实验报告放大器的增益测量

合集下载

多级放大电路实验报告

多级放大电路实验报告

多级放大电路实验报告多级放大电路实验报告引言:多级放大电路是电子工程中常见的一种电路结构,它可以将输入信号放大到所需的幅度,以便用于各种应用。

本实验旨在通过搭建多级放大电路并进行实际测量,探索其工作原理和性能特点。

一、实验目的本实验的主要目的是:1. 了解多级放大电路的基本原理和结构;2. 学习如何搭建和调试多级放大电路;3. 测量和分析多级放大电路的增益、频率响应等性能指标。

二、实验原理多级放大电路由多个级联的放大器组成,每个放大器都有自己的增益和频率响应特性。

在本实验中,我们将使用两个级联的放大器,每个放大器都由一个晶体管和相关的电路组成。

三、实验器材与装置1. 信号发生器:用于产生待放大的输入信号;2. 电阻、电容等被动元件:用于构建放大电路;3. 两个晶体管:作为放大器的核心元件;4. 示波器:用于测量电路的输入输出信号。

四、实验步骤1. 搭建第一级放大电路:根据实验原理,按照电路图连接电阻、电容和晶体管等元件,确保电路连接正确且无短路或接触不良的情况。

2. 调试第一级放大电路:使用信号发生器产生一个输入信号,将其连接到第一级放大电路的输入端,通过示波器观察输出信号的波形和幅度,调整电路参数,使得输出信号能够得到适当的放大。

3. 搭建第二级放大电路:将第一级放大电路的输出端连接到第二级放大电路的输入端,按照相同的步骤进行搭建和调试。

4. 测量电路性能:使用示波器测量多级放大电路的输入输出信号,并记录其幅度、相位和频率等特性。

通过改变输入信号的频率,观察输出信号的变化,以了解电路的频率响应特性。

5. 分析实验结果:根据测量数据和实验原理,计算并比较多级放大电路的增益、频率响应等指标,分析电路的性能和可能的改进方向。

五、实验结果与讨论通过实验测量和分析,我们得到了多级放大电路的增益和频率响应曲线。

根据实验数据,我们可以看到在一定频率范围内,多级放大电路的增益基本稳定,并且随着频率的增加而略微下降。

低频放大器实验报告

低频放大器实验报告

低频放大器实验报告低频放大器实验报告引言:低频放大器是电子学中常见的一种电路,它可以将输入信号放大到更高的幅度,使得信号能够被更多设备或系统所处理。

在本次实验中,我们将探索低频放大器的工作原理和性能特点。

实验目的:1. 了解低频放大器的基本原理;2. 掌握低频放大器电路的设计和调试方法;3. 研究低频放大器的频率响应和增益特性。

实验步骤:1. 准备实验所需的器件和元件,包括放大器芯片、电阻、电容等;2. 搭建低频放大器电路,按照设计要求连接各个元件;3. 连接信号发生器和示波器,用信号发生器输入不同频率的正弦波信号;4. 调整放大器的工作点,使其处于最佳工作状态;5. 测量不同频率下的输入和输出信号幅度,并记录数据;6. 绘制频率响应曲线和增益特性曲线;7. 分析实验结果,总结低频放大器的性能特点。

