十三章整式的乘除
整式的乘除

第十三章:整式的乘除整式的乘除:1. 公式归纳:),(都是正整数n m aa a nm nm+=∙),(都是正整数)(n m a a mn nm =)()(都是正整数n b a ab nn n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-)0,,(≠=÷-a n m a a a n m n m 都是正整数2.运算法则:单项式与单项式相乘:单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式单项式与多项式相乘:只要将单项式分别乘以多项式的每一项,再将所得的积相加.多项式与多项式相乘:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.因式分解:1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++整式的乘法 同步练习【基础能力训练】一、单项式乘以单项式 1.判断:(1)7a 3〃8a 2=56a 6 ( ) (2)8a 5〃8a 5=16a 16( )(3)3x 4〃5x 3=8x 7 ( ) (4)-3y 3〃5y 3=-15y 3( )(5)3m 2〃5m 3=15m 5( )2.下列说法完整且正确的是( )A .同底数幂相乘,指数相加;B .幂的乘方,等于指数相乘;C .积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;D .单项式乘以单项式,等于系数相乘,同底数幂相乘3.8b 2(-a 2b )=( )A .8a 2b 3B .-8b 3C .64a 2b 3D .-8a 2b 34.下列等式成立的是( ) A .(-21x 2)3〃(-4x )2=(2x 2)8 B .(1.7a 2x )(71ax 4)=1.1a 3x 5C .(0.5a )3〃(-10a 3)3=(-5a 4)5D .(2×108)×(5×107)=10165.下列关于单项式乘法的说法中不正确的是( ) A .单项式之积不可能是多项式; B .单项式必须是同类项才能相乘;C .几个单项式相乘,有一个因式为0,积一定为0;D .几个单项式的积仍是单项式6.计算:(x n )n 〃36x n=( )A .36x nB .36xn 3C .36x n2+nD .36x 2+n7.计算:(1)(-2.5x 3)2(-4x 3) (2)(-104)(5×105)(3×102)(3)(-a 2b 3c 4)(-xa 2b )38.化简求值:-3a 3bc 2〃2a 2b 3c ,其中a=-1,b=1,c=21.二、单项式乘以多项式 9.下列说法正确的是( )A .多项式乘以单项式,积可以是多项式也可以是单项式;B .多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积;C .多项式乘以单项式,积的系数是多项式系数与单项式系数的和;D .多项式乘以单项式,积的项数与多项式的项数相等 10.判断: (1)31(3x+y )=x+y ( ) (2)-3x (x -y )=-3x 2-3xy ( ) (3)3(m+2n+1)=3m+6n+1 ( )(4)(-3x )(2x 2-3x+1)=6x 3-9x 2+3x ( ) (5)若n 是正整数,则(-31)2n (32n+1+32n -1)=310( ) 11.若x (3x -4)+2x (x+7)=5x (x -7)+90,则x 等于( ) A .-2 B .2 C .-12 D .12 12.下列计算结果正确的是( )A .(6xy 2-4x 2y )3xy=18xy 2-12x 2yB .(-x )(2x+x 2-1)=-x 3-2x 2+1C .(-3x 2y )(-2xy+3yz -1)=6x 3y 2-9x 2y 2z+3x 2y D .(43a n+1-21b )2ab=23a n+2-ab 213.x (y -z )-y (z -x )+z (x -y )的计算结果是( )A .2xy+2yz+2xzB .2xy -2yzC .2xyD .-2yz 14.计算:(1)(a -3b )(-6a ) (2)x n (x n+1-x -1)(3)-5a (a+3)-a (3a -13) (4)-2a 2(21ab+b 2)-5ab (a 2-1)三、多项式乘以多项式 15.判断:(1)(a+3)(a -2)=a 2-6 ( )(2)(4x -3)(5x+6)=20x 2-18 ( )(3)(1+2a )(1-2a )=4a 2-1 ( )(4)(2a -b )(3a -b )=6a 2-5ab+b 2( )(5)(a m -n )m+n =a m2-n2(m ≠n ,m>0,n>0,且m>n ) ( ) 16.