北师大数学七年级下册第一章_整式的乘除知识点总结及练习题
初一数学下册(北师版) 01整式的乘除初步(一)-知识点总结

⑶积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的嘉相乘。
用式子表示为:(ah)n=a n h n(ti是正整数)⑷同底数幕相除同底数冨相除,底数不变,指数相减。
用式子表示为:a m ^a n =a m n(a^0, m, M都是正整数)⑸规定。
° = 1(«丰0)注意:⑴负数的奇数次幕与偶数次幕结果完全不同,运算中要格外注意⑵运算性质中,字母ab可表示一个数一个单项式或一个多项式⑶蒂的运算法则的逆运算,可以解决很多相关问题,要求对运算法则熟练掌握才能做到准确的运用⑷零指数计算中底数不能为零i(rx整式的乘除初步(一)舄的运算法则⑴同底数慕相乘同底数嘉相乘,底数不变,指数相加。
用式子表示为:a m a n=a m+n(rn,〃都是正整数)⑵幕的乘方嘉的乘方,底数不变,指数相乘。
用式子表示为:(a'")" 〃都是正整数)【例1】⑴下面请同学们根据乘方的意义做下面一组题:(2)23X24=(2X2X2)X(2X2X2X2)=27②53X55=5()®a3-a4==a()⑵根据上面的规律,请以慕的形式直接写出下列各题的结果:102xl04=104 x 105="= 1【例2】计算(1)(x+j)3・ (x+j)4(2)—x2• (―x)。
(3)(a-ft)3(h-a)5【例3] (1)8X4=2X,则x=⑵3X27X9 =y,则Y=I【例4】⑴已知a m=2, a n=3,求5。
"*"的值。
(2)胪.b m~2+ b • b m X- b3• b m S b2(3)已知35*-1= 81,求(4x-5尸的值。
(4)已知W=3, «w=4,求a””的值。
【例5】计算(1) (54)3 ⑶J)。
⑵ 一(。
2)3(4) [(。
+硏4【例7】⑴已知〃为正整数,且『=4。
求(3・2”)2 — 1332严的值。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)

考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。
幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。
底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。
在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。
新北师大版七年级数学下册第一章《整式的乘除》单元复习题含答案解析 (49)

一、选择题(共10题)1.如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为56,面积之和为58,则长方形ABCD的面积为( )A.98B.49C.20D.102.已知a+b+c=1,a2+b2−c2+2c=3,则ab的值为( )A.1B.−1C.2D.−23.计算(x−y)2n−1⋅(y−x)4的值是( )A.(x−y)2n+3B.(y−x)2n+3C.−(x−y)2n+3D.−(y−x)2n−54.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张,现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b5.若x+y=2,x2+y2=4,则x2018+y2018的值是( )A.4B.20182C.22018D.420186.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A.0.25×10−5B.0.25×10−6C.2.5×10−5D.2.5×10−67.若(x+2)是多项式4x2+5x+m的一个因式,则m等于( )A.−6B.6C.−9D.98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿黑线剪开,如图(1)所示,然后拼成一个梯形,如图(2)所示.根据这两个图形的面积关系,表明下列式子成立的是 ( )A . a 2−b 2=(a +b )(a −b )B . (a +b )2=a 2+2ab +b 2C . (a −b )2=a 2−2ab +b 2D . a 2−b 2=(a −b )29. 已知 a 1,a 2,⋯,a 2020 都是正数,如果 M =(a 1+a 2+⋯+a 2019)(a 2+a 3+⋯+a 2020),N =(a 1+a 2+⋯+a 2020)(a 2+a 3+⋯+a 2019),那么 M ,N 的大小关系是 ( ) A . M >N B . M =N C . M <N D .不确定10. 在数学中,为了书写简便,18 世纪数学家欧拉就引进了求和符号“∑”.如记 ∑k n k=1=1+2+3+⋯+(n −1)+n ,∑(x +k )n k=3=(x +3)+(x +4)⋯+(x +n );已知 ∑[(x +k )(x −k +1)]nk=2=3x 2+3x −m ,则 m 的值是 ( ) A . −40B . 20C . −24D . −20二、填空题(共7题)11. 若代数式 x 2+4x +3 可以表示为 (x −1)2+a (x −1)+b 的形式,则 a +b = .12. