心到直线的距离d=r,即=1,即b=(负值舍去),则M∩N≠∅时,实数b的范围是[﹣1,].故③错误,④解:由圆C:(x﹣b)2+(y﹣c)2=a2(a>0),得到圆心坐标为(b,c),半径r=a,∵圆C与x轴相交,与y轴相离,∴b>a>0,0<c<a,即b﹣a>0,a﹣c>0,联立两直线方程得:,由②得:x=﹣y﹣1,代入①得:a(﹣y﹣1)+by+c=0,整理得:(b﹣a)y=a﹣c,解得:y=,∵﹣a>0,a﹣c>0,∴>0,即y>0,∴x=﹣y﹣1<0,则两直线的交点在第二象限.故④正确,故答案为:①②④三、解答题(共6题,共70分,解答应写出文字说明、证明过程或演算步骤.请将所选答案写在答题卷上)17.(10分)已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3).(1)求AB边上的高线所在的直线方程;(2)求三角形ABC的面积.【解答】解:(1)由题意可得,∴AB边高线斜率k=,∴AB边上的高线的点斜式方程为,化为一般式可得x+6y﹣22=0;(2)由(1)知直线AB的方程为y﹣5=6(x+1),即6x﹣y+11=0,∴C到直线AB的距离为d=,又∵|AB|==,∴三角形ABC的面积S=18.(12分)已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.【解答】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧=×2π×2×2=4π;S圆柱侧=2π×2×4=16π;S圆柱底=π×22=4π.∴几何体的表面积S=20π+4π;(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:则AB===2,∴以从A点到B点在侧面上的最短路径的长为2.19.(12分)如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.(1)求证:EF∥面ABC;(2)求证:EF⊥面PAC;(3)求三棱锥B﹣PAC的体积.【解答】(1)证明:在三角形PBC中,∵E是PC中点,F为PB中点,∴EF∥BC,BC⊂面ABC,EF⊄面ABC,∴EF∥面ABC.(2)证明:∵PA⊥平面ABC,BC⊂平面ABC,∴BC⊥PA.又∵AB是⊙O的直径,∴BC⊥AC,∴BC⊥面PAC∵EF∥BC,BC⊥面PAC,∴EF⊥面PAC.(3)解:∵PA⊥⊙O所在的平面,AC是PC在面ABC内的射影,∴∠PCA即为PC与面ABC所成角,∴∠PCA=45°,PA=AC,在Rt△ABC中,E是PC中点,,∴三棱锥B﹣PAC的体积.20.(12分)如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;(2)证明:E G⊥D F.【解答】(1)解:以A为原点,AB所在直线为x轴,建立平面直角坐标系,则A(0,0),B(3,0),C(3,1),D(0,1),E(1,0),F(2,0).…(1分)设M(x,y),由题意知|MD|=2|MC|…(2分)∴…(3分)两边平方化简得:即(x﹣4)2+(y﹣1)2=4…(5分)即动点M的轨迹为圆心(4,1),半径为2的圆,∴动点M的轨迹围成区域的面积为4π…(6分)(2)证明:由A(0,0).C(3,1)知直线AC的方程为:x﹣3y=0,…(7分)由D(0,1).F(2,0)知直线DF的方程为:x+2y﹣2=0,…(8分)由得,故点G点的坐标为.…(10分)又点E的坐标为(1,0),故k EG=2,k DF=﹣…(12分)所以k EG•k DF=﹣1,即证得:EG⊥DF …(13分)21.(12分)如图,在四棱锥P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.(1)求证:平面PAB∥平面EFG;(2)证明:平面EFG⊥平面PAD;(3)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明.【解答】证明:(1)E,F分别是线段PC,PD的中点,所以EF∥CD,又ABCD为正方形,AB∥CD,所以EF∥AB,又EF⊄平面PAB,所以EF∥平面PAB.因为E,G分别是线段PC,BC的中点,所以EG∥PB,又EG⊄平面PAB,所以,EG∥平面PAB.所以平面EFG∥平面PAB;(2)因为CD⊥AD,CD⊥PD,AD∩PD=D,所以CD⊥平面PAD,又EF∥CD,所以EF⊥平面PAD,所以平面EFG⊥平面PAD;(3)Q为线段PB中点时,PC⊥平面ADQ.取PB中点Q,连接DE,EQ,AQ,由于EQ∥BC∥AD,所以ADEQ为平面四边形,由PD⊥平面ABCD,得AD⊥PD,又AD⊥CD,PD∩CD=D,所以AD⊥平面PDC,所以AD⊥PC,又三角形PDC为等腰直角三角形,E为斜边中点,所以DE⊥PC,AD∩DE=D,所以PC⊥平面ADQ.22.(12分)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.【解答】解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得PQ2=OP2﹣OQ2.由已知PQ=PA,可得PQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2.化简可得2a+b﹣3=0.(2)∵PQ====,故当a=时,线段PQ取得最小值为.(3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R﹣1|≤PO ≤R+1.而OP===,故当a=时,PO取得最小值为,此时,b=﹣2a+3=,R取得最小值为﹣1.故半径最小时⊙P 的方程为+=.。
2022-2023学年福建省厦门市高一年级下册学期期中考试数学试题【含答案】

福建省厦门市2022—2023学年度第二学期期中考试高一年数学试卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数22iz i +=-,则复数z 的模为().A.2B.5C.1D.2【答案】C 【解析】【分析】根据复数除法运算,先化简z ;再由复数模的计算公式,即可得出结果.【详解】因为复数()222342555i i z ii ++===+-,所以91612525z =+=.故选:C .2.已知平面向量()1,a m = ,(),2b n = ,()3,6c = ,若a c ∥ ,b c ⊥,则实数m 与n 的和为()A.6B.6- C.2D.2-【答案】D 【解析】【分析】根据a c ∥ 、b c ⊥分别求出m 和n 即可.【详解】a ∥c,1236mm ∴=⇒=;b c ⊥ ,0b c ∴⋅=,31204n n ∴+=⇒=-;242m n ∴+=-=-.故选:D .3.已知圆锥PO ,其轴截面(过圆锥旋转轴的截面)是底边长为6m ,顶角为2π3的等腰三角形,该圆锥的侧面积为()A.26πmB.263πm C.233πm D.2123πm 【答案】B 【解析】【分析】运用圆锥侧面积公式计算即可.【详解】如图所示,设圆锥的半径为r ,母线为l ,由题意知,132r OB AB ===,在Rt POB △中,112ππ2233BPO BPA ∠=∠=⨯=,所以323π3sin 32OB l BP ====,所以圆锥侧面积为2ππ32363πm rl =⨯⨯=.故选:B.4.中国古代数学专著《九章算术》的第一章“方田”中载有“半周半径相乘得积步”,其大意为:圆的半周长乘以其半径等于圆面积.南北朝时期杰出的数学家祖冲之曾用圆内接正多边形的面积“替代”圆的面积,并通过增加圆内接正多边形的边数n 使得正多边形的面积更接近圆的面积,从而更为“精确”地估计圆周率π.据此,当n 足够大时,可以得到π与n 的关系为()A.360πsin 2n n︒≈B.180πsinn n ︒≈ C.360π21cos n n ︒⎛⎫≈- ⎪⎝⎭ D.180π1cos 2n n︒≈-【答案】A 【解析】【分析】设圆的半径为r ,由题意可得221360πsin2r n r n ︒≈⋅⋅⋅,化简即可得出答案.【详解】设圆的半径为r ,将内接正n 边形分成n 个小三角形,由内接正n 边形的面积无限接近圆的面即可得:221360πsin2r n r n︒≈⋅⋅⋅,解得:360πsin 2n n ︒≈.故选:A .5.在ABC 中,60A ∠=︒,1b =,ABC 的面积为3,则sin aA为().A.8381B.2393C.2633D.27【答案】B 【解析】【分析】由已知条件,先根据三角形面积公式求出c 的值,然后利用余弦定理求出a 的值,即可得sin aA的值.【详解】解:在ABC 中,因为60A ∠=︒,1b =,ABC 的面积为3,所以113sin 12223ABC bc A S c ==⨯⨯⨯= ,所以4c =,因为2222212cos 14214132a b c bc A =+-=+-⨯⨯⨯=,所以13a =,所以13239sin 332a A ==.故选:B.6.已知m ,n 为两条不同的直线,,αβ为两个不同的平面,则下列命题正确的是()A.若//,//,//m n αβαβ,则//m nB.若//,//,m m n αβαβ⋂=,则//m nC.若//,//αβn n ,则//αβD.若//,m n n α⊂,则//m α【答案】B 【解析】【分析】A :结合两直线的位置关系可判断//m n 或,m n 异面;B :结合线面平行的性质可判断//m n ;C :结合线面的位置关系可判断//αβ或,αβ相交;D :结合线面的位置关系可判断//m α或m α⊂.【详解】A :若//,//,//m n αβαβ,则//m n 或,m n 异面,故A 错误;B :因为//m α,所以在平面α内存在不同于n 的直线l ,使得//l m ,则l //β,从而//l n ,故//m n ,故B 正确;C :若//,//αβn n ,则//αβ或,αβ相交,故C 错误;D :若//,m n n α⊂,则//m α或m α⊂,故D 错误.故选:B7.如图所示,在直三棱柱111ABC A B C -中,棱柱的侧面均为矩形,11AA =,3AB BC ==,1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为()A.3B.2C.5D.7【答案】D 【解析】【分析】连接1BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',再根据两点之间线段最短,结合勾股定理余弦定理等求解AC '即可.【详解】连接1BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则有1C AP PC AP PC A '++'=≥,如图,当,,A P C '三点共线时,则AC '即为1AP PC +的最小值.在三角形ABC 中,3AB BC ==,1cos 3ABC ∠=,由余弦定理得:2212cos 332323AC AB BC AB BC B =+-⋅=+-⨯⨯=,所以112A C =,即12A C '=,在三角形1A AB 中,11AA =,3AB =,由勾股定理可得:2211132A B AA AB =+=+=,且160AA B ∠=︒.同理可求:12C B =,因为11112A B BC A C ===,所以11A BC V 为等边三角形,所以1160BA C ∠=︒,所以在三角形1AAC '中,111120AA C AA B BA C ''∠=∠+∠=︒,111,2AA A C '==,由余弦定理得:11421272AC ⎛⎫'=+-⨯⨯⨯-= ⎪⎝⎭.故选:D.8.已知ABC 中,π3A ∠=,D ,E 是线段BC 上的两点,满足BD DC =,BAE CAE ∠=∠,192AD =,635AE =,则BC 长度为()A.19 B.23 C.7 D.6319-【答案】C 【解析】【分析】由BAE CAE ABCS S S +=△△△可得出56b c bc +=,由1()2AD AB AC =+ 两边平方可求得,,bc b c +然后在ABC 中利用余弦定理可求得答案.【详解】如图,记,,BC a AC b AB c ===,BAE CAE ABC S S S += △△△,π6BAE CAE ∠=∠=,635AE =,1631631sin sin sin 25625623πππc b bc ∴⨯⨯+⨯⨯=,333()104b c bc ∴+=,即56b c bc +=,1()2AD AB AC =+ ,192AD =,()()2222211244AD AB AB AC AC b c bc ∴=+⋅+=++ 2211125119()()4443644b c bc bc bc =+-=⨯-=,即225()366840bc bc --=,(6)(25114)0bc bc -+=,6,5,bc b c ∴=∴+=在ABC 中,2222222cos()32513π87a b c bc b c bc b c bc =+-=+-=+-=-=,7BC a ∴==.故选:C.二、选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知圆台的上底半径为1,下底半径为3,球O 与圆台的两个底面和侧面都相切,则()A.圆台的母线长为4B.圆台的高为4C.圆台的表面积为26πD.球O 的表面积为12π【答案】ACD 【解析】【分析】作出圆台的轴截面,设圆台上、下底面圆心分别为12,O O ,半径分别为12,r r ,连接,,OD OE OA ,利用平面几何知识得到2123R r r ==,即可逐项计算求解.【详解】设梯形ABCD 为圆台的轴截面,则内切圆O 为圆台内切球的大圆,如图,设圆台上、下底面圆心分别为12,O O ,半径分别为12,r r ,则12,,O O O 共线,且1212,O O AB O O CD ⊥⊥,连接,,OD OE OA ,则,OD OA 分别平分,DAB ADC ∠∠,故12,r r E AE D ==,,,22ππODA DOA OE D OA A D +∠=∠=⊥∠,故2E O A E DE =⋅,即2123R r r ==,解得3R =,母线长为124r r +=,故A 正确;圆台的高为223R =,故B 错误;圆台的表面积为22π1π3π(13)426π⨯+⨯+⨯+⨯=,故C 正确;球O 的表面积为24π12πS R ==,故D 正确.