下列计算正确的是( )A .(2x -5)(3x -7)=6x 2-29x+35 B .(-3x+21)(-31x )=3x 2+21x+61C .(3x+7)(10x -8)=30x 2+36x+56D .(1-x )(x+1)+(x+2)(x -2)=2x 2-317.计算结果是2x 2-x -3的是( ) A .(2x -3)(x+1) B .(2x -1)(x -3) C .(2x+3)(x -1) D .(2x -1)(x+3) 18.当a=31时,代数式(a -4)(a -3)-(a -1)(a -3)的值为( ) A .343 B .-10 C .10 D .819.计算:(1)(x -2y )(x+3y ) (2)(x -1)(x 2-x+1)(3)(-2x+9y 2)(31x 2-5y ) (4)(2a 2-1)(a -4)-(a 2+3)(2a -5)【综合创新训练】 一、创新应用 20.已知x=574,y=473,求[-321(x+y )] 3(x -y )〃[-2(x -y )(x+y )] 2的值.21.当x=2 005时,求代数式(-3x 2)(x 2-2x -3)+3x (x 3-2x 2-3x )+2 005的值.二、开拓探索22.已知单项式9a m+1b n+1与-2a 2m -1b 2n -1的积与5a 3b 6是同类项,求m ,n 的值.23.解方程:(x+1)(x-3)=x(2x+3)-(x2-1).24.解不等式:(3x+4)(3x-4)>9(x-2)(x+3).三、实际应用25.求图中阴影部分的面积(图中长度单位:米).26.长方形的长是(a+2b)cm,宽是(a+b)cm,求它的周长和面积.四、生活中的数学27.李老师刚买了一套2室2厅的新房,其结构如下图所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,•其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?五、探究学习小明找来一张挂历画包数学课本,已经课本长a厘米,宽为b厘米,高为c 厘米,•小明想将课本封面与底面的每一边都包进去m厘米,问小明应在挂历上裁下一块多大的长方形?整式的除法同步练习【基础能力训练】一、同底数幂的除法1.下列计算中,正确的是()A.a3÷a=a3 B.(-c)4÷(-c)2=-c2C.(xy)5÷xy3=(xy)2 D.x6÷(x4÷x2)=x42.下列计算中,正确的是()A.a3÷a3=a3-3=a0=1 B.x2m+3÷x2m-3=x0=1C.(-a)3÷(-a)=a2 D.(-a)5÷(-a)3×(-a)2=3.计算x10÷x4×x6的结果是()A.1 B.0 C.x12 D.x364.(4×6-48÷2)0=()A.0 B.1 C.-12 D.无意义5.用科学记数法表示0.000 302 5为()A.3.025×10-4 B.3025×10-4 C.3.025×10-5 D.3.025×10-6 6.计算:(1)-m9÷m3(2)(-a)6÷(-a)3(3)(-8)6÷(-8)5(4)62m+3÷6m7.计算:(1)(a8)2÷a8(2)(a-b)2(b-a)2n÷(a-b)2n-18.用科学记数法表示下列各数:(1)0.000 07 (2)-0.004 025 (3)153.7 (4)857 000 000 9.计算:(1)(8985+10023-7932)0(2)(-3)2×(-3)0+(-3)-2×(-3)2 (3)(1.1×10-6)(1.2×107)二、单项式除以单项式10.计算[(-a)3] 4÷(-a4)3的结果是()A.-1 B.1 C.0 D.-a11.下列计算正确的是()A.2x3b2÷3xb=x2b B.m6n6÷m3n4〃2m2n2=21mC.21xy〃a3b÷(0.5a2y)=41xa2 D.4a6b4c÷a3b2=4a2b2c12.64a9b3c÷()=16a8b3c,括号中应填入()A.41a B.4a C.4abc D.4a213.下列计算36a8b6÷13a2b÷4a3b2的方法正确的是()A.(36÷31÷4)a8-2-3b6-1-2 B.36a8b6÷(31a2b÷4a3b2)C.(36-31-4)a8-2-3b6-1-2 D.(36÷31÷4)a8-2-3b6-0-214.计算:(1)(5a2b2c3)4÷(-5a3bc)2(2)(2a2b)4〃3ab2c÷3ab2〃4b 15.计算:(4×105)2÷(-2×102)3三、多项式除以单项式16.计算(12x 3-18x 2-6x )÷(-6x )的结果为( )A .-2x 2+3x+1B .2x 2+3x -1C .-2x 2-3x -1D .2x 2-3x -1 17.