实验结果:通过实验测量和数据记录,我们得到了低频放大器的频率响应曲线和增益特性曲线。

从频率响应曲线可以看出,在低频范围内,放大器的增益较高,随着频率的增加,增益逐渐下降。

这是由于放大器的截止频率限制了其对高频信号的放大能力。

而增益特性曲线则展示了放大器在不同频率下的放大倍数,可以看出放大器的增益在低频时较为稳定,但在高频时逐渐减小。

讨论与分析:低频放大器的频率响应和增益特性是其重要的性能指标。

在实际应用中,我们需要根据具体需求选择合适的低频放大器。

如果需要放大高频信号,就需要选择截止频率较高的放大器,以保证信号的完整性和准确性。

而对于低频信号的放大,我们可以选择截止频率较低的放大器,以获得更高的增益。

此外,低频放大器的稳定性也是需要考虑的因素。

在实验中,我们可以通过调整放大器的工作点来使其处于最佳工作状态,以获得更好的稳定性和线性度。

同时,合理选择电阻和电容的数值,也可以提高放大器的稳定性。

结论:通过本次实验,我们深入了解了低频放大器的工作原理和性能特点。

我们学会了低频放大器的电路设计和调试方法,并通过实验测量获得了频率响应曲线和增益特性曲线。

运算放大器实验报告

运算放大器实验报告

运算放大器实验报告运算放大器实验报告引言运算放大器(Operational Amplifier,简称OP-AMP)是一种广泛应用于电子电路中的集成电路元件。

它具有高增益、高输入阻抗和低输出阻抗的特点,被广泛用于信号放大、滤波、积分、微分等各种电路中。

本实验旨在通过实际操作,深入了解运算放大器的基本原理和应用。

实验目的1. 了解运算放大器的基本原理和特性;2. 熟悉运算放大器的实际应用;3. 掌握运算放大器的参数测量方法。

实验装置和材料1. 运算放大器实验箱;2. 直流电源;3. 电阻、电容等基本元件;4. 示波器、信号发生器等测试仪器。

实验步骤1. 搭建基本的运算放大器电路,并接通电源;2. 测量运算放大器的输入和输出电压,并计算增益;3. 将运算放大器用于反相放大电路,并测量增益;4. 将运算放大器用于非反相放大电路,并测量增益;5. 将运算放大器用于比例积分放大器电路,并测量增益和相位延迟;6. 将运算放大器用于差分放大器电路,并测量增益和共模抑制比。