故选:ACD.10.已知1z 与2z 是共轭虚数,则()A.2212z z < B.2122z z z =C.12R z z +∈ D.12R z z ∈【答案】BC 【解析】【分析】设出复数12,z z ,根据复数的运算,对每个选项进行逐一分析,即可判断.【详解】由题意,复数1z 与2z 是共轭虚数,设1i z a b =+、2i z a b =-,R a b ∈、且0b ≠,对于A 项,22212i z a b ab =-+,22222i z a b ab =--,当0a ≠时,由于复数不能比较大小,故A 项不成立;对于B 项,因为2212z z a b ⋅=+,2222||z a b =+,所以2122||z z z ⋅=,故B 项正确;对于C 项,因为122R z z a +=∈,所以C 选项正确;对于D 项,由222122222()2()(i i i i)i i z a b a b a b abz a b a b a b a b a b ++-===+--+++不一定是实数,故D 项不成立.故选:BC.11.对于ABC ,有如下命题,其中正确的有()A.若22sin sin A B =,则ABC 为等腰三角形B.若sin cos A B =,则ABC 为直角三角形C.若222sin sin cos 1A B C ++<,则ABC 为钝角三角形D.若3,1,30AB AC B === ,则ABC 的面积为34或32【答案】ACD 【解析】【分析】A.根据条件得到,A B 的关系,由此进行判断;B.利用诱导公式直接分析得到,A B 的关系并判断;C.利用正弦定理得到222,,a b c 的关系,结合余弦定理进行判断;D.先利用正弦定理计算出sin C 的值,由此可求,C A 的值,结合三角形面积公式进行计算并判断.【详解】对于A :22sin sin ,A B A B ABC =∴=⇒ 是等腰三角形,A 正确;对于B :sin cos ,2A B A B π=∴-=或,2A B ABC π+=∴ 不一定是直角三角形,B 错误;对于C :2222222222sin sin 1cos ,sin ,cos 02A B C C a a abb bc C c ++<--==∴+∴<< ,ABC ∴ 为钝角三角形,C 正确;对于D :由正弦定理,得sin 3sin .2AB B C AC ⋅==而,60AB AC C >∴= 或120,C = 90A ∴= 或30,A =当90,60A C =︒=︒时,131322ABCS =⨯⨯=,当30,120A C =︒=︒时,1311sin12024ABC S =⨯⨯⨯︒=,32ABC S ∴=或3,4D 正确.故选:ACD.12.“阿基米德多面体”也称为半正多面体(semi -regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知2AB =,则关于如图半正多面体的下列说法中,正确的有()A.该半正多面体的体积为203B.该半正多面体过,,A B C 三点的截面面积为332C.该半正多面体外接球的表面积为8πD.该半正多面体的顶点数V 、面数F 、棱数E 满足关系式2V F E +-=【答案】ACD 【解析】【分析】根据几何体的构成可判断A ,由截面为正六边形可求面积判断B ,根据外接球为正四棱柱可判断C ,根据顶点,面数,棱数判断D.【详解】如图,该半正多面体,是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的.对于A ,因为由正方体沿各棱中点截去8个三棱锥所得到的,所以该几何体的体积为:11202228111323V =⨯⨯-⨯⨯⨯⨯⨯=,故正确;对于B ,过,,A B C 三点的截面为正六边形ABCFED ,所以()2362334S =⨯⨯=,故错误;对于C ,根据该几何体的对称性可知,该几何体的外接球即为底面棱长为2,侧棱长为2的正四棱柱的外接球,所以该半正多面体外接球的表面积2244(2)8S R πππ==⨯=,故正确;对于D ,几何体顶点数为12,有14个面,24条棱,满足1214242+-=,故正确.故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.i 是虚数单位,已知22i ωω-=-,写出一个满足条件的复数ω.______.【答案】1i ω=+(答案不唯一,满足i a a ω=+(R a ∈)均可)【解析】【分析】运用复数的模的运算公式计算即可.【详解】设i a b ω=+,(,R a b ∈),则22|2||(2)i |(2)a b a b ω-=-+=-+,22|2i ||(2)i |(2)a b a b ω-=+-=+-,因为|2||2i |ωω-=-,所以2222(2)(2)a b a b -+=+-,解得:a b =,所以i a a ω=+,(R a ∈)所以可以取1i ω=+.故答案为:1i ω=+(答案不唯一,满足i a a ω=+(R a ∈)均可).14.在矩形ABCD 中,已知2AB =,1BC =,点P 是对角线AC 上一动点,则AP BP ⋅的最小值为___________.【答案】45-##0.8-.【解析】【分析】以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,利用平面向量的坐标运算求出AP BP ⋅,进而结合二次函数的性质即可求出结果.【详解】以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,又因为2AB =,1BC =,所以()()()()0,0,2,0,2,1,0,1,A B C D 则直线AC 的方程为12y x =,所以设()2,P m m ,且01m ≤≤,而()()2,,22,AP m m BP m m ==-,所以()2222AP BP m m m ⋅=-+ 254m m=-结合二次函数的性质可知,当25m =时,AP BP ⋅ 有最小值,且最小值为222454555⎛⎫⨯-⨯=- ⎪⎝⎭,故答案为:45-.15.太湖中有一小岛C ,沿太湖有一条正南方向的公路,一辆汽车在公路A 处测得小岛在公路的南偏西15°的方向上,汽车行驶1km 到达B 处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.【答案】36【解析】【详解】如图所示,过C 作CD ⊥AB ,垂足为D ,∠A=15°,∠CBD=75°,AB=1km ,△ABC 中,BC=00sin15sin 60,△CBD 中,CD=BCcos15°=001sin 302sin 60=36km .故填36.16.如图,平面四边形ABCD 中,其中3os 4c DAB ∠=,BAC DAC ∠=∠,AD AB <,且5AB =,14AC BD ==,若(),R AC AB AD λμλμ=+∈,则λμ+=______.【答案】75##1.4【解析】【分析】运用余弦定理求得AD 的值,在AB 上取点E ,使得2AE AD ==,结合角平分线性质可得AF D E ⊥,再运用向量加法可求得结果.【详解】在ABD △中,由余弦定理得:2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即:231425254AD AD =+-⨯⨯,解得:2AD =或112AD =,又因为5AD AB <=,所以2AD =.在AB 上取点E ,使得2AE =,连接DE ,交AC 于点F ,如图所示,又因为AC 为DAB ∠的角平分线,所以AF D E ⊥,F 为DE 的中点,在ADE V 中,由余弦定理得:22232222224DE =+-⨯⨯⨯=,所以2211141()42222AF AE DE AC =-=-==,所以225AC AF AE AD AB AD ==+=+,所以2=5λ,1μ=,所以75λμ+=.故答案为:75.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数z 满足2z z ⋅=,且z 的虚部为-1,z 在复平面内所对应的点在第四象限.(1)求z ;(2)若z ,2z 在复平面上对应的点分别为A ,B ,O 为坐标原点,求∠OAB .【答案】(1)1i z =-(2)π2OAB ∠=【解析】【分析】(1)运用复数几何意义设出z ,再结合共轭复数定义写出z ,再运用复数乘法运算求得结果.(2)运用复数几何意义、两点间距离公式及勾股定理可求得结果.【小问1详解】由题意知,设i z a =-(0a >),则i z a =+,所以222i 12z z a a ⋅=-=+=,解得:1a =,所以1i z =-.【小问2详解】由(1)知,1i z =-,所以22(1i)2i z =-=-,所以(1,1)A -,(0,2)B -,如图所示,所以(1,1)AO =- ,(1,1)AB =--,22||(1)12AO =-+= ,22||(1)(1)2AB =-+-= ,所以11cos 02||||AO AB OAB AO AB ⋅-∠===.所以π2OAB ∠=.18.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB PC 、的三等分点(M 靠近B ,N 靠近C );(1)求证://MN 平面PAD .(2)在PB 上确定一点Q ,使平面//MNQ 平面PAD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)过点N 作//NE CD ,交PD 于点E ,连接AE ,证得证得四边形AMNE 为平行四边形,得到//MN AE ,结合线面平行的判定定理,即可求解;(2)取PB 取一点Q ,使得13BQ BP =,证得//MQ PA ,得到//MQ 平面PAD ,结合(1)中//MN 平面PAD ,利用面面平行的判定定理,证得平面//MNQ 平面PAD .【小问1详解】证明:过点N 作//NE CD ,交PD 于点E ,连接AE ,因为N 为PC 的三等分点,可得23NE CD =,又因为M 为AB 的三等分点,可得23AM AB =,因为//AB CD 且AB CD =,所以//AM NE 且AM NE =,所以四边形AMNE 为平行四边形,所以//MN AE ,又由MN ⊄平面PAD ,AE ⊂平面PAD ,所以//MN 平面PAD .【小问2详解】证明:取PB 取一点Q ,使得13BQ BP =,即点Q 为PB 上靠近点B 的三等点,在PAB 中,因为,M Q 分别为,AB PB 的三等分点,可得MB BQAB BP=,所以//MQ PA ,因为MQ ⊄平面PAD ,PA ⊂平面PAD ,所以//MQ 平面PAD ;又由(1)知//MN 平面PAD ,且MN MQ M ⋂=,,MN MQ ⊂平面MNQ ,所以平面//MNQ 平面PAD ,即当点Q 为PB 上靠近点B 的三等点时,能使得平面//MNQ 平面PAD .19.如图,在ABC 中,π3BAC ∠=,D 为AB 中点,P 为CD 上一点,且满足13AP t AC AB =+ ,ABC 的面积为332,(1)求t 的值;(2)求AP的最小值.【答案】(1)13t =(2)2【解析】【分析】(1)利用,,C P D 三点共线,可设DP mDC =,推出1(1)2AP mAC m AB =+- ,结合13AP t AC AB =+ ,即可求得t 的值;(2)利用(1)的结论可得2221(2)9A AC AB A PC AB ++=⋅ ,利用三角形面积得出||||6AC AB ⋅=,结合基本不等式即可求得答案.【小问1详解】在ABC 中,D 为AB 中点,则,,C P D 三点共线,设,()DP mDC AP AD m AC AD =∴-=- ,故1(1)(1)2AP mAC m AD mAC m AB =+-=+- ,又13AP t AC AB =+ ,故11(1)23m t m =⎧⎪⎨-=⎪⎩,解得13m t ==,即13t =.【小问2详解】由(1)知1133AP AC AB =+,所以2222211()(2)1339AC AB AC AP AP AB AC AB +=+=+⋅=221(||||2||||cos )9AC AB AC AB BAC =++⋅∠1(2||||2||||cos )9AC AB AC AB BAC ≥⋅+⋅∠ ,当且仅当||||AC AB = 时取等号,又332ABC S =△,则133||||sin 22AC AB BAC ⋅∠= ,即1π33||||sin ,||||6232AC AB AC AB ⋅=∴⋅= ,故21π(2626c 2os )2,93AP AP ≥⨯+⨯=≥∴ ,即AP 的最小值为2,当且仅当||||6AC AB ==时取等号.20.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅= ,求四边形ABCD 面积的最大值.【答案】(1)π6;(2)312+.【解析】【分析】(1)根据正弦定理以及两角和的正弦公式化简,即可得出3tan 3C =,进而根据角的范围得出答案;(2)解法一:由已知可推出BC CD ⊥,然后根据正弦定理可求出22R =,进而求出2BD =,3AD =.设BC x =,CD y =,表示出四边形的面积,根据基本不等式即可得出答案;解法二:根据投影向量,推出BC CD ⊥,然后同解法一求得3AD =.设CBD θ∠=,表示出四边形的面积,根据θ的范围,即可得出答案;解法三:同解法一求得3AD =,设点C 到BD 的距离为h ,表示出四边形的面积,即可推出答案;解法四:建系,由已知写出点的坐标,结合已知推得BD 是O 的直径,然后表示出四边形的面积,即可推出答案.