平面向量的综合应用
§5.4 平面向量的综合应用

§5.4 平面向量的综合应用考情考向分析 主要考查平面向量与函数、三角函数、不等式、数列、解析几何等综合性问题,求参数范围、最值等问题是考查的热点,一般以填空题的形式出现,偶尔会出现在解答题中,属于中档题.1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.知识拓展1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ )(2)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(3)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是菱形.( √ ) (4)设定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是x +2y -4=0.( √ ) (5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ ) 题组二 教材改编2.[P89习题T10]已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为________三角形. 答案 直角解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.3.[P93习题T7]若O 为△ABC 所在平面内一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 为________三角形.答案 等腰解析 ∵OB →-OC →=CB →=AB →-AC →,OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →, 由已知(OB →-OC →)·(OB →+OC →-2OA →)=0,得(AB →-AC →)·(AB →+AC →)=0, 即(AB →-AC →)⊥(AB →+AC →). ∴△ABC 为等腰三角形. 题组三 易错自纠4.在△ABC 中,已知AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,则实数k 的值为________________. 答案 -23或113或3±132解析 ①若A =90°,则有AB →·AC →=0,即2+3k =0, 解得k =-23;②若B =90°,则有AB →·BC →=0, 因为BC →=AC →-AB →=(-1,k -3), 所以-2+3(k -3)=0,解得k =113;③若C =90°,则有AC →·BC →=0,即-1+k (k -3)=0, 解得k =3±132.综上所述,k =-23或113或3±132.5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为________. 答案 5解析 依题意得AC →·BD →=1×(-4)+2×2=0, 所以AC →⊥BD →,所以四边形ABCD 的面积为 12|AC →|·|BD →|=12×5×20=5. 6.(2017·江苏南通中学月考)已知向量a ,b 满足|a |=1,|b |=2,且(a +b )⊥a ,则a 与b 的夹角为________. 答案 120°解析 设a 与b 的夹角为θ,则0°≤θ≤180°,由题意,得(a +b )·a =0,∴a 2+a ·b =1+1×2cos θ=0,∴cos θ=-12,∴θ=120°.题型一 向量在平面几何中的应用典例 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________. 答案 12解析 在平行四边形ABCD 中,取AB 的中点F , 则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝ ⎛⎭⎪⎫AD →-12AB →=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案 重心解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.跟踪训练 (1)在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为________三角形. 答案 等边解析 AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32解析 取HF 中点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,因此EF →·FG →+GH →·HE →=32.题型二 向量在解析几何中的应用典例 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________. 答案 2x +y -3=0解析 ∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 2=3⎝ ⎛⎭⎪⎫1-x 204,因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP →·FP →取得最大值224+2+3=6.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.跟踪训练 (1)在平面直角坐标系中,O 为坐标原点,直线l :x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k =________. 答案 0解析 设AB 的中点为D ,则有OM →=OA →+OB →=2OD →, ∴|OM →|=2|OD →|=R =2(R 为圆C 的半径), ∴|OD →|=1.由点到直线的距离公式,得1=|0-0+1|k 2+1,解得k =0.