如果a=43,代数式(28a 3-28a 2+7a )÷7a 的值是( ) A .6.25 B .0.25 C .-2.25 D .-418.如果M ÷(-3xy )=4x 3-xy ,则M=( )A .-12x 4y+3x 2y 2B .12x 4y -3x 2y 2C .-12x 4y -3x 2y 2D .12x 4y+3x 2y 219.计算:(1)(-3m 2n 2+24m 4n -mn 2+4mn )÷(-2mn );(2)(32x 5-16x 4+8x 3)÷(-2x )220.光的速度为3.0×108米/秒,那么光走6×1021米要用几秒?21.一个矩形的面积为(6ab 2+4a 2b )cm 2,一边为2ab ,求周长.【综合创新训练】 一、创新应用22.(1)已知x m =8,x n =5,求x m -n 的值;(2)已知10m =3,10n =2,求103m -2n的值.23.若(x -1)0-3(x -2)0有意义,那么x 的取值范围是( )A .x>1B .x>2C .x ≠1或x ≠2 C .x ≠1且x ≠224.与a n b 2相乘的积为5a 2n+3b 2n+3的单项式是________. 二、 开放探索25.若(x m ÷x 2n )3÷x m -n 与4x 2为同类项,且2m+5n=7,求4m 2-25n 2的值.26.化简求值:(-43x 4y 7+21x 3y 8-91x 2y 6)÷(-31xy 3)2,其中x=-1,y=-2.27.2006年9月,我国新发射的实验卫星,进入预定轨道后2×102•秒走过的路程是1.58×107米,那么该卫生绕地球运行的速度是多少?因式分解跟踪练习:一、填空题:1、()229=n ;()222=a ;c a b a m m ++1= 。
初中数学教学计划(15篇)

初中数学教学计划(15篇)初中数学教学计划1一、指导思想新学期开始了,需要心得计划。
认真学习、贯彻上级教育工作会议精神,结合学校实际,体现“以学生发展为本”教育理念,为学生提供优质的教育服务,让学生“学会选择、主动学习、卓越发展”。
围绕“追求有效教学,促进质量优化。
”的宗旨。
继续深入贯彻“课改”精神,改善学生的学习方式;以提高教师课堂教学有效性为抓手,认真落实常规教学各环节,力争做到精细化,全力打造适合我校的数高效课堂。
加强教研组建设,以继续争创先进教研组为动力,总结经验,发挥优势,改进不足,聚集全组教师的工作力和创造力,努力使数学教研组在有朝气、有创新精神、团结奋进的基础上焕发出新的生机与活力。
二、基本情况我校共有九位数学教师,九个教学班。
教师年龄结构比较合理,学历达标率100%。
各年级以学科负责人牵头统一安排进度,练习,考试及评价。
各教师之间相互学习取长补短,和睦相处,和谐发展。
本学期继续发扬这种“三和”精神搞好本职工作。
三、工作重点及具体措施:1.“问渠哪得清如许,为有源头活水来”,教师如果不学习,教研活动就会成本“无本之木,无源之水”。
教研组落实校本教研,狠抓理论学习,认真学习《课程标准》,学习学科刊物,了解教研教改信息,使“善学才能善研,善研才能善教,”成为全组教师的共识,更新教师的教学观念,以先进的`教学理念武装自己,指导日常的教学工作。
2.聚焦教学,关注课堂教学,提高课堂教学效率和质量。
教师要转变教学观念,坚持以学生为主体,运用启发式教学和开放式教学。
教师不再作为知识的权威,而是充当学生指导者、合作者和助手的角色。
学生不再作为知识的接收者,被动学习,而是与教师一样通过各种途径获取信息。
提倡教师认真上好每一节课,提高课堂教学质量。
3.加强集体备课,集体备课活动时间,以确定的时间和不确定的时间相互结合为主,每周确定的时间集体备课,平时利用不确定的时间交流教学心得、教学方法,提高教师的备课质量。
人教版初中数学章节目录(新版)

21.1 一元二次方程 21.2 解一元二次方程 21.3 实际问题与一元二次方程 22.1 二次函数的图像与性质 22.2 二次函数与一元二次方程 22.3 实际问题与二次函数 23.1 图形的旋转 23.2 中心对称 23.3 课题学习 图案设计 24.1 圆的有关性质 24.2 点和圆、直线和圆的位置关系 24.3 正多边形和圆 24.4 弧长和扇形面积 25.1 随机事件与概率 25.2 用列举法求概率 25.3 用频率估计概率 26.1 反比例函数 26.2 实际问题与反比例函数 27.1 图形的相似 27.2 相似三角形 27.3 位似 28.1 锐角三角函数 28.2 解直角三角形及其应用 29.1 投影 29.2 三视图
第十二章 全等三角形 第十三章 轴对称
八年级 数学 (上 册)
第十三ห้องสมุดไป่ตู้ 轴对称
第十四章 整式的乘除与因式分解
第十五章 分式
八年级 数学 (下 册)
第十六章 二次根式 第十七章 勾股定理 第十八章 平行四边形 第十九章 一次函数