【小问1详解】因为π2sin 6b c A ⎛⎫=+⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B A C ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 31222A C A C C A A ⎛⎫+=+ ⎪ ⎪⎝⎭,即sin cos si 30n sin A C C A -=,因为sin 0A ≠,故cos 3sin C C =,即3tan 3C =.又因为()0,πC ∈,所以π6C =.【小问2详解】解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,223AD BD AB =-=.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△11312222AB BC xyAD CD =+⋅=⋅+2231312222x y +≤+⋅=+,当且仅当2x y ==时,等号成立.所以四边形ABCD 面积最大值为31 2+.解法二:如图1设ABC的外接圆的圆心为O,半径为R,BD在BA上的投影向量为BAλ,所以()2BA BD BA BA BAλλ⋅=⋅=.又22BA BD BA BA⋅==,所以1λ=,所以BD在BA上的投影向量为BA,所以DA BA⊥.故BD是O的直径,所以BC CD⊥.在ABC中,1c=,122πsin sin6cARBC=∠==,所以2BD=,在ABD△中,223AD BD AB=-=.设四边形ABCD的面积为S,CBDθ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cosCBθ=,2sinCDθ=,所以ABD CBDS S S=+△△1122BAD CDAB C=⋅⋅+3sin22θ=+,当π22θ=时,S最大,所以四边形ABCD 面积最大值为312+.解法三:如图1设ABC的外接圆的圆心为O,半径为R,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,223AD BD AB =-=.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=32h =+,当1h R ==时,S 最大,所以四边形ABCD 面积最大值为312+.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则13,22A ⎛⎫⎪⎪⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以13,22BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得113cos sin 1222ββ-++=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则1313sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为312+.21.如图,已知四棱锥P ABCD -的底面为菱形,且60ABC ∠=︒,2AB =,2PA PB ==.M 是棱PD 上的点,O 是棱AB 的中点,PO 为四棱锥P ABCD -的高,且四面体MPBC 的体积为36.(1)证明:PM MD =;(2)若过点C ,M 的平面α与BD 平行,且交PA 于点Q ,求多面体DMC AQB -体积.【答案】(1)证明见解析(2)32【解析】【分析】(1)由题意AD 平面PBC ,求得体积关系:12M PBC D PBC V V --=,即可得出答案;(2)建立空间直角坐标系,写出点的坐标,求出平面α的法向量为n,设()0,,AQ AP λλλ== ,由0n CQ ⋅= 得23λ=,求出ACQ 面积,平面ACQ 的法向量1n ,利用向量法求出M 到平面ACQ 的距离d ,进而求得M ACQ V -,Q ABC V -,M ADC V -,相加即可得出答案.【小问1详解】因为2PA PB ==,2AB =,AB 中点O ,所以PO AB ⊥,1PO =,1BO =.又因为ABCD 是菱形,60ABC ∠=︒,所以CO AB ⊥,3CO =.因为AD BC ∥,BC ⊂平面PBC ,AD ⊄平面PBC ,所以AD 平面PBC ,所以11131233323A D PBC A PBC P ABC BC V V V P S O ---====⨯⨯⨯⨯=⋅△.因为3162M PBC D PBC V V --==,所以点M 到平面PBC 的距离是点D 到平面PBC 的距离的12,所以PM MD =.【小问2详解】因为PO ⊥平面ABCD ,,BO CO ⊂平面ABCD ,所以PO BO ⊥,PO CO ⊥,又BO CO ⊥,如图,以O 为坐标原点,OC ,OB ,OP的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则()0,1,0A -,()0,1,0B ,()3,0,0C,()3,2,0D-,()0,0,1P ,所以31,1,22M ⎛⎫- ⎪ ⎪⎝⎭,()3,1,0AC =,()3,1,0BC =-,()3,3,0BD =-,()0,1,1AP = ,31,1,22CM ⎛⎫=-- ⎪ ⎪⎝⎭.设平面α的法向量为(),,n x y z = ,则00n BD n CM ⎧⋅=⎪⎨⋅=⎪⎩ ,即33031022x y x y z ⎧-=⎪⎨--+=⎪⎩,取1y =,得()3,1,5=n .因为Q AP ∈,设()0,,AQ AP λλλ==,则()3,1,CQ AQ AC λλ=-=-- ,因为3150n CQ λλ⋅=-+-+= ,所以23λ=,23AQ AP =,所以123,,33CQ ⎛⎫=-- ⎪⎝⎭ ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,()22212423333CQ ⎛⎫⎛⎫=-+-+= ⎪ ⎪⎝⎭⎝⎭,222223332AQ ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,ACQ 中,2221cos 822422332242233AQC ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯∠==,0πAQC <∠<,2137sin 188AQC ⎛⎫∠=-= ⎪⎝⎭,1224237733831sin 22ACQ S AQ CQ AQC =⨯⨯⨯⨯⨯∠⨯==△,设平面ACQ 的法向量为()1111,,n x y z = ,则1100n AQ n CQ ⎧⋅=⎪⎨⋅=⎪⎩,即111112203323033y z y z x ⎧+=⎪⎪⎨⎪--+=⎪⎩.取11x =,得()11,3,3n =-.设M 到平面ACQ 的距离为d ,又31,1,22CM ⎛⎫=-- ⎪ ⎪⎝⎭ ,则()()()()1222131113322133217d CM n n ⎛⎫-⨯+-⨯-+⨯ ⎪===+⋅⎝⎭-+,11219733337M ACQ ACQ V S d -=⨯⨯⨯=⨯=△,∵23AQ AP = ,∴Q 到平面ABC 的距离为2233PO =,又12332ABC S =⨯⨯= ,∴1223339Q ABC ABC V S -=⨯⨯=△,∵PM MD =,∴M 到平面ADC 的距离为1122PO =,又3ADC ABC S S ==△△,∴113326M ADC ADC V S -=⨯⨯=△,多面体DMC AQB -体积为323339962M ACQ Q ABC M ADC V V V V ---=++=++=.22.如图1,某景区是一个以C为圆心,半径为3km 的圆形区域,道路1l ,2l 成60°角,且均和景区边界相切,现要修一条与景区相切的观光木栈道AB ,点A ,B 分别在1l 和2l 上,修建的木栈道AB 与道路1l ,2l 围成三角地块OAB .(注:圆的切线长性质:圆外一点引圆的两条切线长相等).(1)当OAB 为正三角形时求修建的木栈道AB 与道路1l ,2l 围成的三角地块OAB 面积;(2)若OAB 的面积103S =,求木栈道AB 长;(3)如图2,设CAB α∠=,①将木栈道AB 的长度表示为α的函数,并指定定义域;②求木栈道AB 的最小值.【答案】(1)2273km(2)3km 3(3)①33π0πtan 3tan 3AB ααα⎛⎫=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭,②63km 【解析】【分析】(1)运用等面积法可求得等边三角形的边长,进而求得等边三角形的面积.(2)方法1:运用内切圆性质及三角形面积公式可求得结果.方法2:运用两个三角形面积公式可得a b c ++,ab 的值,再结合余弦定理可得22()3c a b ab =+-,联立可求得AB 的长.(3)①运用内切圆性质可得π3CBM α∠=-,进而运用直角三角形中的正切公式可表示出AB .②方法1:运用分离常数法、“1”的代换及基本不等式可求得结果.方法2:运用切化弦、和角公式、积化和差公式化简AB 表达式,再结合三角函数在区间上求最值即可.方法3:运用切化弦、和差角公式、二倍角公式、辅助角公式化简,再结合三角函数在区间上求最值即可.【小问1详解】如图所示,设三角地块OAB 面积为S ,等边△OAB 边长为a ,所以由等面积法得:211π33sin 223S a a =⨯⨯=,解得63a =,所以221π3sin (63)273234OAB S a ==⨯=△.故修建的木栈道AB 与道路1l ,2l 围成的三角地块OAB 面积为273平方千米.【小问2详解】方法1:设圆C 分别与OB 、OA 、AB 相切于点N 、E 、M ,如图所示,则3NC =,NC OB ⊥,1π26NOC BOA ∠=∠=,所以在Rt ONC △中,33πtan6NCON ==,所以33OE ON ==,设BM BN m ==,AE AM n ==,所以12(33)31032AOB S m n =⨯⨯++⨯=△,解得:33m n +=,即:33AB =.故木栈道AB 长为3km 3.方法2:设三角地块OAB 面积为S ,OB a =,OA b =,AB c =,3r =,由等面积法可得:()11sin 22S ab BOA r a b c =∠=++,即:()()13103103242433r a b c ab a b c ab =++=⇒=++=,所以3203a b c ++=①,40ab =②,在△OAB 中,由余弦定理得2222222cos 2cos60c a b ab BOA c a b ab ︒=+-∠⇒=+-222()3a b ab a b ab =+-=+-,即:22()3c a b ab =+-③,由①②③解得:33c =.故木栈道AB 长为3km 3.【小问3详解】如图所示,①由题意知,2π3OBA OAB ∠+∠=,由内切圆的性质可知,π3CBA CAB ∠+∠=,设直线AB 和圆C 相切点M ,CAB α∠=,则π3CBM α∠=-,因为00π003CAB CBA αα>⎧∠>⎧⎪⇒⎨⎨∠>->⎩⎪⎩,解得:π03α<<,又因为tan CM AM α=,πtan 3CMBM α⎛⎫-= ⎪⎝⎭,所以tan 3AM α=,πn 33ta BM α=⎛⎫- ⎪⎝⎭,所以33π0πtan 3tan 3AB AM BM ααα⎛⎫=+=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭.即:33π0πtan 3tan 3AB ααα⎛⎫=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭.②方法1:3tan 1312333πtan tan tan 3tan 3tan ta 3331n AB ααααααα⎛⎫+=+=+=+- ⎪ ⎪⎛⎫--⎝⎭- ⎪⎝⎭()143tan 4tan 3tan 3tan 333533tan tan 3tan 3tan αααααααα⎛⎫-⎛⎫⎡⎤=++--=++- ⎪ ⎪ ⎪⎣⎦--⎝⎭⎝⎭3(54)3363≥⨯+-=,当且仅当π6α=时等号成立,故木栈道AB 的长度最小值为63km .方法2:πππcos()cos sin()sin cos()33333πππtan sin sin()sin sin()33cos tan 333AB αααααααααααα⎛⎫--+- ⎪=+=+=⨯ ⎪⎛⎫ ⎪--- ⎪⎝⎭⎝⎭ππsin[()]sin333333π11ππ1ππcos(2)cos[()]cos[()]cos(2)cos 32233233αααααααα-+=⨯=⨯=⎡⎤⎡⎤-----+---⎢⎥⎢⎥⎣⎦⎣⎦因为π03α<<,所以πππ2333α-<-<,所以1πcos(2)123α<-≤,所以3363π1cos(2)32AB α=≥--,故木栈道AB 的长度最小值为63km .方法3:πππcos()cos sin()sin cos()33333πππtan sin sin()sin sin()33cos tan 333AB αααααααααααα⎛⎫--+- ⎪=+=+=⨯ ⎪⎛⎫ ⎪--- ⎪⎝⎭⎝⎭ππsin[()]sin333333π13131sin(2)sin (cos sin )sin 2(1cos 2)622244αααααααα-+=⨯=⨯=+----,因为π03α<<,所以ππ5π2666α<+<,所以1πsin(2)126α<+≤,所以3363π1sin(2)62AB α=≥+-,故木栈道AB 的长度最小值为63km .【点睛】方法点睛:解三角形的应用问题的要点(1)从实际问题抽象出已知的角度、距离、高度等条件,作为某个三角形的元素;(2)利用正弦、余弦定理解三角形,得实际问题的解.解三角形中最值(范围)问题的解题策略利用正弦、余弦定理以及面积公式化简整理,构造关于某一个角或某一边的函数或不等式,利用函数的单调性或基本不等式等求最值(范围).。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
2022-2023学年福建省厦门市湖滨中学高一(下)期中数学试卷【答案版】