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4,⋯) 的展开式的系数规律(按 n 的次数由大到小的顺序):11(a +b )1=a +b 121(a +b )2=a 2+2ab +b 21331(a +b )3=a 3+3a 2b +3ab 2+b 314641(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4⋯⋯请依据上述规律,写出 (x −2)2018 展开式中含 x 2017 项的系数是 .13. 我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.例如,在三角形中第三行的三个数 1,2,1,恰好对应着 (a +b )2=a 2+2ab +b 2 展开式中各项的系数;第五行的五个数 1,4,6,4,1,恰好对应着 (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 展开式中各项的系数,等等.请观察图中数字排列的规律,求出代数式 x +y +z 的值为 .111121133114641151010511615x y z114.已知x2−2x−3是多项式3x3+ax2+bx−3的因式(a,b为整数),则a=,b=.15.如果9m+3×27m+1÷34m+7=81,那么m=.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.根据上面的规律,(a+b)4的展开式中各项系数最大的数为;式子75+5×74×(−5)+10×73×(−5)2+10×72×(−5)3+5×7×(−5)4+(−5)5的值为.17.计算:(a+b−c)(a−b−c)=.三、解答题(共8题)18.解答下列问题.(1) 计算(m+3n)(m−3n)−(m−3n)2;(2) 已知(a+b)2=7,(a−b)2=4,求ab的值.19.计算下列各题:(1) 你能求出(a−1)(a99+a98+a97+⋯+a2+a+1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a−1)(a+1)=;(a−1)(a2+a+1)=;(a−1)(a3+a2+a+1)=;⋯由此我们可以得到:(a−1)(a99+a98+a97+⋯+a+1)=.(2) 利用(1)的结论,完成下面的计算:2199+2198+2197+⋯+22+2+1.20.已知(x3)n+2=(x n−1)4,其中n为正整数,求(n3)4的值.21.计算:(1) 3a⋅(−a2)+a4÷a;(2) (2x−y)(x+3y);(3) (a−b+1)(a−b−1);22.乘法公式的探究及应用.(1) 如图①,可以求出阴影部分的面积是;(写成两数平方差的形式)(2) 如图②,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是;(写成多项式乘法的形式)(3) 比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4) 运用你所得到的公式,计算:(2m+n−p)⋅(2m−n+p).23.已知(x2+nx+3)(x2−3x+m)的展开式中不含x2和x3项,求m,n的值.24.解答下列问题.(1) 如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是;(2) 根据下面四个算式:52−32=(5+3)×(5−3)=8×2;112−52=(11+5)×(11−5)=16×6=8×12;152−32=(15+3)×(15−3)=18×12=8×27;192−72=(19+7)×(19−7)=26×12=8×39.请你再写出两个(不同于上面算式)具有上述规律的算式;(3) 用文字写出反映(2)中算式的规律,并证明这个规律的正确性.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1) 观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(2) 若要拼出一个面积为(a+2b)(a+b)的矩形,则需要A号卡片1张,B号卡片2张,C号卡片张.(3) 根据(1)题中的等量关系,解决问题:已知:a+b=5,a2+b2=13,求ab的值.答案一、选择题(共10题) 1. 【答案】D【解析】设 AB =DC =x ,AD =BC =y , 由题意得:{2×4x +2×4y =56,2x 2+2y 2=58,化简得:{x +y =7, ⋯⋯①x 2+y 2=29. ⋯⋯②将 ① 两边平方再减去 ② 得:2xy =20. ∴xy =10.【知识点】完全平方公式2. 【答案】B【解析】 ∵a 2+b 2−c 2+2c =3, ∴a 2+b 2−2=c 2−2c +1=(1−c )2, ∵a +b +c =1, ∴a +b =1−c , ∴(a +b )2=(1−c )2, ∴(a +b )2=a 2+b 2−2,展开得 a 2+b 2+2ab =a 2+b 2−2, ∴ab =−1.【知识点】完全平方公式3. 【答案】A【知识点】同底数幂的乘法4. 【答案】A【解析】大正方形的面积 S =4a 2+b 2+4ab =(2a +b )2. ∴ 大正方形的边长为 2a +b . 选A .【知识点】完全平方公式5. 