(完整word版)动量-动量守恒定律专题练习(含答案)

合集下载

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

物理动量守恒定律专题练习(及答案)含解析

物理动量守恒定律专题练习(及答案)含解析

物理动量守恒定律专题练习(及答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)dr r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mVC .2016mVD .20116mV 2.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A .碰撞发生在M 、N 中点之外B .两球同时返回M 、N 两点C .两球回到原位置时动能比原来大些D .两球回到原位置时动能不变4.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg5.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s ,则( )A .左方是A 球,碰撞后A 、B 两球速度大小之比为2:5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1:106.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A .B 用轻绳连接并跨过 滑轮(不计滑轮的质量和摩擦).初始时刻,A 、B 处于同一高度并恰好处于静止状态.剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块A .落地时的速率相同B .重力的冲量相同C .重力势能的变化量相同D .重力做功的平均功率相同7.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==8.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 9.有一宇宙飞船,它的正对面积S =2 m 2,以v =3×103 m/s 的相对速度飞入一宇宙微粒区.此微粒区1 m 3空间中有一个微粒,每一个微粒的平均质量为m =2×10-7kg .设微粒与飞船外壳碰撞后附着于飞船上,要使飞船速度不变,飞船的牵引力应增加A .3.6×103 NB .3.6 NC .1.2×103 ND .1.2 N10.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。

(完整word)动量守恒定律经典习题(带答案)

(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。

2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。

6kg,木块与小车之间的摩擦系数为0。

2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。

分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。

M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。

MN右侧空间有一范围足够大的匀强电场。

在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。

处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。

现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。

(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。

2)碰撞后整体C的速度。

3)整体C运动到最高点时绳的拉力大小。

2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。

一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。

质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。

已知CO=4S,OD=S。

求撤去外力后:1)弹簧的最大弹性势能。

2)物块B最终离O点的距离。

3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。

现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。

当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图甲,质量M =0.8 kg 的足够长的木板静止在光滑的水平面上,质量m =0.2 kg 的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F ,4 s 后撤去力F 。

若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g =10 m/s 2,则下列说法正确的是A .0~4s 时间内拉力的冲量为3.2 N·sB .t = 4s 时滑块的速度大小为9.5 m/sC .木板受到滑动摩擦力的冲量为2.8 N·sD .2~4s 内因摩擦产生的热量为4J2.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 4.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A =2kg,m B =3kg,m C =1kg,初状态三个小球均静止,BC 球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s5.如图,固定的光滑斜面倾角 =30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A .v 2=2v 1B .B 点到C 点的过程中,物体动量改变量为2kg·m/sC .F =7ND .运动过程中F 对小滑块做功28J6.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 27.在光滑水平面上,有两个小球A 、B 沿同一直线同向运动(B 在前),已知碰前两球的动量分别为pA =10 kg·m/s 、pB =13 kg·m/s ,碰后它们动量的变化分别为ΔpA 、ΔpB .下列数值可能正确的是( ) A .ΔpA =-3 kg·m/s 、ΔpB =3 kg·m/sB .ΔpA =3 kg·m/s 、ΔpB =-3 kg·m/sC .ΔpA =-20 kg·m/s 、ΔpB =20 kg·m/sD .ΔpA =20kg·m/s 、ΔpB =-20 kg·m/s8.3个质量分别为m 1、m 2、m 3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m 1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m 1:m 2:m 3为( )A .6:3:1B .2:3:1C .2:1:1D .3:2:19.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理 动量守恒定律(习题)

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。

解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。

解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。

解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。

2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5kg·m/s ,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A =6 kg·m/s ,pB =6 kg·m/sB .p A =3 kg·m/s ,p B =9 kg·m/sC .p A =-2 kg·m/s ,p B =14 kg·m/sD .p A =-4 kg·m/s ,p B =17 kg·m/s2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。

小球在运动过程中除重力和弹力外,另受阻力f (包含摩擦阻力),阻力f 大小与速率成正比即f kv =。

则小球在斜面上运动总时间t 为( )A .12sin v v t g θ+=⋅B .12sin v v t g θ-=⋅ C .1212sin 2mv mv t v v mg k θ+=+⋅+ D .1212sin 2mv mv t v v mg k θ-=+⋅- 3.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动4.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。