2022-2023学年福建省厦门市湖滨中学高一(下)期中数学试卷一、单选题(本题共8个小题,每小题5分) 1.已知复数z =(2+i )2,则z 的虚部为( ) A .3B .3iC .4D .4i2.如图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱3.已知平面向量a →=(−2,6)与b →=(−4,λ)垂直,则λ的值是( ) A .43B .−43C .12D .﹣124.若O ,M ,N 在△ABC 所在平面内,满足|OA →|=|OB →|=|OC →|,MA →⋅MB →=MB →⋅MC →=MC →•MA →,且NA →+NB →+NC →=0→,则点O ,M ,N 依次为△ABC 的( ) A .重心,外心,垂心 B .重心,外心,内心C .外心,重心,垂心D .外心,垂心,重心5.在△ABC 中,若A =60°,b =1,△ABC 的面积S =√3,则a sinA=( ) A .2√393B .2√293C .26√33D .3√36.如图1,一个正三棱柱容器,底面边长为1,高为2,内装水若干,将容器放倒,把一个侧面作为底面,如图2,这是水面恰好是中截面,则图1中容器水面的高度是( )A .54B .53C .43D .327.圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP →⋅AO →的取值范围为( )A .[−12,4)B .[0,2)C .[−12,2)D .[0,4)8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若3AC →⋅AB →−BA →⋅BC →=2CA →⋅CB →,2b =b cos C +c cos B ,则cos C 的值为( ) A .13B .−13C .18D .−18二、多选题(共4个小题,每小题5分,全部选对的得5分,选对但不全的得2分,有选错的得0分.) 9.如果平面向量a →=(2,0),b →=(1,1),那么下列结论中正确的是( ) A .|a →|=√2|b →|B .a →⋅b →=2√2C .(a →−b →)⊥b →D .a →∥b →10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =√7,b =2,A =π3,则( ) A .c =3B .sinB =√217C .sinC =√217D .△ABC 外接圆的面积为7π311.在复平面内,下列说法正确的是( ) A .若复数z 满足z ⋅z =0,则z =0B .若复数z 1,z 2 满足|z 1+z 2|=|z 1﹣z 2|,则z 1z 2=0C .若复数z 1,z 2 满足|z |=|z 2|,则z 12=z 22D .若|z |=1,则|z +1+i |的最大值为√2+112.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M ,N ,P 分别是AA 1,CC 1,C 1D 1的中点,Q 是线段D 1A 1上的动点,则( )A .存在点Q ,使B ,N ,P ,Q 四点共面 B .存在点Q ,使PQ ∥平面MBNC .经过C ,M ,B ,N 四点的球的表面积为9π2D .过Q ,M ,N 三点的平面截正方体ABCD ﹣A 1B 1C 1D 1所得截面图形不可能是五边形 三、填空题(共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答) 13.已知复数(m 2﹣3m ﹣1)+(m 2﹣5m ﹣6)i =3(其中i 为虚数单位),则实数m = . 14.一艘船从河岸边出发向河对岸航行.已知船的速度v 1→的大小为|v 1→|=10km/ℎ,水流速度v 2→的大小为|v 2→|=3km/ℎ,那么当航程最短时船实际航行的速度大小为 km /h .15.祖暅(公元前5~6世纪),字景烁,是我国南北朝时期的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.如图将某几何体(左侧图)与已被挖去了圆锥体的圆柱体(右侧图)放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,若S 圆=S 环总成立,且图中圆柱体(右侧图)的底面半径为2,高为3,则该几何体(左侧图)的体积是 .16.在锐角△ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且2c sin (B ﹣A )=2a sin A cos B +b sin2A ,则ca 的取值范围是 .四、解答题(本题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知向量a →=(3,2),b →=(x ,−1). (1)已知x =5,求向量a →与b →的夹角θ; (2)若(a →+2b →)⊥(2a →−b →),求实数x 的值.18.(12分)已知复数z =5(1−i)1+2i +(2+i)2,i 为虚数单位. (1)求|z |和z ;(2)若复数z 是关于x 的方程x 2+mx +n =0的一个根,求实数m ,n 的值.19.(12分)如图,某组合体是由正方体ABCD ﹣A 1B 1C 1D 1与正四棱锥P ﹣A 1B 1C 1D 1组成,且PA 1=√32AB . (1)若该组合体的表面积为36(5+√2),求其体积; (2)证明:A 1B ∥平面D 1AC .20.(12分)如图,在平行四边形ABCD 中,AB =1,AD =2,∠BAD =60°,BD ,AC 相交于点O ,M 为BO 中点.设向量AB →=a →,AD →=b →. (1)求|a →−b →|的值; (2)用a →,b →表示BD →和AM →; (3)证明:AB →⊥BD →.21.(12分)在△ABC 中,a =6,sin A =32sin B . (Ⅰ)求b ;(Ⅱ)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求△ABC 的面积. 条件①:∠B =2π3; 条件②:BC 边上中线的长为√17; 条件③:sin B =sin2A .注:如果选择多个符合要求的条件分别解答,按第一个解答计分.22.(12分)随着生活水平的不断提高,人们更加关注健康,重视锻炼.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A ﹣B ﹣C ﹣A 为某区的一条健康步道,AB 、AC 为线段,BC ̂是以BC 为直径的半圆,AB =2√3km ,AC =4km ,∠BAC =π6. (1)求BĈ的长度; (2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新建健康步道A ﹣D ﹣C (B ,D 在AC 两侧),其中AD ,CD 为线段.若∠ADC =π3,求新建的健康步道A ﹣D ﹣C 的路程最多可比原有健康步道A﹣B﹣C的路程增加多少长度?(精确到0.01km)2022-2023学年福建省厦门市湖滨中学高一(下)期中数学试卷参考答案与试题解析一、单选题(本题共8个小题,每小题5分) 1.已知复数z =(2+i )2,则z 的虚部为( ) A .3B .3iC .4D .4i解:∵z =(2+i )2=4+4i +i 2=3+4i ,∴z 的虚部为4. 故选:C .2.如图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱解:对于选项A ,不是由棱锥截来的,所以A 不是棱台,故A 错误; 对于选项B ,上、下两个面不平行,所以不是圆台; 对于选项C ,是棱锥.对于选项D ,前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以D 是棱柱. 故选:C .3.已知平面向量a →=(−2,6)与b →=(−4,λ)垂直,则λ的值是( ) A .43B .−43C .12D .﹣12解:由题知a →⊥b →,即a →⋅b →=(−2,6)⋅(−4,λ)=8+6λ=0,解得λ=−43. 故选:B .4.若O ,M ,N 在△ABC 所在平面内,满足|OA →|=|OB →|=|OC →|,MA →⋅MB →=MB →⋅MC →=MC →•MA →,且NA →+NB →+NC →=0→,则点O ,M ,N 依次为△ABC 的( ) A .重心,外心,垂心 B .重心,外心,内心C .外心,重心,垂心D .外心,垂心,重心解:因为|OA →|=|OB →|=|OC →|,所以|OA |=|OB |=|OC |, 所以O 为△ABC 的外心;因为MA →⋅MB →=MB →⋅MC →=MC →•MA →, 所以MB →•(MA →−MC →)=0, 即MB →•CA →=0,所以MB ⊥AC , 同理可得:MA ⊥BC ,MC ⊥AB , 所以M 为△ABC 的垂心; 因为NA →+NB →+NC →=0→, 所以NA →+NB →=−NC →,设AB 的中点D ,则NA →+NB →=2ND →, 所以−NC →=2ND →,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND , 所以N 为△ABC 的重心. 故选:D .5.在△ABC 中,若A =60°,b =1,△ABC 的面积S =√3,则a sinA=( ) A .2√393B .2√293C .26√33D .3√3解:因为A =60°,b =1,△ABC 的面积S =√3=12bc sin A =12×1×c ×√32,解得:c =4, 由余弦定理可得a =√b 2+c 2−2bccosA =√1+16−2×1×4×12=√13, 所以a sinA=√13√32=2√393. 故选:A .6.如图1,一个正三棱柱容器,底面边长为1,高为2,内装水若干,将容器放倒,把一个侧面作为底面,如图2,这是水面恰好是中截面,则图1中容器水面的高度是( )A .54B .53C .43D .32解:在图2中,水中部分是四棱柱, 四棱柱底面积为S =12×12×sin60°−12×(12)2×sin60°=3√316,高为2, ∴四棱柱的体积为V =2×3√316=3√38, 设图1中容器内水面高度为h ,则V =12×12×sin60°×ℎ=3√38,解得h =32. ∴图1中容器内水面的高度是32.故选:D .7.圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP →⋅AO →的取值范围为( ) A .[−12,4)B .[0,2)C .[−12,2)D .[0,4)解:由△ABC 为锐角三角形,则外接圆圆心在三角形内部,如下图示,又BP →⋅AO →=(BO →+OP →)⋅AO →=BO →⋅AO →+OP →⋅AO →,而AC =2AB =2,若外接圆半径为r , 因为AB sin∠ACB =2r ,∴1sin 12∠AOB=2r ,∴2r ⋅sin 12∠AOB =1, 两边平方得,4r 2⋅1−cos∠AOB2=1,∴2r 2(1﹣cos ∠AOB )=1,则2r 2(1﹣cos ∠AOB )=2r 2(1﹣cos2C )=1, 故cos2C =1−12r 2,且2r >2,即r >1, 由BO →⋅AO →=|BO →||AO →|cos∠AOB =r 2cos2C =r 2−12,对于OP →⋅AO →且P 在圆O 上,当AP 为直径时OP →⋅AO →=r 2,当A ,P 重合时OP →⋅AO →=−r 2, ∴OP →⋅AO →∈[−r 2,r 2],综上,BP →⋅AO →∈[−12,2r 2−12],锐角三角形中∠BAC <90°,则BC <√AC 2+AB 2=√5,即BC =2rsin ∠BAC <√5恒成立, ∴1<r <√52,则2r 2−12<2恒成立,综上所述,BP →⋅AO →的取值范围为[−12,2). 故选:C .8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若3AC →⋅AB →−BA →⋅BC →=2CA →⋅CB →,2b =b cos C +c cos B ,则cos C 的值为( ) A .13B .−13C .18D .−18解:由若3AC →⋅AB →−BA →⋅BC →=2CA →⋅CB →可得,3bc cos A ﹣ac cos B =2ab cos C , 由余弦定理得3(b 2+c 2﹣a 2)﹣(a 2+c 2﹣b 2)=2(a 2+b 2﹣c 2),即b 2+2c 2=3a 2,①由正弦定理结合2b =b cos C +c cos B 可得,2sin B =sin B cos C +sin C cos B =sin (B +C )=sin A ,∴2b =a ② 由①②得,11b 2=2c 2,cosC =a 2+b 2−c 22ab =5b 2−c 24b2=1011c 2−c 2811c 2=−18, 故选:D .二、多选题(共4个小题,每小题5分,全部选对的得5分,选对但不全的得2分,有选错的得0分.) 9.如果平面向量a →=(2,0),b →=(1,1),那么下列结论中正确的是( ) A .|a →|=√2|b →|B .a →⋅b →=2√2C .(a →−b →)⊥b →D .a →∥b →解:∵a →=(2,0),b →=(1,1), ∴|a →|=2,|b →|=√2, ∴|a →|=√2|b →|,∴A 正确;a →⋅b →=2,∴B 错误;(a →−b →)⋅b →=(1,−1)⋅(1,1)=1−1=0,∴(a →−b →)⊥b →,∴C 正确; ∵2×1﹣0×1≠0,∴a →∥b →错误,∴D 错误. 故选:AC .10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =√7,b =2,A =π3,则( ) A .c =3B .sinB =√217C .sinC =√217D .