实验结果与分析1. 在基本的运算放大器电路中,输入电压为1V,输出电压为10V,计算得到增益为10。

这符合运算放大器的基本特性,即输出电压等于输入电压乘以增益。

2. 在反相放大电路中,输入电压为1V,输出电压为-10V,计算得到增益为-10。

反相放大电路可以将输入信号进行180度的相位翻转,并放大到一定倍数。

3. 在非反相放大电路中,输入电压为1V,输出电压为10V,计算得到增益为10。

非反相放大电路可以将输入信号放大到一定倍数,但不改变其相位。

4. 在比例积分放大器电路中,输入为正弦波信号,通过测量输出电压和输入电压的相位差,计算得到增益和相位延迟。

增益和相位延迟与输入信号频率呈正相关关系。

5. 在差分放大器电路中,输入为两个不同的信号,通过测量输出电压和输入电压的差值,计算得到增益和共模抑制比。

差分放大器电路可以将两个输入信号的差值放大到一定倍数,并抑制它们的共同模式信号。

音响放大器 实验报告

音响放大器 实验报告

音响放大器实验报告音响放大器实验报告一、引言音响放大器是音频信号放大的关键设备,用于将低电平的音频信号放大到适合扬声器的水平。

本实验旨在通过搭建一个简单的音响放大器电路并进行测试,了解放大器的工作原理和性能。

二、实验步骤1. 实验器材准备本实验所需器材包括:电源、信号发生器、示波器、电阻、电容、晶体管、扬声器等。

2. 搭建电路按照电路图搭建音响放大器电路,确保连接正确可靠。

3. 调试电路将电源接入电路,调节电源电压,确保电路工作在正常范围内。

通过示波器观察输出信号波形,调节信号发生器的频率和幅度,观察放大器对不同频率和幅度的信号的响应情况。

4. 测试性能使用示波器测量放大器的增益、频率响应和失真等性能指标。

通过改变输入信号的频率和幅度,观察输出信号的变化情况,并记录相关数据。

三、实验结果与分析1. 增益测试通过改变输入信号的幅度,测量输出信号的幅度变化情况,计算出放大器的增益。

根据实验数据绘制增益-频率曲线图,分析放大器在不同频率下的增益变化情况。

2. 频率响应测试通过改变输入信号的频率,测量输出信号的幅度变化情况,计算出放大器的频率响应。

根据实验数据绘制频率响应曲线图,分析放大器在不同频率下的响应情况。

3. 失真测试通过改变输入信号的幅度和频率,观察输出信号的波形变化情况,判断放大器是否存在失真现象。

使用示波器测量输出信号的失真程度,计算出失真率,并与理论值进行比较,分析放大器的失真情况。

四、实验结论通过本次实验,我们成功搭建了一个简单的音响放大器电路,并对其进行了测试。

根据实验结果分析,我们得出以下结论:1. 放大器在不同频率下的增益存在差异,频率响应不均匀。

2. 放大器对于低幅度的输入信号具有较高的增益,但在高幅度下可能出现失真。

3. 放大器的失真率与输入信号的频率和幅度有关,需要根据实际需求进行调整。

五、实验改进与展望本实验仅搭建了一个简单的音响放大器电路,未考虑到更复杂的电路结构和性能优化。

多级放大电路实验报告

多级放大电路实验报告

多级放大电路实验报告实验名称:多级放大电路实验实验目的:通过实验理解多级放大电路的工作原理,并掌握其参数的测量方法。

实验仪器和材料:1. 功率放大电路实验箱2. 信号发生器3. 示波器4. 电阻表5. 电压表6. 两个NPN型晶体管7. 电阻、电容等元件实验原理:多级放大电路由多个级联的放大器组成,每个放大器都是一个单独的放大器。

多级放大器可以实现对输入信号的放大,从而增加输出信号的幅度。

实验步骤:1. 搭建多级放大电路:根据实验电路图,按照电路连接指示搭建多级放大电路。

2. 测量输入和输出电压:使用信号发生器连接输入端,设置合适的频率和幅度。

使用示波器分别测量输入信号和输出信号的电压。

3. 测量增益:通过测量输入和输出电压,计算多级放大电路的增益。

增益的计算公式为输出电压与输入电压之比。

4. 测量频率响应:改变信号发生器的频率,同时测量输入和输出信号的电压,计算不同频率下的增益。

绘制增益与频率的图像。

实验数据记录与处理:1. 输入电压(Vin):输出电压(Vout):增益(Gain):0.2V 1.5V 7.50.4V 3.2V 8.00.6V 4.8V 8.00.8V 6.3V 7.91.0V 7.5V 7.52. 根据上述数据计算多级放大电路的平均增益:增益(Gain)= (7.5 + 8.0 + 8.0 + 7.9 + 7.5)/ 5 = 7.83. 绘制频率响应图像:频率(f)Hz 增益(Gain)100 8.0500 7.81000 7.65000 6.810000 5.9实验结果与分析:通过多级放大电路的实验,我们得到了输入电压与输出电压的关系,计算出多级放大电路的平均增益为7.8。

从频率响应图像可以看出,随着频率的增加,电路的增益逐渐降低。

这是因为电容和电感的影响,导致高频信号受到衰减。

结论:通过本次实验,我们深入了解了多级放大电路的原理和工作方式。

我们通过测量输入电压和输出电压,计算出了电路的增益,并绘制出了频率响应图像。

运算放大器的应用实验报告

运算放大器的应用实验报告

运算放大器的应用实验报告运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,在电子电路中有着广泛的应用。

本实验旨在通过实验操作,加深对运算放大器的工作原理和应用特性的理解,同时掌握运算放大器在电路中的具体应用。

一、实验目的。

1. 了解运算放大器的基本工作原理;2. 掌握运算放大器的基本参数测量方法;3. 学习运算放大器在电路中的应用,包括比较器、放大器、积分器和微分器等。

二、实验仪器与设备。

1. 示波器。

2. 直流稳压电源。

3. 示波器探头。

4. 运算放大器集成电路。

5. 电阻、电容等元件。

6. 实验电路板。

7. 万用表。

三、实验原理。

运算放大器是一种差动放大器,具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。

在实验中,我们将通过测量运算放大器的输入输出特性、电压增益、输入偏置电流等参数,来了解其基本特性。

运算放大器在电路中的应用非常广泛,比如在比较器电路中,当输入电压超过一定阈值时,输出电压会发生跳变;在放大器电路中,运算放大器可以放大微弱的信号;在积分器和微分器电路中,可以实现信号的积分和微分运算。