第二十章 数据的分析
第二十一章 一元二次方程
九年级 数学 (上 册)
第二十二章 二次函数 第二十三章 旋转 第二十四章 圆
第二十五章 概率初步
第二十六章 反比例函数
九年级 数学
(下册)
第二十七章 相似 第二十八章 锐角三角函数
第二十九章 投影与视图
九年级 数学
(下册)
第二十九章 投影与视图
人教版初中数学目录
1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 1.4 有理数的乘除法 1.5 有理数的乘方 2.1 整式 2.2 整式的加减 3.1 从算式到方程 3.2 解一元一次方程(一)----合并同类项与移项 3.3 解一元一次方程(二)----去括号与去分母 3.4 实际问题与一元一次方程 4.1 几何图形 4.2 直线、射线、线段 4.3 角 4.4 课题学习 设计制作长方体 形状的包装纸盒 5.1 相交线 5.2 平行线及其判定 5.3 平行线的性质 5.4 平移 6.1 平方根 6.2 立方根 6.3 实数 7.1 平面直角坐标系 7.2 坐标方法的简单应用 8.1 二元一次方程组 8.2 消元----解二元一次方程组 8.3 实际问题与二元一次方程组 8.4 三元一次方程组的解法 9.1 不等式 9.2 一元一次不等式 9.3 一元一次不等式组 10.1 统计调查 10.2 直方图 10.3 课题学习 从数据谈节水 11.1 与三角形有关的线段 11.2 与三角形有关的角 11.3 多边形及其内角和 12.1 全等三角形 12.2 全等三角形的判定 12.3 角的平分线的性质 13.1 轴对称 13.2 轴对称图形 13.3 等腰三角形
八年级数学课本目录(人教版)

第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定阅读与思考全等与全等三角形11.3 角的平分线的性质教学活动小结复习题11第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形教学活动小结复习题12第十三章实数13.1 平方根13.2 立方根13.3 实数教学活动小结复习题13第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案教学活动小结复习题14第十五章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法教学活动小结复习题15第十六章分式16.1 分式16.2 分式的运算阅读与思考容器中的水能倒完吗16.3 分式方程数学活动小结复习题16第十七章反比例函数17.1 反比例函数信息技术应用探索反比例函数的性质17.2 实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1 勾股定理阅读与思考勾股定理的证明18.2 勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1 平行四边形阅读与思考平行四边形法则19.2 特殊的平行四边形实验与探究巧拼正方形19.3 梯形观察与猜想平面直角坐标系中的特殊四边形19.4 课题学习重心数学活动小结复习题19第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析数学活动。
八年级数学提纲

八年级数学提纲第十一章:全等三角形1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).金典例题:题一:身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上,在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G 处(点G在FE的延长线上),经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A据地面的高度AB=1.4米,风筝线与水平线夹角为37°。
(1)求风筝据地面的告诉GF;(2)在建筑物后面有长5米的梯子MN,梯脚M在距离3米处固定摆放,通过计算说明;若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?题二:已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =.求证:AC CD =解析:证明:AB ED ∥,B E ∴∠=∠.在ABC △和CED △中,AB CE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,,,ABC CED ∴△≌△.AC CD ∴=.题三:已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