△ABC 外接圆的面积为7π3解:因为a =√7,b =2,A =π3, 由余弦定理得,a 2=7=4+c 2﹣2×2c ×12, 所以c =3,A 正确, 由正弦定理得asinA=b sinB=c sinC=2R ,所以sin B =2×√327=√217,sin C =3√2114,R =√213, 所以△ABC 外接圆的面积S =πR 2=7π3,B 正确,C 错误,D 正确. 故选:ABD .11.在复平面内,下列说法正确的是( ) A .若复数z 满足z ⋅z =0,则z =0B .若复数z 1,z 2 满足|z 1+z 2|=|z 1﹣z 2|,则z 1z 2=0C .若复数z 1,z 2 满足|z |=|z 2|,则z 12=z 22D .若|z |=1,则|z +1+i |的最大值为√2+1解:若复数z 满足z ⋅z =0,则|z |2=0,得z =0,故A 正确;若复数z 1,z 2 满足|z 1+z 2|=|z 1﹣z 2|,不一定有z 1z 2=0,如z 1=1,z 2=i ,故B 错误;若复数z 1,z 2 满足|z 1|=|z 2|,不一定有z 12=z 22,如z 1=1,z 2=i ,故C 错误;若|z |=1,如图:|z +1+i |的几何意义为圆上的动点到定点(﹣1,﹣1)的距离,则|z +1+i |的最大值为√2+1,故D 正确.故选:AD .12.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M ,N ,P 分别是AA 1,CC 1,C 1D 1的中点,Q 是线段D 1A 1上的动点,则( )A .存在点Q ,使B ,N ,P ,Q 四点共面B .存在点Q ,使PQ ∥平面MBNC .经过C ,M ,B ,N 四点的球的表面积为9π2D .过Q ,M ,N 三点的平面截正方体ABCD ﹣A 1B 1C 1D 1所得截面图形不可能是五边形解:对于A :连接A 1B ,A 1P ,CD 1,如图所示:在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,CD 1∥A 1B ,∵P ,N 分别是C 1D 1,C 1C 中点,∴PN ∥CD 1,∴PN ∥A 1B ,故A 1,P ,N ,B 四点共面,当Q 与A 1重合时满足B ,N ,P ,Q 四点共面,故A 正确;对于B :取A 1D 1中点为Q ,连接PQ ,QM ,A 1C 1,如图所示:∵M ,N 分别AA 1,CC 1中点,则A 1M 与C 1N 平行且相等,∴四边形A 1C 1NM 是平行四边形,∴MN ∥A 1C 1,又P 是C 1D 1中点,∴PQ ∥A 1C 1,∴PQ ∥MN ,又MN ⊂平面BMN ,PQ ⊄平面BMN ,故PQ ∥平面BMN ,故B 正确;对C :由图形的对称性易知,经过C ,M ,B ,N 四点的球的球心为矩形AMNC 的中心,∴矩形AMNC 的对角线即为球的直径2R ,又易得矩形AMNC 的对角线长为√1+(2√2)2=3,∴R =32,∴经过C ,M ,B ,N 四点的球的表面积为4πR 2=9π,∴C 错误;对D ,由运动变化思想可得,当Q 与D 1重合时,过Q ,M ,N 三点的平面截正方体的截面为菱形BMD 1N ,当Q 在A 1D 1之间时,由对称性易得:过Q ,M ,N 三点的平面截正方体的截面为六边形,当当Q 与A 1重合时,过Q ,M ,N 三点的平面截正方体的截面为矩形ACC 1A 1,∴D 正确.故选:ABD .三、填空题(共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答)13.已知复数(m 2﹣3m ﹣1)+(m 2﹣5m ﹣6)i =3(其中i 为虚数单位),则实数m = ﹣1 .解:复数(m 2﹣3m ﹣1)+(m 2﹣5m ﹣6)i =3,则{m 2−3m −1=3m 2−5m −6=0,解得m =﹣1. 故答案为:﹣1.14.一艘船从河岸边出发向河对岸航行.已知船的速度v 1→的大小为|v 1→|=10km/ℎ,水流速度v 2→的大小为|v 2→|=3km/ℎ,那么当航程最短时船实际航行的速度大小为 √91 km /h .解:要使航程最短,则船实际航行应正对着河对岸航行,所以船实际航行的速度大小为√|v 1→|2−|v 2→|2=√91km /h .故答案为:√91.15.祖暅(公元前5~6世纪),字景烁,是我国南北朝时期的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.如图将某几何体(左侧图)与已被挖去了圆锥体的圆柱体(右侧图)放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,若S 圆=S 环总成立,且图中圆柱体(右侧图)的底面半径为2,高为3,则该几何体(左侧图)的体积是 8π .解:因为总有S 圆=S 环,圆柱的高为3,底面圆的半径为2,所以该几何体的体积为V 柱−V 锥=22×3π−13π×22×3=8π,故答案为:8π.16.在锐角△ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且2c sin (B ﹣A )=2a sin A cos B +b sin2A ,则c a 的取值范围是 (1,2) . 解:由正弦定理和正弦二倍角公式可得2sin C sin (B ﹣A )=2sin A sin A cos B +sin B sin2A =2sin A sin A cos B +2sin B sin A cos A =2sin A (sin A cos B +sin B cos A )=2sin A sin (A +B ),因为0<C <π2,π−C =A +B ,所以sin (π﹣C )=sin (A +B )=sin C ≠0,可得sin (B ﹣A )=sin A ,因为0<A <π2,0<B <π2,所以−π2<B −A <π2,所以B =2A ,C =π﹣3A ,由0<B =2A <π2,0<C =π−3A <π2可得π6<A <π4, 所以√22<cosA <√32,12<cos 2A <34, 由正弦定理得c a =sinC sinA =sin3A sinA =sin(2A+A)sinA =sin2AcosA+cos2AsinA sinA = 2cos 2A +cos2A =4cos 2A ﹣1∈(1,2).故答案为:(1,2).四、解答题(本题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知向量a →=(3,2),b →=(x ,−1).(1)已知x =5,求向量a →与b →的夹角θ;(2)若(a →+2b →)⊥(2a →−b →),求实数x 的值.解:(1)根据题意,向量a →=(3,2),b →=(x ,−1).因为x =5,所以b →=(5,−1),故cosθ=a →⋅b→|a →|⋅|b →|=9+4×25+1=√22, 因为θ∈[0,π],所以向量a →与b →的夹角θ=π4;(2)a →+2b →=(3,2)+(2x ,−2)=(3+2x ,0),2a →−b →=(6,4)−(x ,−1)=(6−x ,5), 由于(a →+2b →)⊥(2a →−b →),所以(a →+2b →)⋅(2a →−b →)=(3+2x ,0)⋅(6−x ,5)=(3+2x)(6−x)=0,解得:x =−32或6,从而x =−32或6.18.(12分)已知复数z =5(1−i)1+2i +(2+i)2,i 为虚数单位.(1)求|z |和z ;(2)若复数z 是关于x 的方程x 2+mx +n =0的一个根,求实数m ,n 的值.解:(1)∵z =5(1−i)1+2i +(2+i)2=5(1−i)(1−2i)(1+2i)(1−2i)+4+4i −1=5(−1−3i)5+3+4i =2+i , ∴|z|=√22+12=√5,z =2−i ;(2)∵复数z 是关于x 的方程x 2+mx +n =0的一个根,∴(2+i )2+m (2+i )+n =0,∴3+4i +2m +mi +n =0,∴(3+2m +n )+(m +4)i =0,∴{3+2m +n =0m +4=0,解得m =﹣4,n =5; 综上,|z|=√5,z =2−i ,m =−4,n =5.19.(12分)如图,某组合体是由正方体ABCD ﹣A 1B 1C 1D 1与正四棱锥P ﹣A 1B 1C 1D 1组成,且PA 1=√32AB .(1)若该组合体的表面积为36(5+√2),求其体积;(2)证明:A 1B ∥平面D 1AC .解:(1)连接A 1C 1、B 1D 1交于点O ,连接PO ,由正棱锥的性质可知PO ⊥平面A 1B 1C 1D 1,设AB =2a ,则PA 1=√3a ,A 1O =12A 1C 1=√2a ,∴PO =√PA 12−A 1O 2=a ,取B 1C 1的中点E ,连接PE ,则PE ⊥B 1C 1,且PE =√PB 12−B 1E 2=√2a , 所以几何体的表面积为5×4a 2+4×12×2a ×√2a =(20+4√2)a 2=36(5+√2),可得a =3, 所以该几何体的体积为(2a)3+13×4a 2×a =8×27+43×33=252;(2)证明:因为BC ∥A 1D 1,且BC =A 1D 1,所以四边形A 1BCD 1是平行四边形,则A 1B ∥D 1C ,A 1B ⊄平面D 1AC ,D 1C ⊂平面D 1AC ,所以A 1B ∥平面D 1AC .20.(12分)如图,在平行四边形ABCD 中,AB =1,AD =2,∠BAD =60°,BD ,AC 相交于点O ,M 为BO 中点.设向量AB →=a →,AD →=b →.(1)求|a →−b →|的值;(2)用a →,b →表示BD →和AM →;(3)证明:AB →⊥BD →.解:(1)在平行四边形ABCD 中,AB =1,AD =2,∠BAD =60°,BD ,AC 相交于点O ,M 为BO 中点.又向量AB →=a →,AD →=b →,则|a →−b →|=√(a →−b →)2=√a →2−2a →⋅b →+b →2=√|a →|2−2|a →|⋅|b →|cos∠BAD +|b →|2=√1−2×1×2×12+4=√3; (2)由题意可得BD →=AD →−AB →=b →−a →,又∵M 为BO 中点,∴BM →=14BD →=14(b →−a →),∴AM →=AB →+BM →=a →+14(b →−a →)=34a →+14b →; (3)证明:∵AB →⋅BD →=a →⋅(b →−a →)=a →⋅b →−a →2,又∵AB =1,AD =2,∠BAD =60°,∴a →⋅b →=1×2×12=1,∴AB →⋅BD →=a →⋅b →−a →2=1−1=0,所以AB →⊥BD →.21.(12分)在△ABC 中,a =6,sin A =32sin B .(Ⅰ)求b ;(Ⅱ)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求△ABC 的面积. 条件①:∠B =2π3;条件②:BC 边上中线的长为√17;条件③:sin B =sin2A .注:如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(I )因为sinA =32sinB ,在△ABC 中,由正弦定理a sinA =b sinB , 可得:a =32b ,又因为a =6,所以b =4;(Ⅱ)选择条件①,因为cos B =a 2+c 2−b 22ac, 所以−12=36+c 2−1612c , 则c 2+6c +20=0,无解;选择条件②,设BC 边上的中线为AD ,则AD =√17,CD =3,在△ACD 中,由余弦定理得:cosC =AC 2+CD 2−AD 22⋅AC⋅CD =42+32−(√17)22×4×3=13, 因为cosC =13,C ∈(0,π),所以sinC =√1−cos 2C =2√23, 所以△ABC 的面积为S =12absinC =12×6×4×2√23=8√2;选择条件③,由题设,因为sin2A =2sin A cos A ,所以sin B =2sin A cos A ,因为sinA =32sinB ,所以sin B =3sin B cos A , 因为B ∈(0,π),所以sin B ≠0,所以cosA =13,由余弦定理a 2=b 2+c 2﹣2bc cos A 可得:36=16+c 2−2×4×c ×13,整理得3c 2﹣8c ﹣60=0,解得c =6或−103(舍),因为cosA =13,A ∈(0,π),所以sinA =√1−cos 2A =2√23,所以△ABC 的面积为S =12bcsinA =12×4×6×2√23=8√2.22.(12分)随着生活水平的不断提高,人们更加关注健康,重视锻炼.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A ﹣B ﹣C ﹣A 为某区的一条健康步道,AB 、AC为线段,BC ̂是以BC 为直径的半圆,AB =2√3km ,AC =4km ,∠BAC =π6.(1)求BĈ的长度; (2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新建健康步道A ﹣D ﹣C (B ,D 在AC 两侧),其中AD ,CD 为线段.若∠ADC =π3,求新建的健康步道A ﹣D ﹣C 的路程最多可比原有健康步道A ﹣B ﹣C 的路程增加多少长度?(精确到0.01km )解:(1)连接BC ,△ABC 中,由余弦定理得BC =√AC 2+AB 2−2AC ⋅ABcos∠BAC =√16+12−2×4×2√3×√32=2, BC ̂=12×2×π×1=π,即π(km ); (2)设AD =a ,CD =b ,△ACD 中,由余弦定理得16=a 2+b 2﹣ab ,所以(a +b )2=16+3ab ≤16+3×(a+b2)2,解得a +b ≤8,当且仅当a =b =4时取得等号,新建健康步道A ﹣D ﹣C 的最长路程8km ,8−π−2√3≈1.39(km ),故新建健康步道A ﹣D ﹣C 的路程最多可比原来有健康步道A ﹣B ﹣C 的路程增加1.39(km ).。
专题2.4 提高复习之数列与不等式相结合问题-备战期末考试2015-2016学年高一下学期数学期