质量为m 的小滑块以水平向右的初速度0v 冲上圆弧轨道,恰好能滑到最高点,已知M =2m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等 二、动量守恒定律 1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()Mv M m v m v v =-++C 、''0()()Mv M m v m v v =-++D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。

根据测速仪的测定,长途客车碰前以20m/s 的速度行驶,由此可判断卡车碰前的行驶速率为:A 、小于10 m/sB 、大于10 m/s 小于20 m/sC 、大于20 m/s 小于30 m/sD 、大于30 m/s 小于40 m/s3、质量相同的物体A 、B 静止在光滑的水平面上,用质量和水平速度相同的子弹a 、b 分别射击A 、B ,最终a 子弹留在A 物体内,b 子弹穿过B ,A 、B 速度大小分别为v A 和v B ,则:A 、v A >vB B 、v A <v BC 、v A =v BD 、条件不足,无法判定4、质量为3m ,速度为v 的小车, 与质量为2m 的静止小车碰撞后连在一起运动,则两车碰撞后的总动量是O P SQFA 、3m v /5B 、2m vC 、3m vD 、5m v5、光滑的水平面上有两个小球M 和N ,它们沿同一直线相向运动,M 球的速率为5m/s ,N 球的速率为2m/s ,正碰后沿各自原来的反方向而远离,M 球的速率变为2m/s ,N 球的速率变为3m/s ,则M 、N 两球的质量之比为A 、3∶1B 、1∶3C 、3∶5D 、5∶76、如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。

木箱和小木块都具有一定的质量。

现使木箱获得一个向右的初速度0v ,则:A 、小木块和木箱最终都将静止B 、小木块最终将相对木箱静止,二者一起向右运动C 、小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D 、如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动8、质量分别为60㎏和70㎏的甲、乙两人,分别同时从原来静止在光滑水平面上的小车两端以3m/s 的水平初速度沿相反方向跳到地面上。

若小车的质量为20㎏。

则当两人跳离小车后,小车的运动速度为: A 、19.5m/,方向与甲的初速度方向相同 B 、19.5m/s ,方向与乙的初速度方向相同C 、1.5m/s ,方向与甲的初速度方向相同D 、1.5m/s ,方向与乙的初速度方向相同9、在光滑的水平面上,有三个完全相同的小球排成一条直线,小球2和3静止并靠在一起,小球1以速度v 0与它们正碰,如图所示,设碰撞中没有机械能损失,则碰后三个球的速度可能是:A 、30321v v v v === B 、v 1=0,2032v v v == C 、v 1=0,2032v v v == D 、v 1=v 2=0,v 3=v 0 三、动量守恒和机械能的关系1、一个质量为m 的小球甲以速度v 0在光滑水平面上运动,与一个等质量的静止小球乙正碰后,甲球的速度变为v 1,那么乙球获得的动能等于:A 、21202121mv mv -B 、210)(21v v m -C 、20)21(21v mD 、21)21(21v m 2、质量为M 的物块以速度V 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量之比M /m 可能为A、2 B、3 C、4 D、53、如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相同的物体B 以速度v 向A 运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是A 、A 开始运动时B 、A 的速度等于v 时C 、B 的速度等于零时D 、A 和B 的速度相等时v4、在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m 。

现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于A 、m E pB 、m E p2 C 、2m E pD 、2mE p25、如图所示,位于光滑水平面桌面上的小滑块P 和Q 都视作质点,质量相等。

Q 与轻质弹簧相连。

设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。

在整个过程中,弹簧具有最大弹性势能等于:A 、P 的初动能B 、P 的初动能的12C 、P 的初动能的13D 、P 的初动能的146、质量为1kg 的物体原来静止,受到质量为2kg 的速度为1m/s 的运动物体的碰撞,碰后两物体的总动能不可能的是:A 、1J ;B 、3/4JC 、2/3JD 、1/3J 。

7、在光滑水平面上,动能为E 0、动量的大小为p 0的小钢球l 与静止小钢球2发生碰撞,碰撞前后球l 的运动方向相反。

将碰撞后球l 的动能和动量的大小分别记为E 1、p 1,球2的动能和动量的大小分别记为E 2、p 2,则必有:A 、E 1<E 0B 、p 1<p 0C 、E 2>E 0D 、p 2>p 08、质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的1/9,那么碰撞后B 球的速度大小可能是:A 、v 31B 、v 32C 、v 94D 、v 98 9、质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ。