(2)(2017·江苏灌云中学质检)设F 1,F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→的值为________. 答案 -2解析 由题意得c =a 2-b 2=3, 又12PF QF S 四边形=122SPF F =2×12×F 1F 2·h (h 为P 点纵坐标的绝对值), 所以当h =b =1时,12PF QF S 四形边取得最大值, 此时|PF 1→|=|PF 2→|=2,且∠F 1PF 2=120°. 所以PF 1→·PF 2→=|PF 1→||PF 2→|·cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2.题型三 向量的其他应用命题点1 向量在不等式中的应用典例 已知在Rt △ABC 中,∠C =90°,AB →·AC →=9,S △ABC =6,P 为线段AB 上的点,且CP →=x ·CA →|CA →|+y ·CB→|CB →|,则xy 的最大值为________. 答案 3解析 在Rt △ABC 中,由AB →·AC →=9, 得AB ·AC ·cos A =9,由面积为6,得AB ·AC ·sin A =12, 由以上两式解得tan A =43,所以sin A =45,cos A =35,所以AB ·AC =15,所以AB =5,AC =3,BC =4. 又P 为线段AB 上的点,且CP →=x 3·CA →+y 4·CB →,故x 3+y 4=1≥2x 3·y4, 即xy ≤3,当且仅当x 3=y 4=12,即x =32,y =2时取等号.命题点2 向量在解三角形中的应用典例 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于________. 答案 35解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0,解得⎩⎪⎨⎪⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc =169a 2+259a 2-a22×43a ×53a =45,∴sin A =35.跟踪训练 (1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.答案 3解析 由图象可知,M ⎝ ⎛⎭⎪⎫12,1,N ()x N ,-1, 所以OM →·ON →=⎝ ⎛⎭⎪⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝ ⎛⎭⎪⎫2-12=3. (2)如图,在矩形ABCD 中,AB =2,AD =1,点E ,F 分别为DC ,BC 边上的动点,且满足EF =1,则AE →·AF →的最大值为________.答案 4解析 取EF 的中点M ,则M 点的轨迹是以C 点为圆心,12为半径的圆的四分之一(在矩形内的四分之一),而AE →·AF →=(AE →+AF →)2-(AE →-AF →)24=4AM →2-FE →24=AM →2-14≤⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫122-14=4,当且仅当M 是BC 的中点时,(AE →·AF →)max =4.1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形. 答案 直角解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.已知向量m =(1,cos θ),n =(sin θ,-2),且m ⊥n ,则sin 2θ+6cos 2θ的值为________. 答案 2解析 由题意可得m ·n =sin θ-2cos θ=0,则tan θ=2,所以sin 2θ+6cos 2θ=2sin θcos θ+6cos 2θsin 2θ+cos 2θ=2tan θ+6tan 2θ+1=2. 3.在△ABC 中,D 为△ABC 所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD=________.答案 13解析 如图,由已知得点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =⎝⎛⎭⎪⎫1-12-13S △ABC =16S △ABC , 所以S △BCD S △ABD =13. 4.(2017·江苏如皋中学月考)在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2),若OC →⊥AB →,AC →=λOB →,则实数λ的值为________. 答案 2解析 ∵在平面直角坐标系xOy 中,OA →=(3,-1), OB →=(0,2),∴AB →=(-3,3),设C (x ,y ),则AC →=(x -3,y +1), ∵OC →⊥AB →,AC →=λOB →,∴-3x +3y =0,(x -3,y +1)=(0,2λ),∴⎩⎪⎨⎪⎧ x -3=0,y +1=2λ,x =y ,解得x =y =3,λ=2.5.已知F 1,F 2分别为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,则EF 1→·EF 2→的最大值、最小值分别为________.答案 8,7解析 由题意可知椭圆的左、右焦点坐标分别为F 1(-1,0),F 2(1,0),设E (x ,y )(-3≤x ≤3),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),所以EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=x 29+7,所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8.6.若直线ax -y =0(a ≠0)与函数f (x )=2cos 2x +1ln 2+x 2-x的图象交于不同的两点A ,B ,且点C (6,0),若点D (m ,n )满足DA →+DB →=CD →,则m +n =________.