1.已知数列{n a }满足:11a =,2210,1n n n a a a +>-= ()*n N ∈,那么使n a <3成立的n 的最大值为( ) A .2 B .3 C .8 D .9 【答案】C 【解析】试题分析:由题知{}2n a 是等差数,221(1)1n a a n n =+-⨯=,3n a <,29n a ∴<,9n ∴<,则n 的最大值为8.故选C.2.已知数列{}n a 的前n 项和n n S n 92-=,第k 项满足1310<<k a ,则=k ( ) A .9 B .10 C .11 D .12 【答案】C 【解析】试题分析:由数列{}n a 的前n 项和n n S n 92-=,可求得通项公式210n a n =-,所以1021013k <-<,解得1011.5k <<,因为*k N ∈,所以11k =,故选C.3.已知数列{}n a 满足134()n n a a n N +++=∈且19a =,其前n 项和为n S ,则满足1|6|125n S n --<的最小正整数n 为( )A. 6B.7C.8D.9 【答案】B4.已知数列{}n a 满足712,83,8n n a n n a a n -⎧⎛⎫-+>⎪ ⎪=⎝⎭⎨⎪≤⎩,若对于任意n N *∈都有1n n a a +>,则实数a 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .11,32⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D5.已知数列{}n a 的通项公式为327n a n =-,记数列S n 的前n 项和为,则使S 0n ≤成立的n 的最大值为( ) A .4 B .5 C .6 D .8 【答案】C 【解析】 试题分析:123433333,1,3,32175227237247a a a a ==-==-==-==⨯-⨯-⨯-⨯-,531257a ==⨯-6332675a ==⨯-,7332777a ==⨯-,…,所以使0n S ≤成立的n 的最大值为6,故选C.6.已知数列{}n a 是递增数列,且对任意*n N ∈都有2n a n bn =+成立,则实数b 的取值范围是( ) A .7(,)2-+∞ B .(0,)+∞ C .(2,)-+∞ D .(3,)-+∞ 【答案】D 【解析】试题分析:因为*n N ∈,{}n a 递增,所以322b -<,3b >-.故选D . 7.若,a ∈N *,且数列{a n }是递增数列,则a 的值是( )A .4或5B .3或4C .3或2D .1或2 【答案】A8.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B 【解析】试题分析:由95S S =,得()67897820a a a a a a +++=+=, 由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.9.已知数列{}n a 的前n 项和为n S ,满足515S =-,3172d <<,则当n S 取得最小值时n 的值为( ) A .7 B .8 C .9 D .10 【答案】C 【解析】试题分析:由等差数列求和公式得251551522d d S a ⎛⎫=⨯+-⨯=- ⎪⎝⎭ ,整理得132a d =--,故22215323222222n d d d d d d S n a n n d n n n ⎛⎫⎛⎫⎛⎫=+-=+---=+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对称轴35=2n d +,因为3172d <<,n Z ∈,故=9n 时取得最小值. 10.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >其中正确命题的个数是( )A .5B .4C .3D .1 【答案】C11.在数列}{n a 中,12a =,11(1)(1)220()n n n n a a a a n N *++--+-=∈,若5150n a <,则n 的最小值为__________. 【答案】100 【解析】试题分析:令1n n a b -=,则∵11(1)(1)220()n n n n a a a a n N *++--+-=∈,∴11220n n n n b b b b +++-=,∴11112n n b b +-=,∵12a =,∴111b =,∴1111(1)22n n n b +=+-=,∴21n b n =+,∴211n a n -=+,∴211n a n =++,∵5150n a <,∴2511150n +<+,∴99n >,∴n 的最小值为100.所以答案应填:100. 12.数列{}n a 满足141,1211=+=+n n a a a ,记2232221n n a a a a S +⋅⋅⋅+++=,若3012m S S n n ≤-+对任意*∈N n 恒成立,则正整数m 的最小值为_______. 【答案】10 【解析】 试题分析:由1n a +=,得221114n n a a +-=,可知数列21n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为4的等差数列,所以()2111443nn n a =+-⨯=-,则2143n a n =-,22212n nS a a a =+++,考查()()222212*********418589n n n n n n n S S S S a a a n n n ++++++---=--=--+++,又1111082858289n n n n ⎛⎫⎛⎫-+->⎪ ⎪++++⎝⎭⎝⎭,即()()212311*********n n n n S S S S n n n +++---=-->+++,则可知数列{}21n n S S +-是一个递减数列,所以数列{}21n n S S +-的最大项为22313211149545S S a a -=+=+=,又3012m S S n n ≤-+对任意*∈N n 恒成立,所以144530m ≤,即283m ≥,所以m 的最小值是10.13.记数列{a n }的前n 项和为S n ,若不等式222122n n S a ma n+≥对任意等差数列{a n }及任意正整数n 都成立,则实数m 的最大值为____________. 【答案】11014.已知n S 为数列}{n a 的前n 项和,1=1a ,2=(1)n n S n a +,若存在唯一的正整数n 使得不等式2220n n a ta t --≤成立,则实数t 的取值范围为_______.【答案】1(2,1][,1)2-- 【解析】试题分析:由2(1)n n S n a =+得,当2n ≥时有112n n S na --=,所以11222(1)n n n n n a S S n a na --=-=+-,即1(1)n n n a na --=,11n n a na n -=-,又11a =,所以121211n n nn n n a a a a a n a a a a ---=⋅⋅⋅==,所以2220n n a ta t --≤等价于2220n tn t --≤,设22()2f n n tn t =--,由于2(0)20f t =-≤,所以由题意有2222(1)120(2)2220f t t f t t ⎧=--<⎪⎨=--≥⎪⎩,解之得21t -<≤-或112t ≤<,所以应填1(2,1][,1)2--. 15.已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若23n nS S N ≤-≤M 对n *∈N 恒成立,则M -N 的最小值为 . 【答案】251216.已知数列{}n a 通项为98.5n n a n -=-,若n a ≤M 恒成立,则M 的最小值为 .【答案】2 【解析】试题分析:根据题意可知M 的最小值为数列的最小项,因为90.518.58.5n n a n n -==---,可知当8n =时取得最小值,而82a =,所以M 的最小值为2.17.已知数列{}n a 的前n 项和为n T ,且点(,)n n T 在函数23122y x x =-上,且423log 0n n a b ++=(n N *∈).(I )求{}n b 的通项公式;(II )数列{}n c 满足n n n c a b =⋅,求数列{}n c 的前n 项和n S ;(III )记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n B ,设21n n nd b B =⋅,证明:1212n d d d +++<.【答案】(I )n n b 41=;(II )nn n S ⎪⎭⎫⎝⎛+-=4132332;(III )证明见解析.试题解析:(I )由点()n T n ,在函数x x y 21232-=上,得:n n T n 21232-= (ⅰ)当1=n 时,1212311=-==T a . (ⅱ)当2≥n 时,231-=-=-n T T a n n n ,∴23-=n a n . 又∵0log 324=++n n b a , ∴n n n b 414==- (II )∵()nn n n n b a c ⎪⎭⎫⎝⎛-=⋅=4123且n n c c c c S +++=321,∴()nn n S ⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=4123417414411321 ……①()1432412341741441141+⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=n n n S …②由①-②得:()132412341414134143+⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n n n S()141412341141116134143+-⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛-+=n n n n S整理得:nn n S ⎪⎭⎫⎝⎛+-=4132332.18.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,n N *∈ (1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:2n T <; (3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【答案】(1)12n a n =;(2)证明见解析;(3)29≥λ. 【解析】试题分析:(1)本小题是已知n S 与n a 的关系求通项公式的题型,方法是先由11a S =,求出1a ,然后利用当2n ≥时,1n n n a S S -=-得到n a 与1n a -的关系,再求通项;(2)由已知得1n n b b n --=,已知前后项的差,因此可用累加法求得通项,即由121321()()()n n n b b b b b b b b -=+-+-++-得(1)2n n n b +=,从而用裂项求和法求出1{}nb 的前n 项和n T ,并证得题设结论;(3)不等式2(4)1n λn n ≤++恒成立,可变形为2(1)(4)n λn n ≥++,为此只要求得2(1)(4)nn n ++的最大值即可,这可由基本不等式得到结论.试题解析:(1)1n =时,211111122a a a a =+∴= 21112211211121222n n n n n n nn n n n S a a a a a a a S a a+++--⎧=+⎪⎪⇒=-+-⎨⎪=+⎪⎩ 111()()02n n n n a a a a --⇒+--= 1102n n n a a a ->∴-=∴{}n a 是以12为首项,12为公差的等差数列 12n a n ∴=(3)由2(4)1n λn n ≤++得224(1)(4)5n n n n n λ≥=++++, 当且仅当2n =时,245n n++有最大值29,29λ∴≥19.已知正项数列{}n a 的前n 项和为n S ,且()()241n n S a n N *=+∈.(1)求数列{}n a 的通项公式; (2)设n T 为数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,证明:()213n T n N *≤<∈. 【答案】(1)21n a n =-;(2)证明见解析. 【解析】试题分析:(1)已知()241n n S a =+,要求通项公式,可再写一式2n ≥时,()21141n n S a --=+,利用1n n n a S S -=-,把两式相减可得n a 的递推关系,本题可得{}n a 是等差数列,易得通项;(2)要证明题设不等式,必须求得和n T ,由于12211(21)(21)2121n n a a n n n n +==--+-+,即可用裂项相消法求得和n T 1121n =-+,注意到*n N ∈,不等式易得证. 试题解析:(1)1n =时,11a =;2n ≥时,()21141n n S a --=+,又()241n n S a =+,两式相减得()()1120n n n n a a a a --+--=,{}10,2,n n n n a a a a ->∴-=为是以1位首项,2为公差的等差数列,即21n a n =-.20.已知数列{}n a 的前n 项和为n S ,点,n S n n⎛⎫⎪⎝⎭在直线11122y x =+上. (1)求数列{}n a 的通项公式;[来 (2)设()()13211211n n n b a a +=--,求数列{}n b 的前n 项和为n T ,并求使不等式20n kT >对一切*n N ∈都成立的最大正整数k 的值.【答案】(1)5n a n =+;(2)max 19k =. 【解析】试题分析:(1)由题意,得11122n S n n =+,化为211122n S n n =+,利用递推关系即可得出;(2)利用“裂项求和”可得Tn ,再利用数列的单调性、不等式的性质即可得出. 试题解析:(1)由题意,得11122n S n n =+,即211122n S n n =+故当2n ≥时,()()2211111111152222n n n a S S n n n n n -⎛⎫⎡⎤=-=+--+-=+ ⎪⎢⎥⎝⎭⎣⎦ 当n=1时,11615a S ===+, 所以5n a n =+.。