整式的乘除

第一章:整式的乘除单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
数学:第十三章《整式的乘除》单元设计(华师大版八年级上)

数学:第十三章《整式的乘除》单元设计(华师大版八年级上)一、本章的教学内容共五节: §13.1 幂的运算§13.2 整式的乘法§13.3 乘法公式§13.4 整式的除法§13.5 因式分解.前四节属于整式的乘除范畴,最后一节是整式乘法的逆过程。
二、本章所处地位本章是整式加减的后续学习,同时也是初中代数关于式的学习的重要内容.教材首先从幂的运算性质入手,在此基础上再运用乘法的运算律得出整式乘法和除法的运算法则,接着利用整式乘法法则引导学生探求乘法公式和因式分解的方法.可见本章既是对前面知识的运用和开拓,又是后续知识的基础,如:分式,一元二次方程的解法,二次函数的性质都要用到本章的因式分解等内容.另外,本章书多处由图形面积引入运算法则和公式,既渗透了数形结合的思想,又培养了学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣.三、教学目标★知识与技能目标:1.掌握正整数幂的运算性质,会用它们进行计算.2.了解整式的乘法法则(其中的多项式相乘仅指一次式相乘),会进行简单的整式的乘法运算.3.会推导乘法公式,了解公式的几何背景,并能运用公式进行简单的计算.4.通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊→一般→特殊”的认识过程.5.探索并了解单项式除以单项式、多项式除以单项式的法则,并能进行简单的除法运算.6.会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数).★情感与态度目标:学生从已有知识出发,通过适当的探究、合作讨论、实践活动,获得一些直接的经验并体会数学的实用价值.四、教学重点难点★重点:运算法则及公式的发生过程及运用.★难点:1.幂的运算性质的正确使用.2.整式混合运算的运算顺序.3.乘法公式的正确使用.4.整式乘法与因式分解的区分.五、教学策略本章的内容不难理解,但容易混淆的问题很多,过于集中,学生在解题时容易顾此失彼。
人教版八年级数学上册(全册)单元知识点及重点汇总

人教版八年级数学上册(全册)单元知识点及重点汇总第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质 1:三角形的一个外角等于和它不相邻的两个内角的和.性质 2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(n − 2) ·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(n − 3) 条对角线,把多边形分成(n − 2) 个三角形.② n 边形共有n(n − 3)条对角线. 2第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (x, y) 关于x 轴对称的点的坐标为P ' (x, −y) .②点P (x, y) 关于y 轴对称的点的坐标为P " (−x, y) .⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1 条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3 条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.系数,同字 式乘以多项 整式乘法 乘法法则整式除法因式分解②三个角都相等的三角形是等边三角形.③有一个角是 60°的等腰三角形是等边三角形.4. 基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1. 基本运算:⑴同底数幂的乘法: a m ⨯ a n = a m +n⑵幂的乘方: (a m )n = a mn⑶积的乘方: (ab )n= a n b n2. 整式的乘法: ⑴单项式⨯单项式:系数⨯ 等边三角形的性质母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项 式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3. 计算公式:⑴平方差公式: (a − b )⨯(a + b ) = a 2 − b 2⑵完全平方公式: (a + b )2 = a 2 + 2ab + b 2 ; (a − b )2= a 2 − 2ab + b 24. 