答案 2解析 因为f (-x )=2cos 2(-x )+1ln 2-x 2+x =2cos 2x +1-ln 2+x 2-x=-f (x ),且直线ax -y =0过坐标原点,所以直线与函数f (x )=2cos 2x +1ln 2+x 2-x 的图象的两个交点A ,B 关于原点对称,即x A +x B =0,y A +y B =0,又DA →=(x A -m ,y A -n ),DB →=(x B -m ,y B -n ),CD →=(m -6,n ),由DA →+DB →=CD →,得x A -m +x B -m =m -6,y A -n +y B -n =n ,解得m =2,n =0,所以m +n =2.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________.答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得a 2=16+a 2-8a cos θ,∴a cos θ=2,∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x -a ·b =0有两个相等的实根,则向量a 与b 的夹角是________.答案 2π3解析 由已知可得Δ=|a |2+4a ·b =0,即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12. 又∵θ∈[0,π],∴θ=2π3. 9.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________.答案 1∶2解析 如图所示,取AC 的中点D ,∴OA →+OC →=2OD →,∴OD →=BO →,∴O 为BD 的中点,∴面积比为高之比.即S △AOC S △ABC =DO BD =12. 10.如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →.∵|PO →|+|PC →|=3≥2|PO →|·|PC →|,∴|PO →|·|PC →|≤94, 即(PA →+PB →)·PC →=2PO →·PC →=-2|PO →|·|PC →|≥-92, 当且仅当|PO →|=|PC →|=32时,等号成立.故最小值为-92. 11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32(y -b ), ∴⎩⎪⎨⎪⎧ x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧ a =-x 2,b =y 3.∵b >0,∴y >0,把a =-x 2代入到①中,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0). ∴动点M 的轨迹方程为y =14x 2(x ≠0). 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.解 (1)由题意,得(2a -c )cos B =b cos C .根据正弦定理,得 (2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0.所以cos B =22,又B ∈(0,π),所以B =π4.(2)因为|BA →-BC →|=6,所以|CA →|= 6.即b =6,根据余弦定理及基本不等式,得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2, 即△ABC 的面积的最大值为32+32.13.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , λ∈(0,+∞),则________.(填序号) ①动点P 的轨迹一定通过△ABC 的重心;②动点P 的轨迹一定通过△ABC 的内心;③动点P 的轨迹一定通过△ABC 的外心;④动点P 的轨迹一定通过△ABC 的垂心.答案 ④解析 由条件,得AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 从而AP →·BC →=λ⎝ ⎛⎭⎪⎪⎫AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C =λ·|AB →||BC →|cos(180°-B )|AB →|cos B +λ·|AC →||BC →|cos C |AC →|cos C=0, 所以AP →⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心.14.已知O 为△ABC 的外心,且BO →=λBA →+μBC →.(1)若∠C =90°,则λ+μ=________;(2)若∠ABC =60°,则λ+μ的最大值为________.答案 (1)12 (2)23解析 (1)若∠C =90°,则O 为AB 边的中点,BO →=12BA →,即λ=12,μ=0,故λ+μ=12.(2)设△ABC 的三边长分别为a ,b ,c ,因为O 为△ABC 的外心,且BO →=λBA →+μBC →,所以⎩⎪⎨⎪⎧ BO →·BA →=λBA →2+μBA →·BC →,BO →·BC →=λBA →·BC →+μBC →2,即⎩⎪⎨⎪⎧ 12c 2=λc 2+12μac ,12a 2=12λac +μa 2, 化简得⎩⎪⎨⎪⎧ λc +12μa =12c ,12λc +μa =12a ,解得⎩⎪⎨⎪⎧ λ=23-a 3c ,μ=23-c 3a ,则λ+μ=43-⎝ ⎛⎭⎪⎫a 3c +c 3a ≤43-23=23.15.(2017·江苏南京一中质检)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.