【答案】C【解析】 ∵x +y =2,∴(x +y )2=x 2+2xy +y 2=4, ∵x 2+y 2=4, ∴4+2xy =4, ∴xy =0, ∴x =0 或 y =0,当 x =0 时,y =2,∴x 2018+y 2018=02018+22018=22018, 当 y =0 时,x =2,∴x 2018+y 2018=22018+02018=22018. 【知识点】完全平方公式6. 【答案】D【知识点】负指数科学记数法7. 【答案】A【解析】 ∵4x 2+5x +m =(x +2)(4x +n )=4x 2+(8+n )x +2n , ∴8+n =5,m =2n , ∴n =−3,m =−6. 【知识点】多项式乘多项式8. 【答案】A【知识点】平方差公式9. 【答案】A【解析】设 S =a 2+a 3⋯+a 2019, M −N=(a 1+a 2+⋯+a 2019)(a 2+a 3+⋯+a 2020)−(a 1+a 2+⋯+a 2020)(a 2+a 3⋯+a 2019)=(a 1+S )(S +a 2020)−(a 1+a 2020+S )S=a 1S +a 1a 2020+a 2020S +S 2−a 1S −a 2020S −S 2=a 1a 2020.∵a 1,a 2,⋯,a 2020 都是正数, ∴a 1a 2020>0, ∴M >N .【知识点】多项式乘多项式10. 【答案】B【解析】根据题意可知: ∵ 二次项的系数为 3, ∴n =4,∴∑[(x +k )(x −k +1)]n k=2=(x +2)(x −1)+(x +3)(x −2)+(x +4)(x −3)=3x 2+3x −m,整理得:x 2+x −2+x 2+x −6+x 2+x −12=3x 2+3x −20=3x 2+3x −m , 则 m =20. 故选:B .【知识点】多项式乘多项式二、填空题(共7题) 11. 【答案】 14【解析】 (x −1)2+a (x −1)+b =x 2−2x +1+ax −a +b=x 2+(a −2)x +1+b −a =x 2+4x +3,∴{a −2=4,1+b −a =3, 解得 {a =6,b =8,∴a +b =14. 【知识点】完全平方公式12. 【答案】 −4036【解析】 (x −2)2018 展开式中含 x 2017 项的系数, 由 (x −2)2018=x 2018−2018⋅x 2017⋅2+⋯−22018, 可知,展开式中第二项为 −2018⋅x 2017⋅2=−4036x 2017, ∴(x −2)2018 展开式中含 x 2017 项的系数是 −4036. 【知识点】完全平方公式13. 【答案】 41【解析】根据图表的特征,可得 x =10+10=20,y =10+5=15,z =5+1=6,故 x +y +z =20+15+6=41. 【知识点】完全平方公式14. 【答案】 −5 ; −11【解析】设另一个因式是:mx +n ,则 (x 2−2x −3)(mx +n )=mx 3+(n −2m )x 2+(−3m −2n )x −3n =3x 3+ax 2+bx −3.则:{m =3,n −2m =a,−3m −2n =b,−3n =−3,解得:{m =3,n =1,a =−5,b =−11.故答案为:−5,−11. 【知识点】多项式乘多项式15. 【答案】 2【知识点】单项式除以单项式16. 【答案】6;32【解析】根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;75+5×74×(−5)+10×73×(−5)2+10×72×(−5)3+5×7×(−5)4+(−5)5 =(7−5)5=32.【知识点】完全平方公式17. 【答案】a2−2ac+c2−b2【知识点】平方差公式三、解答题(共8题)18. 【答案】(1) 原式=m 2−9n2−m2+6mn−9n2=6mn−18n2.(2) ∵(a+b)2=7,(a−b)2=4,∴ab=14×[(a+b)2−(a−b)2]=14×3=34.【知识点】完全平方公式、平方差公式19. 【答案】(1) a2−1;a3−1;a4−1;a100−1(2)2199+2198+2197+⋯+22+2+1=(2−1)×(2199+2198+2197+⋯+22+2+1) =2200−1.【解析】(1) (a−1)(a+1)=a2−1,(a−1)(a2+a+1)=a3+a2+a−a2−a−1=a3−1,(a−1)(a3+a2+a+1)=a4+a3+a2+a−a3−a2−a−1=a4−1,(a−1)(a99+a98+⋯+a+1)=a100−1.【知识点】简单的代数式求值、合并同类项、多项式乘多项式20. 【答案】1012.【知识点】幂的乘方21. 【答案】(1) 原式=−3a3+a3=−2a3.(2) 原式=2x2+6xy−xy−3y2=2x2+5xy−3y2.(3) 原式=(a−b)2−1=a2−2ab+b2−1.【知识点】多项式乘多项式、平方差公式、完全平方公式、单项式乘单项式、同底数幂的除法22. 【答案】(1) a2−b2(2) a−b;a+b;(a+b)(a−b)(3) (a+b)(a−b)=a2−b(4) 原式=[2m+(n−p)]⋅[2m−(n−p)] =(2m)2−(n−p)2=4m2−(n2−np−np+p2)=4m2−n2+2np−p2.【知识点】平方差公式23. 【答案】(x2+nx+3)(x2−3x+m)=x4−3x3+mx2+nx3−3nx2+mnx+3x2−9x+3m =x4+(−3+n)x3+(m−3n+3)x2+(mn−9)x+3m.