初始时小物块停在箱子正中间,如图所示。

现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,井与箱子保持相对静止。

设碰撞都是弹性的,则整个过程中,系统损失的动能为A 、212mv B 、2)(2v M m mM + C 、12N mgL μ D 、mgL N μ10、如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑CA 、在以后的运动过程中,小球和槽的动量始终守恒B 、在下滑过程中小球和槽之间的相互作用力始终不做功C 、被弹簧反弹后,小球和槽都做速率不变的直线运动D 、被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处四、多过程问题,尽可能分过程使用动量守恒定律,避免计算相关能量时出现不必要的错误。

1、质量分别为3m 和m 的两个物体,用一根细线相连,中间夹着一个被压缩的轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所示。

后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0。

求:弹簧在这个过程中做的总功。

2、如图,ABC 三个木块的质量均为m 。

置于光滑的水平面上,BC 之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把BC 紧连,使弹簧不能伸展,以至于BC 可视为一个整体,现A 以初速v 0沿BC 的连线方向朝B 运动,与B 相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C 与A ,B 分离,已知C 离开弹簧后的速度恰为v 0,求弹簧释放的势能。

3、如图所示,一轻质弹簧两端连着物体A 、B ,放在光滑的水平面上,若物体A 被水平速度为v 0的子弹射中,且后者嵌在物体A 的中心,已知物体A 的质量是物体B 质量的3/4,子弹质量是物体B 的1/4,设B 的质量为M ,求:(1)弹簧被压缩到最短时物体A 、B 的速度。

(2)弹簧被压缩到最短时弹簧的弹性势能4、如图所示,质量为m=1kg 的木块A ,静止在质量M=2kg 的长木板B 的左端,长木板停止在光滑的水平面上,一颗质量为m 0=20g 的子弹,以v 0=600m/s 的初速度水平从左向右迅速射穿木块,穿出后速度为s m v /4500=',木块此后恰好滑行到长木板的中央相对木板静止。

已知木块与木板间的动摩擦因数μ=0.2,g=10m/s 2,并设A 被射穿时无质量损失。

求:(1)木块与木板的共同滑行速度是多大?(2)A 克服摩擦力做了多少功?(3)摩擦力对B 做了多少功?(4)A 在滑行过程中,系统增加了多少内能?《动量 动量守恒定律》参考答案一、动量和冲量 1A 2A 3BD 4A二、动量守恒定律 1A 2A 3A 4C 5 D 6 B 8C 9D三、动量守恒和机械能的关系1B 2AB 3 D 4C 5 B 6D 7ABD 8AB 9BD 10C四、多过程问题,尽可能分步使用动量守恒定律,避免相关能量计算时出现不必要的错误。

1解:设3m 的物体离开弹簧时的速度为υ',根据动量守恒定律,有υυυ'+⋅=+m m m m 32)3(00 得:032υυ='根据动能定理,弹簧对两个物体做的功分别为:20202012321)2(21υυυm m m W =-= 202020265321)32(321υυυm m m W -=⋅⋅-⋅⋅= 弹簧做的总功:202132υm W W W =+= 2解:设碰后A 、B 和C 的共同速度的大小为v ,由动量守恒得03mv mv = ①设C 离开弹簧时,A 、B 的速度大小为1v ,由动量守恒得0123mv mv mv += ② 设弹簧的弹性势能为p E ,从细线断开到C 与弹簧分开的过程中机械能守恒,有2021221)2(21)3(21mv v m E v m p +=+ ③ 由①②③式得弹簧所释放的势能为2031mv E p =④ 3、(1)80v (2)6420Mv 4解:(1)设子弹射穿木块A 后,木块A 的速度为A v ,对子弹和木块A 由动量守恒定律得:A mv v m v m +=+010000 s m v A /314501020600102033=⨯⨯-⨯⨯=-- 设木块A 与木板B 共同滑行的速度为v ,对木块A 和B 由动量守恒定律得:v M m mv A '+=+)(0 s m v /12131=+⨯=' (2)对A 使用动能定理得: J mv mv W A f 43121112121212222-=⨯⨯-⨯⨯=-= A 克服摩擦力做的功为4J 。

相关文档
最新文档