四、实验内容与步骤。

1. 搭建运算放大器的输入输出特性测量电路,通过改变输入电压,测量输出电压与输入电压的关系曲线;2. 测量运算放大器的电压增益,并分析其影响因素;3. 搭建运算放大器的比较器电路,观察输入电压与输出电压的关系;4. 搭建运算放大器的放大器电路,测量放大电路的电压增益;5. 搭建运算放大器的积分器和微分器电路,观察输入输出波形,并分析其特性。

五、实验数据与分析。

1. 输入输出特性曲线如图所示(图表略),通过测量得到的数据绘制曲线,可以看出运算放大器的输入输出特性呈线性关系;2. 测量得到的电压增益为100,经分析发现电阻值的选择对电压增益有一定影响,需要合理选择电阻值以满足设计要求;3. 比较器电路的实验结果表明,运算放大器在一定输入电压范围内输出电压保持稳定,一旦超过阈值,输出电压会发生跳变;4. 放大器电路的实验结果显示,运算放大器可以有效放大输入信号,且放大倍数与电阻值的选择有关;5. 积分器和微分器电路的实验结果表明,运算放大器可以实现信号的积分和微分运算,输出波形与输入波形呈现出相应的积分和微分关系。

功率放大器 实验报告

功率放大器 实验报告

功率放大器的组装与设计实验目的:培养综合能力,动手能力,分析能力,提高和巩固模电知识,熟悉常见的元器件,和基本焊接方法。

实验仪器:函数发生器,收音机(其他能发出声音的声音源均可),音响,焊接常用的器材如电烙铁,焊锡丝,吸锡泵,镊子等。

实验原理第一部分:1.作用与组成声频放大器又称音频放大器,低频放大器或扩音机,顾名思义,它是放大电信号的装置。

由于各种信号源(声源)输入的信号很弱(几毫伏到1-2伏),不足以推定扬声器放声,因此必须将这些微弱的信号进行放大。

从高保真意义上讲,要求放大器如实地放大原信号,即原汁原味,但从广义上讲,为了使声明更动听,又常常对信号进行必要而适当的修饰与加工。

按声频放大器中各部分的功能不同,可将其分成两部分:其一为前置放大器(还可细分为信号源前置放大和主控放大器)其二称为功率放大器(也称后级放大器)按类又可分为合并式(前置后级一体式)、与分体式(前置与后级分开),分体式一般为高档机。

2.前置放大电路前置放大的作用是对调谐器、点唱机、录音机、传声器,激光唱机以及其它声源送来的信号进行各种处理与放大,以便为功率放大器准备适宜的电信号,使后者顺利工作。

确切的说,前置的作用是对输入的某些信号进行频率均衡或阻抗变换,并对各种信号进行不同量的放大,使各种信号输出电压基本相同,以利于其后主控放大器进行工作。

前置放大器中的主控放大器也称放大器或线路放大器,主要作用是将前面送来的信号进行各种处理,修饰与放大,使之满足功率放大器对输入信号电平的要求,并达到人们对音响效果的某些主观要求,比如,音量调节、响度控制、音调调节、噪声抑制、声道平衡、宽度展宽等功能都在此环节完成。

3.功率放大器其本质是将交流的电能“转中换”为音频信号能。

其构成成分为输入级、前置激励级、功率输出级、保护电路和功率指示、电源。

由于电子技术的飞速发展,现代高保真立体声放大器广泛采用晶体管集成电路,随着人们对电声指标的更高要求,在民用放大器中甲类、超甲类、电流负反馈等其他类型的超低失真放大器逐渐增多,为了改善音质,人们对场效应管也产生了极大的兴趣。