答案 12解析 在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝⎛⎭⎪⎫AD →-12AB → =AD →2-12AD →·AB →+AD →·AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2 =1+12×12|AB →|-12|AB →|2=1. ∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0, 又|AB →|≠0,∴|AB →|=12. 16.已知在△ABC 中,AB <AC ,∠BAC =90°,边AB ,AC 的长分别为方程x 2-2(1+3)x +43=0的两个实数根,若斜边BC 上有异于端点的E ,F 两点,且EF =1,∠EAF =θ,则tan θ的取值范围为________.答案 ⎝ ⎛⎦⎥⎤39,4311 解析 由题可知AB =2,AC =23,BC =AB 2+AC2=4.建立如图所示的坐标系,则A (0,0),B (2,0),C (0,23).设BF →=λBC →⎝ ⎛⎭⎪⎫λ∈⎝ ⎛⎭⎪⎫0,34, BE →=⎝ ⎛⎭⎪⎫λ+14BC →, 则F (2-2λ,23λ),E ⎝ ⎛⎭⎪⎫32-2λ,23λ+32. 所以AE →·AF →=(2-2λ,23λ)·⎝ ⎛⎭⎪⎫32-2λ,23λ+32 =3-4λ-3λ+4λ2+12λ2+3λ=16λ2-4λ+3=16⎝ ⎛⎭⎪⎫λ-182+114∈⎣⎢⎡⎭⎪⎫114,9. 因为点A 到BC 边的距离d =AB ·AC BC=3, 所以△AEF 的面积S △AEF =12EF ·3=32为定值. 所以S △AEF AE →·AF →=12|AE →||AF →|sin θ|AE →||AF →|cos θ=12tan θ, 故tan θ=2S △AEF AE →·AF →=3AE →·AF →∈⎝ ⎛⎦⎥⎤39,4311.。
专题5.4 平面向量的综合应用(重难点突破)(解析版)

专题5.4 平面向量的综合应用一、考情分析1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题及其他一些实际问题.二、经验分享考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体。
考点三 向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题。
三、题型分析重难点题型突破1 平行与垂直例1、.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 故答案为:22. 【变式训练1-1】、(山东省德州一中2018-2019学年期中)若,且,则实数的值是( )A .-1B .0C .1D .-2【答案】D 【解析】由得,,∴,故.【变式训练1-2】、(河北省示范性高中2019届联考)已知向量a ,b 满足2(1,2)a b m +=,(1,)b m =,且a 在b 25,则实数m =( ) A 5B .5±C .2 D .2±【答案】D【解析】向量a ,b 满足()21,2a b m +=,()1,b m =,所以0,2m a ⎛⎫= ⎪⎝⎭,22m a b ⋅=,()2225cos 152m b a m θ=+=,所以42516160m m --=,即()()225440m m +-=, 解得2m =±.重难点题型突破2 平面向量与三角形例2、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【答案】C【解析】由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.【变式训练2-1】、在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形.( ) A . 等边 B . 等腰 C . 直角 D . 等腰直角 【答案】C .【解析】 由(BC →+BA →)·AC →=|AC|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|,故△ABC 一定是直角三角形. 【变式训练2-2】、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A . 内心B . 外心C . 重心D . 垂心 【答案】C .【解析】 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD(D 为BC 的中点)所对应向量AD →的2倍,∴点P 的轨迹必过△ABC 的重心.【变式训练2-3】、如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O . 若6AB AC AO EC ⋅=⋅,则ABAC的值是___________.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC= 重难点题型突破3 平面向量与三角函数结合例3.(河北省保定市2018-2019学年期末调研)过ABC ∆内一点M 任作一条直线,再分别过顶点,,A B C 作l 的垂线,垂足分别为,,D E F ,若0AD BE CF ++=恒成立,则点M 是ABC ∆的( )A .垂心B .重心C .外心D .内心【答案】B【解析】因为过ABC ∆内一点M 任作一条直线,可将此直线特殊为过点A ,则0AD =,有0BE CF +=. 如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点, 所以点M 是ABC ∆的重心,故选B 。
高二数学平面向量的综合应用

的夹角 与b (2)求函数 f (k ) 的最小值及取得最小值时a
四、向量在平面解析几何中的应用
例5.若直线 2 x y c 0 按向量 a (1, 1)平移 后与圆 x y 5 相切,则c的值是( A )
2 2
(A)8或-2,(B)6或-4, (C)4或-6,(D)2或-8 解析: 平移后的直线方程为:2 x y 3 c 0 由 d r 得 c 3 5, 得c=8或-2
3.用向量法处理平行 a ( b b 0) 有且只有一个实数,使得a b