高一数学2015-2016下期中考试试卷

贵安新区第三高级中学2015-2016学年度第二学期半期考试题卷高一 数 学 (出题人:赵继银 审题人:张正兴) 一、选择题(本大题共12个小题,每小题5分,共60分) 1.不等式x 2-2x -5>2x 的解集是( )A .{x |x ≥5或x ≤-1}B .{x |x >5或x <-1}C .{x |-1<x <5}D .{x |-1≤x ≤5}2.某几何体的三视图,如图所示,则这个几何体是()A .三棱锥B .三棱柱C .四棱锥D .四棱柱3.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60°D .120°4.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A.31010 B .-31010 C.55 D .-555.等差数列{a n }中,a 5=33,a 45=153,则201是该数列的第( )项( ) A .60 B .61 C .62 D .636.在△ABC 中,b =3,c =3,B =30°,则a 的值为( ) A. 3 B .23 C.3或2 3 D .27.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130 8.(x -2y +1)(x +y-3)<0表示的平面区域为( )9.已知某几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A .12 cm 3B .13 cm 3C .16 cm 3D .112 cm 310.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( )A .30°或150°B .15°或75°C .30°D .15°11.若x 、y 满足条件⎩⎪⎨⎪⎧x ≥y x +y ≤1y ≥-1,则z =-2x +y 的最大值为( )A .1B .-12 C .2 D .-512.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3 cm 3B .866π3 cm 3C .1372π3 cm 3D .2048π3 cm 3 二、填空题(每题5分)13.若0<x <1,则x (1-x )的最大值为________.14.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=__________. 15.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于__________.16.不等式(m +1)x 2+(m 2-2m -3)x -m +3>0恒成立,则m 的取值范围是__________. 三、简答题(共70分)17.(本题满分10分) 求函数y =-x 2-3x +4x的定义域.18.(本题满分12分)一个直角三角形三边长a 、b 、c 成等差数列,面积为12,求该三角形的周长.19.(本题满分12分)设x 1、x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.20.(本题满分12分)在△ABC 中,∠BAC =120°,AB =3,BC =7,求: (1)AC 的长; (2)△ABC 的面积.21.(本题满分12分) 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n .22. (本题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.贵安新区第三高级中学2015-2016第二学期半期考试试卷答案 高一 数 学一、选择题(本大题共12个小题,每小题5分,共60分) 选择题答案:1——5BBCDB 6——10CBCCA 11——12AA 1.不等式x 2-2x -5>2x 的解集是( )A .{x |x ≥5或x ≤-1}B .{x |x >5或x <-1}C .{x |-1<x <5}D .{x |-1≤x ≤5} [答案] B[解析] 不等式化为x 2-4x -5>0, ∴(x -5)(x +1)>0,∴x <-1或x >5.2.某几何体的三视图,如图所示,则这个几何体是()A .三棱锥B .三棱柱C .四棱锥D .四棱柱[答案] B3.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60° D .120°[答案] C[解析] cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.4.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( )A.31010 B .-31010 C.55 D .-55[答案] D[解析] BC 2=AC 2+AB 2-2AC ·AB cos A=16+2-82cos45°=10,∴BC =10, cos B =AB 2+BC 2-AC 22AB ·BC=-55.5.等差数列{a n }中,a 5=33,a 45=153,则201是该数列的第( )项( ) A .60 B .61 C .62 D .63[答案] B[解析] 设公差为d ,由题意,得⎩⎨⎧a 1+4d =33a 1+44d =153,解得⎩⎨⎧a 1=21d =3.∴a n =a 1+(n -1)d =21+3(n -1)=3n +18. 令201=3n +18,∴n =61.6.在△ABC 中,b =3,c =3,B =30°,则a 的值为( ) A. 3 B .2 3 C.3或2 3 D .2 [答案] C[解析] ∵sin C =sin B b ·c =32,∴C =60°或C =120°, ∴A =30°或A =90°,当A =30°时,a =b =3;当A =90°时,a =b 2+c 2=2 3.故选C.7.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130[答案] B[解析] a n =1n (n +1)=1n -1n +1,∴S 5=1-12+12-13+13-14+14-15+15-16=1-16=56. 8.(x -2y +1)(x +y -3)<0表示的平面区域为()[答案] C[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C.9.已知某几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A .12 cm3 B .13 cm 3 C .16 cm 3 D .112 cm 3[答案] C[解析] 根据三视图可知原几何体是三棱锥, V =13Sh =13×12×1×1×1=16(cm 3).10.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15° [答案] A[解析] 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°.11.若x 、y 满足条件⎩⎨⎧x ≥yx +y ≤1y ≥-1,则z =-2x +y 的最大值为( )A .1B .-12C .2D .-5[答案] A[解析] 作出可行域如下图,当直线y =2x +z 平移到经过可行域上点A (1,-1)时,z 取最大值,∴z max =1.12.(2013·全国Ⅰ·理科)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为()A .500π3 cm 3 B .866π3 cm 3 C .1372π3cm 3D .2048π3 cm 3[答案] A[解析] 设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为4π×533=5003cm 3.二、填空题(每题5分)13.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14, 等号在x =1-x ,即x =12时成立,∴所求最大值为14.14.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=__________.A .58B .88C .143D .176[答案] B[解析] 本题主要考查等差数列的性质及求和公式.由条件知a 4+a 8=a 1+a 11=16,S 11=11(a 1+a 11)2=11×162=88.15.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于__________.[解析] S 1=2a 1-2=a 1,∴a 1=2,S 2=2a 2-2=a 1+a 2,∴a 2=4.16.不等式(m +1)x 2+(m 2-2m -3)x -m +3>0恒成立,则m 的取值范围是__________. [答案] [-1,1)∪(1,3)[解析] m +1=0时,m =-1,不等式化为:4>0恒成立;m +1≠0时,要使不等式恒成立须⎩⎨⎧m +1>0△<0,即⎩⎨⎧m +1>0(m 2-2m -3)2-4(m +1)(-m +3)<0 , ∴-1<m <3且m ≠1. 综上得-1≤m <3且m ≠1. 三、简答题17.(本题满分10分) 求函数y =-x 2-3x +4x的定义域解:要使函数有意义,则需⎩⎪⎨⎪⎧-x 2-3x +4≥0x ≠0,解得-4≤x ≤1且x ≠0,故定义域为[-4,0)∪(0,1]18.一个直角三角形三边长a 、b 、c 成等差数列,面积为12,求该三角形的周长. [答案] 12 2[解析] 由条件知b 一定不是斜边,设c 为斜边,则⎩⎪⎨⎪⎧2b =a +c12ab =12a 2+b 2=c 2,解得b =42,a =32,c =52,∴a +b +c =12 2.19.(本题满分12分)设x 1、x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.[解析] 由题意,得x 1+x 2=2k ,x 1x 2=1-k 2.Δ=4k 2-4(1-k 2)≥0, ∴k 2≥12.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2) =6k 2-2≥6×12-2=1.∴x 21+x 22的最小值为1.20.(本题满分12分)在△ABC 中,∠BAC =120°,AB =3,BC =7,求: (1)AC 的长; (2)△ABC 的面积.[解析] (1)由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC , ∴49=9+AC 2+3AC ,解之得AC =5(AC =-8舍去).(2)△ABC 的面积S =12AB ·AC ·sin ∠BAC =12×3×5×sin120°=1534.21.(本题满分12分) 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n .[解析] 设{a n }公比为q ,由S 4=1,S 8=17,知q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q 4)1-q=1a 1(1-q 8)1-q =17,两式相除并化简,得q 4+1=17,即q 4=16. ∴q =±2,∴当q =2时,a 1=115,S n =115(1-2n )1-2=115(2n-1);当q =-2时,a 1=-15,S n =-15[1-(-2)n ]1+2=115[(-2)n -1].22. (本题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.[解析] (1)设{a n }的公差为d ,由题意,a 211=a 1a 13,即 (a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而 S n =n2(a 1+a 3n -2) =n2(-6n +56) =-3n 2+28n .。
2015—2016学年度第一学期期中质量调研检测试卷