整式的除法:⑴同底数幂的除法: a m ÷ a n = a m −n⑵单项式÷ 单项式:系数÷ 系数,同字母÷ 同字母,不同字母作为商的因式.⑶多项式÷ 单项式:用多项式每个项除以单项式后相加.⑷多项式÷ 多项式:用竖式.5. 因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6. 因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式: a 2 − b 2 = (a + b )(a − b )②完全平方公式: a 2 ± 2ab + b 2 = (a ± b )2③立方和: a 3 + b 3 = (a + b )(a 2 − ab + b 2 )④立方差: a 3 − b 3 = (a − b )(a 2 + ab + b 2 )⑶十字相乘法: x 2 + ( p + q ) x + pq = (x + p )(x + q )⑷拆项法⑸添项法一、知识框架 : 第十五章 分式二、知识概念:1. 分式:形如 A , A 、B 是整式, B 中含有字母且 B 不等于 0 的整式叫做分式.其中 A 叫做分式的B分子, B 叫做分式的分母.2. 分式有意义的条件:分母不等于 0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变.4. 约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分.b b 5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为: a ± b = a ± b c c c⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a ± c = ad ± cbb d bd⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为: a ⨯ c = ac b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为: a ÷ c = a ⨯ d = ad b d b c bc⎛ a ⎫n⑸分式的乘方法则:分子、分母分别乘方.用字母表示为: ⎪ ⎝ ⎭ = a nbn 8. 整数指数幂:⑴ a m ⨯ a n = a m +n ( m 、n 是正整数)⑵(a m )n= a mn ( m 、n 是正整数) ⑶(ab )n= a n b n ( n 是正整数)⑷ a m ÷ a n = a m −n ( a ≠ 0 , m 、n 是正整数, m > n )⎛ a ⎫n ⑸ ⎪ ⎝ ⎭ a n = ( n 是正整数) b n ⑹ a − n = 1 a n( a ≠ 0 ,n 是正整数) 9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10. 分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜宾四中学集体备课卡课题13.1 幂的运算同底数幂的乘法主备人教者课型新课课时 1 第周星期节数 1 设计理念培养学生的自学能力,构建小组合作学习和分层次教学学习目标知识与能力:1、能讲出同底数幂的乘法性质并会用式子表示;2、能主动探索并判断两个幂是否是同底数幂,并能掌握指数是正整数时底数的幂的乘法;3、能根据同底数幂乘法性质进行简单的计算;4、能让学生在已有知识的基础上,通过自主探索,获得幂的各种运算感性认识,进而上升到理性上来获得运算法则;过程与方法:结合实例让学生意识到学习的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
情感态度价值观:幂的运算中的同底数幂的乘法的教学应让学生关注性质的推导,主动探索,在实践中获得结论。
还应让学生能够正确用语言表述性质。
重难点重点:同底数幂的乘法法则;难点:对同底数幂的乘法的理解;教法引导法,演示法学法自学、探究引导法、讨论教学准备教学过程(主要环节)集体备课个性展示一、创设情境:某地区在退耕还林期间,有一块原长m米,宽a米的长方形林区增长了n米,加宽了b米,用不同的方法表示这块林区现在的面积便可得到一个等式:()()m n a b ma mb na nb ++=+++提出问题:1、扩大后的林区面积是多少?2、你知道上面的等式蕴含着什么样的运算法则吗?二、知识回顾:1、什么叫乘方?2、na表示的意义是什么?三、计算观察:1、做一做:3422(222)(2222)⨯=⨯⨯⨯⨯⨯⨯=提出问题:这道题有什么特点?通过本题推导:到m n m na a a+=(m、n是正整数)概括:同底数幂相乘,底数不变,指数相加,概括出幂的第一个运算法则。