x1 y2 x2 y1 0
4.用向量法处理向量的模: a a
2
2
二、基础应用 且 a b a b 例1.已知 a与 b是非零向量,
求 a 与 a b的夹角。
解: 设 a 与 a b 的夹角为
5
变式:已知直线 ax by c 0 与圆o A,B两点,且 AB x y 1相交于 1
2 2
3,
2 则 OA OB _______
例6.已知点 H (3,0), 点P 在 y 轴上,点Q在 轴的正半轴上,点M直线PQ上,且满足:
x
当点P在y轴上移动时,求点M的轨迹方程。
1 3 且存在实数k和t, 例4 已知 a ( 3, 1), b ( , ), 2 2 2
使得:x a (t
3)b, y ka tb,
2 k t 且 x y, 求: 的最大值。 t 2 解: t 3 3(t 2 3) x( 3 , 1 ) 2 2
证明: 设
f (ma nb) (mx1 nx2 ,2my1 2ny2 mx1 nx2 ) mf (a) (mx1, 2my1 mx1 ) nf (b) (nx2 , 2ny2 nx2 ) f (ma nb) mf (a) nf (b)
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用

§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
高二数学 平面向量的综合应用

五、小结
1.向量的基本知识点 2.向量在代数中的应用 3.向量在平面解析几何中的应用
t
4
例4
r
r
已知 a r( 3,r1),b
使得r:x ur a (t2
(1 2
,
3
2r
),且ur存在实r数k和tr,
3)b, y k a tb,
且 x y, 求:k t 2 的最大值。
t
变式:已知向量
r a
(cos,sin ),
r b
(cos ,sin
),且
rr a, b
rr
rr
满足r关系r k a b 3 a kb (, k为正实数)
rr
a P(b b 0) 有且只有一个实数,使得a b
x1gy2 x2 gy1 0
4.用向量法处理向量的模:
r2 a
r2 a
二、基础r应用r
r r rr
例1.已知r a与r b是r 非零向量,且 a b a b
求r a 与r ar b的夹角。
解:设 ar 与ar rb 的夹r角2 为r r 2 r 2 r r r 2
的对应关系记作 vr rf (u)
求证:对于任意r向量r a, b及常r 数 m,r n
恒有r f (ma nb)r mf (a) nf (b) 证明:r 设 ar (x1, y1),b (x2, y2 )
mra nrb (mx1 nx2, my1 ny2) f (ma nrb) (mx1 nx2, 2my1 2ny2 mx1 nx2)
11、平面向量的综合应用

高考必备:十一、平面向量的综合应用要点强记一、平面向量的基:1、 基的概念:平面向量的基,实际上就是我们选定的两个向量12,e e ,它们满足如下两个条件:①两个均为非零向量;②两个向量不平行。
特殊地,当121,1e e == 时,我们称这一组基(12,e e )为单位基。
在直角坐标系中,我们所取的基为(,i j),不但其模长为1,且互相垂直,因此,它是一组非常特殊的基。
2、 基的功能:如果(12,e e )是某一平面的一组基,那么这一平面内的任一向量a 有且只有一对实数12,λλ,使1122a e e λλ=+ ;这是平面向量的基本定理,它表明了该平面内的任一向量都可以用这组基来线性表示。
因此,基的功能是把平面内的向量运算转化为基的运算。
3、 坐标的概念:若(12,e e )是某一平面的一组基,a 是该平面内的一个向量,且12a xe ye =+ ,则称(),x y 是向量a 在基(12,e e )下的坐标。
根据定义,我们知道:①向量的坐标与选取的基有关,基不同则坐标不同;②我们前面所学习的向量的坐标运算,只是在直角坐标系下(特殊基,i j 下)有效,对于一般的基,不能套用运算公式,建议大家根据向量的几何运算进行。
二、平面向量的四大亮点:1、 向量的模:公式22AB AB = ,为我们提供了求两点距离的工具。
当12AB xe ye =+ 时,则222222121122()2AB xe ye x e xye e y e =+=++ ;注意只有在直角坐标系的单位基(),i j 下,才有222AB x y =+ ;在解题过程中,选取适当的基底()12,e e ,然后利用上面的公式求解,这是解题的关键。
2、 向量的定比分点:定比分点公式,为判定三点共线、求各点的坐标、各线段长度的比值等解析几何问题,提供了更为方便、简捷的工具。
①定比分点有三种形式的定义:(文字语言定义)点p 分有向线段AB 的比为λ;⇔(向量形式定义)AP PB λ= ;⇔(坐标形式定义)设(,)p p P x y 、(,)A A A x y 、(,)B B B x y ,则;1;1A B p A B p x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩要熟练掌握三者之间的转换; ②λ的确定:先定AP PBλ= ,再定λ的符号,根据“内分为正,外分为负”原则。
平面向量综合运用知识点

平面向量综合运用知识点一、知识概述《平面向量综合运用知识点》①基本定义:平面向量啊,就是在一个平面内既有大小又有方向的量。
这么说吧,就像你要描述一个人在操场上跑,只说跑多远不行,还得说往哪个方向跑,这就是向量的直观感觉。
大小就是向量的长度嘛,方向就是它指向哪儿。
②重要程度:在数学学科里特别重要。
很多几何问题、物理问题(像是力的合成啥的)都得靠它来解决。
要是没有平面向量,很多复杂的图形关系和物理真实现象都不好处理。
③前置知识:你得先知道基本的代数运算,像加减乘除这些。
还得了解一些几何的基本概念,比如点线面之类的,因为很多向量的问题都和几何图形有关。
④应用价值:实际应用那就太多了。
在建筑工程里,计算一些力的合成与分解就得用到向量。
比如说想知道一个斜着的梁受到的几个力合起来多大,往哪个方向,用向量就很容易。