运放交流增益测量方法

运放交流增益测量方法

运放交流增益测量方法
测量运算放大器(简称运放)的交流增益通常涉及使用辅助运放环路法,这是因为该方法可以提供精确稳定的测试结果。

具体测量方法如下:
1. 使用辅助运放环路法:这种方法通过构建一个包含待测运放和辅助运放的测试电路来实现。

辅助运放不需要有比待测运放更好的性能,但其直流开环增益最好能达到106或更高。

2. 构建测试电路:测试电路应该能够将大部分测量误差降至最低,支持精确测量直流和交流参数。

电路中使用对称电源,即使对于“单电源”运放也是如此,因为系统的地以电源的中间电压为参考。

3. 进行仿真测试:除了实际搭建电路进行测量外,还可以通过运算放大器的仿真来进行交流小信号仿真,包括开环增益、带宽、相位裕度等参数的测试。

4. 选择测试方法:在测量运放的环路时,可以选择Rosenstark 方法或Middlebrook方法。

Rosenstark方法需要在受控源的位置断开测试环路,并确保测试源使环路工作在线性范围内。

综上所述,测量运放的交流增益需要精心设计测试电路并选择合适的测试方法,以确保测量结果的准确性和稳定性。

在实际操作中,可能还需要根据具体的运放型号和测试条件进行适当的调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放大器的增益测量
放大器并不属于传输线与天线,但由于外场测天线方向图时,信号发射天线处要加串放大器来抵消电缆的损耗,这里也不妨测试一下。

一. 实验目的
了解放大器的增益频响与测试方法。

二.实验准备
PNA3621及其全套附件,待测放大器一只,20dB衰减器2只。

仪器开机时所显示的主菜单第一项应为《频域》,若为《时域》,则按〖↓〗键使光标移到《时域》下,然后按〖→〗键选择想要的《频域》。

• 扫频方案设置:
••••1.选最小频距,
按〖↓〗键使光标移到《频域》旁边的数值下,按〖→〗在两种最小频距间作出选择(0.1MHz或0.025MHz,通常选0.1 MHz,有特殊要求时才用0.025MHz);
2.BF=40MHz,
按〖↓〗键, 使光标移到《BF》下面, 可按〖→〗〖←〗键对始频进行改动到所需数值为止, 仪器最低频与型号有关;
3.⊿F =148MHz,
按〖↓〗键, 使光标移到《⊿F》下面, 按〖→〗〖←〗键可对频距进行改动, 时域中⊿F不受控;
4.EF =3000MHz。

按〖↓〗键, 使光标移到《EF》下面, 按〖→〗〖←〗键可改变终止频率, 改EF时, 点数N随着变动, 点数N最小为1, 最大为81; EF = BF+(N - 1)⊿F。

三.测试方法
• 1. 注意事项
注意放大器的最大输出问题, 由于本机输入端口灵敏度较高, 而内部又无程控衰减器,承受功率小于1mW, 测增益时必需外接衰减器以抵消放大器的增益。

本机增益只有一档为30dB, 测试时请串入40dB以上的衰减器, 以避免仪器饱和甚至烧毁取样桥, 其衰减器值在40dB以上即可, 不必很准, 因为在校直通时已校进去了。

•• 2. 测增益
•• •仪器按测插损连接,在仪器输入与输出口上各接一根短电缆。

输出电缆末端接2个20dB衰减器,再用一个双阴与输入电缆连接起来;
在主菜单下将光标移到《测:A B》下,按〖→〗或〖←〗键, 使A下为《增益》,B下空白;
••••按〖↓〗键使光标移到《校:直通》下, 再按〖执行〗键;
••• 画面转为方格坐标, 示值为0dB, 取下双阴,串入待测放大器(见上图),然后记下或打印下测试曲线;
将一个衰减器放在放大器输入端,一个放在输出端,记下或打印测试曲线,即可得到30dB以内的增益频响曲线;
将两个衰减器全部接在放大器后面,记下或打印下测试曲线;
比较三次测试结果,假如差别不大,说明该放大器输出功率较大,线性好。

假如差别较大,说明该放大器输出功率较小,只适用于弱信号的放大;
假如增益超过30dB, 而不超过50dB, 则可直接在放大器前(或后)再串入一
只10dB(20 dB)衰减器进行测试, 即可测50dB以内增益频响曲线, 由于此衰减值要计入增益, 因此衰减器应尽可能准一些, 或者使用时折算一下其与20dB的偏离数值即可;
四.实验报告
1、输入接40dB衰减器时的放大器频响曲线
2、输入接20dB输出接20dB的频响曲线
3、输出接40dB时的频响曲线。

相关文档
最新文档