四、举例应用:例1、计算(1)341010⨯(2)310a⨯(3)35a a五、随堂练习:P73 exc1、2六、课堂小结:1、同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系。
2、应用时,可以拓展到两个以上3、运用幂的乘法运算性质注意不能与整式的加减混淆。
板书设计教学反思偶发处理高县柳湖中学集体备课卡课题13.1 幂的运算幂的乘方主备人教者课型新课课时 1 第周星期节数 1设计理念依据学生已有的知识体系引导学生判断定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据,学习目标知识与能力:1、使学生掌握幂的乘方的法则,并能够用式子表示;2、通过自主探索,让学生明确幂的乘方法则是根据乘方的意义和同底数幂法则推导出来的,并能利用乘方的法则熟悉地进行幂的乘方运算;过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
情感态度价值观:利用教材内容安排的特点,把幂的乘方的学习与同底数幂的乘法紧密联系起来;重难点重点:幂的乘方法则的应用;难点:理解幂的乘方的意义;教法引导法引导法,演示法学法自学、探究引导法、讨论教学准备教学过程(主要环节) 集体备课个性展示一、知识回顾:1、什么叫乘方?什么叫幂?2、口述幂的乘法法则。
二、计算观察:做一做:根据乘方的意义及同底数幂的乘法填空 (1)3233()(2)222=⨯=(2)23222()(3)3333=⨯⨯= (3)343333()()a a a a a a==问题:上述几题有什么共同的特点?通过对学生对这几题的分析,我们可以得到: ()m n mn a a =,(m 、n 是正整数) 概括:幂的乘方,等于各个因式乘方的积。
三、举例应用: 例2、计算(1)25(10) (2)34()b 四、随堂练习: P74 exc1、2 五、课堂小结1、幂的乘方使用范围是:幂的乘方。
2、知识拓展:这里的底数、指数可以是数,可以是字母。
3、幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”。
六、家庭作业: P74 exc 2、3 七、每日预题:1、什么是积的乘方,它与同底数幂相乘、幂的乘方有何区别;2、如何进行积的乘方。
八、教学反馈:本节课真正地体现了学生是学习的主人,教师是学生学习的引导者,帮助者和合作者的精神思想。
从新课的教学到练习的巩固,都是让学生独立完成的,让学生自己观察、思考、分析、归纳、总结、把学习过程变成学生自主探索的过程,不但引起学生学习的兴趣,而且锻炼了他们发现问题,解决问题的能力。
板书设计教学反思偶发处理高县柳湖中学集体备课卡课题13.1 幂的运算积的乘方主备人教者课型新课课时 1 第周星期节数 1 设计理念突出幂的运算法则的基础性,注意区别和联系。
学习目标知识与能力:1、使学生理解、掌握和运用积的乘方的法则;2、使学生通过探索,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得的;3、让学生通过类比,对三个幂的运算法则在应用时进行选择和区别过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
情感态度价值观:突出幂的运算法则的基础性,注意区别和联系。
重难点重点:积的乘方法则的理解和应用;难点:积的乘方法则的推导过程的理解;教 法 引导法 引导法,演示法 学 法自学、探究引导法、讨论教学准备教学过程(主要环节) 集体备课个性展示一、知识回顾:1、口述同底数幂的运算法则;2、口述幂的乘方运算法则;3、计算(1)25(10) (2)34()b 二、计算观察: 做一做:(1)2()ab =(2)4()ab =(3)5()ab =请同学从以上做题中找到他们共同的规律: 积的乘方是幂的第三个运算法则,也是整式乘法的基础,在内容处理上仍然先通过数字指数为例让学生计算,而后引导学生自主探索,讨论交流,归纳出一般性质: ()n n n ab a b = (n 是正整数)三、举例应用:例3计算(1)33(2)b (2) 35(3)x - (3) 3()a -四、随堂练习: P75 exc1、2 五、课堂小结: 1、积的乘方使用范围:底数是积的乘方 2、在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,也可以是整式 3、要注意运算过程 六、家庭作业: P75 exc 4、5 七、每日预题: 1、什么是单项式,如何进行合并同类项; 2、单项式的乘法与合并同类项有何异同点;鼓励同学独立思考,利用运算律来简化运算,这一过程中充分调动学生合作、交流的精神,探索,观察能力,提高语言表达能力。