还有在导航里,如果说一个飞机的速度是有方向有大小的向量,风的速度也是向量,那求飞机实际飞行方向和速度就得向量的知识。
二、知识体系①知识图谱:平面向量综合运用知识在数学里属于向量这一块内容。
它就像是各个向量知识的集大成者,用到向量的基本运算、向量与几何图形关系这些基础知识。
②关联知识:和三角学、解析几何联系很紧密。
比如向量的方向可以用三角函数表示,在解析几何里很多直线和曲线的关系可以转化成向量关系。
③重难点分析:- 掌握难度:说实话有点难。
因为它是综合运用,需要把好多知识点揉在一起。
- 关键点:要能清楚地把向量问题转化成可计算的形式,不管是用坐标表示也好,还是用几何关系推导也好。
④考点分析:- 在考试中的重要性:非常重要。
数学考试里常常会有和向量综合起来的题目。
- 考查方式:有选择题问向量关系的判断,填空题让你求向量的值,还有大题综合几何和向量让你证明或者求值。
三、详细讲解【理论概念类】①概念辨析:- 向量加法的平行四边形法则和三角形法则。
平行四边形法则就是把两个向量当成平行四边形的相邻两边,那它们的和向量就是这个平行四边形的对角线(同一起点)。
2022年高考数学总复习:平面向量的综合应用

第 1 页 共 18 页 2022年高考数学总复习:平面向量的综合应用1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:问题类型所用知识 公式表示 线平行、点共线等问题 共线向量定理 a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0,其中a =(x 1,y 1),b =(x 2,y 2),b ≠0垂直问题 数量积的运算性质 a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题 数量积的定义 cos θ=a ·b |a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义 |a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题.2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).4.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.知识拓展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的综合应用
教学目标:
(一)知识目标:理解向量的有关概念,掌握向量的各种运算及其应用.
(二)能力目标
1.培养学生的思维能力:包括观察、比较、猜想、分析、归纳、类比、想象、抽象、概括.
2.培养学生数形结合和化归转化的数学思想方法.
3.培养学生自主地获取知识的能力,并在所学知识的基础上进行再创新的能力. 教学重点:平面向量基础知识的掌握.
教学难点:平面向量基础知识的综合运用.
教学过程:
㈠课前热身
1.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD = .
2. 在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB = ,(1,3)AC = ,则BD = .
3. 关于平面向量,,a b c .有下列三个命题:
①若
a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60
.
其中真命题的序号为 .(写出所有真命题的序号)
4. 设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )ααββββ===-a b c ,若a 与2-b c 垂直,则tan()αβ+= .
㈡例题精讲
例1、已知⊙O :225x y +=, ()=-2,4a ,直线l 与⊙O 相交于A ,B 两点,若在⊙O 上存在 点C ,使OC OA OB λ=+= a ,求直线l 的方程及对应的点C 的坐标.
例2、(如图)已知不共线的两个单位向量,OA OB 的夹角为120 ,点C 在线段AB 上,设向
量OC =(),xOA yOB x y +∈R ,
⑴试求,x y 满足的关系式;
⑵若OC ⊥OB ,求,x y 的值;
⑶延长OC 至点D ,使1OD = ,记OD =(),OA OB λμλμ+∈R ,
求λμ+的最大值.
引伸:以O 为圆心,OA 长为半径作圆,设直线OC 交圆O 于点D 、E 两点,求DA EB 的最
大值.
㈢巩固练习
1.若等边△ABC 的边长为32,平面内一点M 满足CA CB CM 3
261+=
,则=⋅MB MA .
2.直线0Ax By C ++=与圆224x y +=相交于两点M ,N ,若满足222C A B =+,则OM ON = .
3.已知1,0OA OB OA OB == ,
点C 在AOB ∠内,且30AOC ∠= ,设O C m O A n O B =+ , (),m n ∈R ,则
m n
= . 4.已知(cos ,sin ),αα=a (cos ,sin )ββ=b ,(0αβπ
<<<)
(1)求证:+a b 与-a b 互相垂直; (2)若k +a b 与k -a b 的大小相等(k ∈R ,且0k ≠)求βα-.
㈣课堂反思
1.平面向量与三角函数在“角”之间存在着密切的联系,如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.
2.注重数学思想方法的应用
①数形结合的思想方法
由于向量本身具有代数形式和几何形式的双重身份,所以在向量知识的整个学习过程中,都体现了数形结合的思想方法,在解决问题的过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.
②化归转化的思想方法
向量的夹角、平行、垂直等关系的研究均可化归为对应向量或向量坐标的运算问题;向量的数量积公式沟通了向量与实数间的转化关系.
③函数思想
讨论最值问题我们通常引进变量(参数、角度等),转化为函数问题,利用函数思想来解决.。