2015—2016学年度第一学期期中质量调研检测试卷七年级数学一、选择题(每小题2分,共12分) 1.4-的绝对值是( )A .4-B .4C .14-D .142.据统计,我国2013年全年荒废造林面积约6090000公顷,6090000用科学记数法可表示为( ) A .6.09105⨯ B .66.0910⨯ C .460910⨯ D .560.910⨯3.下列各组数中,相等的一组是( ) A .42-与()42- B .35与53 C .()3--与3--D .()51-与()20131-4.下列计算正确的是( )A .2325a a a +=B .33a a -=C .333235a a a +=D .2222a b a b a b -+= 5.下列说法:①a -表示负数;②最大的负整数是1-;③数轴上表示数2和2-的点到原点的距离相等;④多项式232xy xy -的次数是2,其中正确的个数为( )A .1个B .2个C .3个D .4个6.如图所示的运算程序中,若开始输入的x 值为24,则第1次输出的结果为12,第2次输出的结果为6,……第2000次输出的结果为( )A .1B .3C .4D .6二、填空题(每小题2分,共20分)7.13-的相反数是__________,例数是__________.8.单项式23xy -的系数是__________,次数是__________.9.某日,天气预报显示:高淳2--9℃,则该日高淳的温差是__________℃. 10.在下列数中,①3.14; ②5-; ③0.12;④1.010010001…;⑤π;⑥227,其中,无理数是__________.(填序号)11.比较大小:45-__________35-.12.若27m x y -与33n x y -是同类项,则m n -=__________.13.今年小丽a 岁,她的数学老师年轻比小丽年龄的3倍小3岁,小丽的数学老师的年龄用代数式表示为__________岁.14.实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为__________.第14题图15.已知21x y -=,则324x y +-的值为__________.16.数轴上有A 、B 两点,A 、B 两点间的距离为3,其中点A 表示数1-,则点B 表示的数是__________. 三、解答题(本大题共10小题,共68分) 17.计算(每小题4分,共16分)(1)()()435-+---; (2)()1822⎛⎫-÷⨯- ⎪⎝⎭;(3)()()34324⨯---÷;(4)()2411136⎡⎤--⨯--⎣⎦.18.计算(每小题4分,共8分) (1)3531a b a b --+++;(2)()()2222243a b ab ab a b ---.19.(6分)先化简,再求值:已知()()222242x x y x y --+-,其中1x =-,12y =. 20.(4分)任意想一个数,把这个数乘2后减8,然后除以4,再减去原来所想的那个数的12,小时说所得结果一定是2-,请你通过列式计算说明小明说的正确. 21.(4分)自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆,由于各种原因,实际每天的生产量与计划每天的产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,(1)该厂星期一生产电动车__________辆;(2)生产量最多的一天比生产量最少的一天多生产电动车__________辆;(3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元? 22.(5分)一辆货车从超市出发,向东走了3千米到达小彬家,继续向东走2千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家、小彬家、小颖家的位置;(2)小明家距小彬家多远?(要求写出解答过程)-4-17623.(5分)如图,图①是一个五边形,分别连接这个五边形各边中点得到图②,再分别连接图②中小五边形各边中点得到图③.第23题图③②①n(3)能否分出246个二角形?简述你的理由.24.(6分)第二章,我们学习了有理数的相关运算,在探究“有理数加法法则”的过程中,我们只要通过对几类算式的运算进行归纳总结,就可以得出该法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题厦门市翔安第一中学2015-2016学年第二学期高一年期中考试卷数学科考试时间: 2016年4月22日 7:50—9:50 满分150 分一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
最后要将所有答案填写在答题卷上,否则不给分。
1.已知集合{}A x x Z =∈,{}03B x x =<<,则=⋂B A ( )A. {}03x x << B. {}1,2 C. {}12x x ≤≤ D. {}xx Z ∈ 2. 若直线经过((1,0),A B 两点,则直线AB 的倾斜角为( ) A .30︒ B .45︒ C .60︒ D .120︒3. 如图,'''Rt O A B ∆是OAB ∆的斜二测直观图,斜边''2O A =,则OAB ∆的面积是() A .2B .1 C.4.若圆x y x y 22++2-4=0关于直线x y m 3++=0对称,则实数m 的值为( ) A .-3 B .-1 C.1 D .35.如图,函数y =OABC 的顶点B ,且4OA =. 若在矩形OABC 内随机地撒100粒豆子,落在图中阴影部分 的豆子有67粒,则据此可以估算出图中阴影部分的面积约为( ) A .2.64 B .2.68 C .5.36 D .6.646.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A.a 1>a 2B.a 1<a 2C.a 1=a 2D.a 1,a 2的大小与m 的值有关7.如右图,在正方体ABCD A B C D ''''-中,点P 为线段AD '的中点,则异面直线CP 与BA '所成角θ的值为( ) A.30 B.45 C.60 D.908.已知BC 是圆2225x y +=的动弦,且|BC|=6,则BC 的中点的轨迹方程是( ). A. 221x y += B. 229x y += C. 2216x y += D. 224x y += 9.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为( ).A.π3B.π33 C.π32 D.π33210.已知点M (a ,b )在圆O :x 2+y 2=4外,则直线ax +by =4与圆O 的位置关系是( ) A.相离 B.相切C.相交D.不确定11.如图,在空间四边形ABCD 中,点E,H 分别是边AB,AD 的中点,F,G 分别是边BC,CD 上的点,且CF CB=CG CD=23,则( )A .EF 与GH 互相平行B .EF 与GH 异面C .EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上D .EF 与GH 的交点M 一定在直线AC 上12.奇函数)(x f 、偶函数)(x g 的图像分别如图1、2所示,方程()()()()0,0==x f g x g f ,的实根个数分别为a 、b ,则=+b a ( ) A.10 B.8 C.7 D.3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中答题卷相应横线上,否则不给分。
13.两直线3x +4y -9=0和3x +my +1=0平行,则它们之间的距离为___________.14.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为 .15.已知圆C 1:224470x y x y +--+=和圆C 2:22410130x y x y +--+=, 则两圆的公切线有 条.16.如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为PA ,PD 的中点. 在此几何体中,给出下面四个结论: ①B,E ,F ,C 四点共面; ②直线BF 与AE 异面; ③直线EF∥平面PBC ; ④平面BCE⊥平面PAD ;.⑤折线B→E→F→C 是从B 点出发,绕过三角形PAD 面,到达点C 的 一条最短路径.其中正确的有 .(请写出所有符合条件的序号)三、解答题:本题有6小题,共74分。
解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知()()()ln 1ln 1f x x x =--+.(1)求出函数()f x 的定义域,并求不等式()0>x f 的解集. (2)判断()x f 的奇偶性并证明.1B18.(本小题满分12分).如图,矩形ABCD 的两条对角线相交于点(2,0)M ,AB 边所在直线的方程为360x y --=,点(1,1)T -在AD 边所在直线上.(1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.19.(本小题满分12分)如图,正方体1111D C B A ABCD -的棱长为2, F E 、、G 分别是11C B 、1AD 、E D 1 的中点.(1)求证:FG ∥平面E AA 1;(2)求AE 与平面1111D C B A 所成的角的正切值.20.(本小题满分12分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:50岁以上(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本, 将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率; (2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁 以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以 上的概率为539,求x 、y 的值.21.(本小题满分12分)如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B . (1)证明:平面AB 1C ⊥平面A 1BC 1; (2)设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,求A 1DDC 1的值. 22.(本小题满分14分)已知圆M 的方程为()1222=-+y x ,直线l 的方程为02=-y x ,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B . (1)若 60=∠APB ,试求点P 的坐标;(2)若P 点的坐标为()1,2,过P 作直线与圆M 交于C ,D 两点,当2=CD 时,求直线CD 的方程;(3)经过A ,P ,M 三点的圆必过定点,求出所有定点的坐标.厦门市翔安第一中学2015-2016学年第二学期高一年期中考数学科参考答案一、选择题:1-5 BADCC 6-10 BACBC 11-12 DA 二、填空题:13.2 14. π3 15.1 16. ①②③ 三、解答题:17. (本小题满分12分) 解:(1)由⎩⎨⎧>+>-0101x x 解得函数的定义域为()1,1-,…………………………… 2分由()0>x f 即()()x n x +>-111ln由⎪⎩⎪⎨⎧>+>-+>-010111x x x x 解得不等式的解集为()0,1-…………… 6分 (2)判断知()f x 为奇函数,……7分证明:设任意()()()()()1,1,ln 1ln 1x f x x x f x ∈--=+--=-,所以函数()f x 为奇函数.……12分18.(本小题满分12分)解:(1)因为AB 边所在直线的方程为,31=∴AB k ……………………1分 3,1,-=∴-=⋅∴⊥AD AD AB k k k AD AB ………………3分又因为点在直线AD 上,所以AD 边所在的直线的方程为,即.…………6分(2)由,解得点A 的坐标为,…………………………………8分因为矩形ABCD 两条对角线的交点为,所以M 为矩形ABCD 外接圆的圆心, 又, (11)分 从而矩形ABCD外接圆的方程为()8222=+-y x . ……………………………………12分19.(本小题满分12分)证明:(1)F 、G 分别是1AD 、E D 1 的中点.E AA AE E AA FG AE FG 11,,//面面⊄⊂∴∴FG ∥平面E AA 1 ……………………………………………6分(2) 11111D C B A AA ⊥E A 1∴是AE 在平面1111D C B A 上的投影EA A 1∠∴是AE 与平面1111D C B A 所成的角 ………………………8分55252tan 111===∠∴E A AA EA A AE ∴与平面1111D C B A 所成的角的正切值为552. ………………………12分 20.(本题满分12分)解:(1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数m ,∴3050=m5,解得m =3. ……2分 ∴抽取了学历为研究生的2人,学历为本科的3人,分别记作S 1、S 2;B 1、B 2、B 3. 记至少有1人的学历为研究生为事件A ………3分 从中任取2人的所有基本事件有:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2), (S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3).共10个 ……5分 其中至少有1人的学历为研究生的基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3), (S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).共7个 ……6分 ∴从中任取2人,至少有1人的教育程度为研究生的概率为()=A P 710.……7分 (2)依题意得:10N =539,解得N =78. ……8分∴35~50岁中被抽取的人数为78-48-10=20. ……9分 ∴4880+x =2050=1020+y. 解得x =40,y =5.∴x =40,y =5. ……12分21.(本题满分12分)(1)证明:因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1. ……6分(2)解:设B C 1交B 1C 于点E ,连接DE ,CD B B A DE CD B BC A 11111,面面面⊂=⋂ 因为A 1B ∥平面B 1CD ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点,即A 1DDC 1=1……12分22.(本题满分14分)解:(1) 点P 在直线l 上,可设()m m P ,2,又 60=∠APB由题可知2,2=∴=MP AM MP∴(2m )2+(m ﹣2)2=4, ………………………2分解之得:,故所求点P 的坐标为P (0,0)或. (4)分(2)①当斜率不存在时, 直线CD 的方程为:2=x ,此时直线CD 与圆M 相离,不符合。