把性质推广到:()n n n nabc a b c =,可以先让学生算一特殊值,在运算过程中自己探索积的乘方的性质对三个因数的情况同样适用,然后小组交流讨论,由特殊推广到一般。
板书设计教学反思偶发处理高县柳湖中学集体备课卡课题13.2 整式的乘法单项式与单项式相乘主备人教者课型新课课时 1 第周星期节数 1 设计理念培养学生的自学能力,构建小组合作学习和分层次教学学习目标知识与能力:1、让学生通过适当的尝试,获得直接的经验,体验单项式与单项式的乘法运算规律,总结运算法则;2、使学生能正确区别各单项式中的系数,同底数幂和不同底数幂的因式;3、让学生感知单项式法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
情感态度价值观:正确认识单项式与单项式的系数、相同字母、不同字母三者在它们的乘积中的处理方法。
重 难 点 重点:对单项式运算法则的理解和应用;难点:尝试与探究单项式与单项式的乘法运算规律; 教 法 引导法 引导法,演示法 学 法自学、探究引导法、讨论教学准备教学过程(主要环节) 集体备课个性展示一、知识回顾:1、口述幂的三个法则;2、幂的运算的三个法则的联系和区别; 二、计算观察: 做一做:计算3225x x通过上题的计算,启发引导学生归纳得出: 1、系数相乘作为积的系数;2、相同字母的因式,应用同底数幂的运算法则,底数不变,指数相加;3、只在一个单项式里含有的字母,连同它的指数也作为积的一项4、单项式与单项式相乘积仍是单项式。
三、举例应用: 例1 计算(1) 233(2)x y x - (2)232(5)(4)a b b c -- 四、创设情境: 问题讨论: 1、a a 可以看作是边长为a 的正方形的面积,a ab 可以做怎么样的理解;2、其他的,请你举出例子。
五、随堂练习: P77 exc1、2、3 六、课堂小结:1、本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上,请问:你能归纳出单项式乘以单项式的运算法则吗?2、在应用单项式乘以单项式运算法则时,应注意什么? 六、家庭作业: P80 exc1、2 七、每日预题:1、去括号法则是什么,如何去括号?2、对单项式与多项式的乘法,应注意什么?八、教学反馈:板书设计教学反思偶发处理高县柳湖中学集体备课卡课题13.2 整式的乘法单项式与多项式相乘主备人教者课型新课课时 1 第周星期节数 1 设计理念培养学生的自学能力,构建小组合作学习和分层次教学学习目标知识与能力:1、让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算规律,总结运算法则;2、认识到单项式与多项式相乘,结果仍是多项式,积的项数与因式中多项式的项数是相同。
3、使学生能按步骤进行简单的单项式与多项式相乘的运算。
过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
情感态度价值观:单项式与多项式相乘时应用乘法分配律转化为单项式相乘。
重 难 点 重点:掌握单项式乘以多项式的运算方法; 难点:对单项式乘以多项式法则的理解和领会; 教 法 引导法 引导法,演示法 学 法自学、探究引导法、讨论教学准备教学过程(主要环节) 集体备课个性展示一、知识回顾:1、口述单项式乘以单项式的法则2、计算:(1) 233(2)x y x - (2)232(5)(4)a b b c -- 3、什么叫做多项式 二、计算观察:做一做:计算:232(35)a a b -让学生通过主动探索体验单项式乘以多项式的乘法运算规律:单项式乘以多项式, 就是用单项式去乘多项式的每一项,再把所得的积相加。
三、举例应用:例3、 计算(1) 223(2)(35)a ab ab --(2)化简222213()10()3x xy y x x y xy ---- 四、随堂练习: P78 exc1、2 五、课堂小结:1、单项式乘以多项式法则:单项式乘以多项式,就是用单项式乘多项式的每一项,再把所得的积相加。
2、单项式乘以多项式相乘,应注意“不漏乘”“符号”; 六、家庭作业: P80 exc3、4、5 七、每日预题:1、如何确定多项与多项式相乘后的项数;2、多项与多项式相乘中应注意什么,如何运算? 八、教学反馈:板书设计教学反思偶发处理高县柳湖中学集体备课卡课题§13.2 整式的乘法多项式与多项式相乘主备人教者课型新课课时 1 第周星期节数 1 设计理念培养学生的自学能力,构建小组合作学习和分层次教学学习目标知识与能力:1、使学生理解多项工乘多项式的法则;2、通过导图中的问题理解多项式与多项式相乘的结果;3、能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练地进行多项工式的乘法运算的目的;过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。