∵展开式中不含x2和x3项,∴−3+n=0,m−3n+3=0,解得m=6,n=3,∴m,n的值分别为6,3.【知识点】多项式乘多项式24. 【答案】(1) a2−b2=(a+b)(a−b)(2) 72−52=8×3;92−32=8×9等.(3) 规律:任意两个奇数的平方差是8的倍数.设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2−(2n+1)2=4(m−n)(m+n+1).当m,n同是奇数或偶数时,m−n一定为偶数,∴4(m−n)一定是8的倍数;当m,n一偶一奇时,则m+n+1一定为偶数,∴4(m+n+1)一定是8的倍数.∴任意两个奇数的平方差是8的倍数.【知识点】平方差公式25. 【答案】(1) (a+b)2=a2+b2+2ab(2) 3(3) ∵(a+b)2=a2+b2+2ab,a+b=5,a2+b2=13,∴25=13+2ab,∴ab=6.答:ab的值为6.【解析】(1) 大正方形的面积可以表示为:(a+b)2,或表示为:a2+b2+2ab;因此有(a+b)2=a2+b2+2ab.(2) ∵(a+2b)(a+b)=a2+3ab+2b2,∴需要A号卡片1张,B号卡片2张,C号卡片3张.【知识点】完全平方公式、多项式乘多项式、公式的变形11。
初一数学下学期第一章整式运算考点及答案北师大版

七年级数学(下) 第一章:整式的运算考点1:幂的意义和性质一、考点讲解:1、幂的意义:几个相同数的乘法2.幂的运算性质:(1)a m ·a n = a m+n (2)(a m )n = a mn ;(3)(ab )n = a n b n ;(4)a m ÷a n = a m -n (a≠0,a ,n 均为正整数)3、特别规定:(1)a 0=1(a≠0); (2)a -p =1(0,)p a p a ≠是正整数 4.幂的大小比较的常用方法:⑴求差比较法:如比较22221021313和的大小,可通过求差2222102-1313<0可知.2222102>1313 ⑵求商比较法:如999999999999999911999119与,可求= 9909990999999999909999119111=91191199⨯⨯=⨯=999,方可知 ⑶乘方比较法:如a 3=2,b 3=3,比较a 、b 大小可算 a 15=(a 3)5= 25=32,b 15=(b 5)3=33=2 7,可得a 15>b 15,即a >b .⑷底数比较法:就是把所比较的幂的指数化为相同的数,然后通过比较底数的大小得出结果.⑸指数比较法:就是把所比较的幂的底数化为相同的数,然后通过比较指数的大小,得出结果.【考题1-1】(2004、潍坊,2分)计算(-3a 3)2:a 2的结果是( )A .-9a 2B 6a 2C 9a 2D 9a 4解:D 点拨:主要考查积的乘方与同底数幂的除法的运算知识.(-3a 3)2= 9a 6,9a 6:a 2= 9a 4【考题1-2】(2004、开福)计算:x 2x 3=_______.解:x 5 点拨:考查学生同底数幂的乘法的知识x 2x 3= x 2+3=x 5三、针对性训练:(30 分钟) (答案:218 )1.下列计算正确的是( )A.1262624 x x =xB.(-a)(-a)=-a ÷÷C. 2n n 22n n n x x =xD.(-a)a =a ÷÷2.计算:×5101=________3、已知a=8131,b=2741,c=961,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a4、已知m -1n-13m+2n 1x =6x =(),x 3,求的值。
北师版初一下第一章整式的乘除复习课件

(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便 可得到两个你非常熟悉的公式,这两个公式分别是
1 c= 20 x+21
,则代
数式 a2+b2+c2-ab-bc-ca 的值是( B )
A. 4
B.3
C.2
D.1
12、若a,b都是有理数且满足 2a2 -2ab+b 2 +4a+4=0 ,
则2ab的值等于( B )
A. -8
B. 8
C.32
D.2004
13、下列算式正确的是( D )
A、—30=1
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(a b)2 a2 2ab b2; (a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习 姓名一.〈知识点〉回顾1、幂的运算法则:(1)同底数幂相乘:n m a a ∙= (m 、n 为正整数)=⋅⋅32a a a __ ; 108a a ∙= ;421010⋅=____ ;25()()()x x x ---=(2)幂的乘方:()n m a = (m 、n 为正整数) 22(10)= 22()a = ___)(32=a 25()x ⎡⎤-⎣⎦= (3)积的乘方:()nab = (n 为正整数) _____)(3=xy ; 32)2(mn -=_______ ; 23)102(⨯=_________ (4)同底数幂相除:m n a a ÷= (m 、n 为正整数,a ≠0) 87 a a ÷= ; 22b b ÷= ;(5)零指数0a = (a ≠ ) (-2)0= 负指数=-p a (a ≠ )(-1)-2= 2)21(-= 5-2= (6)科学记数法:0.00000058=2.整式的乘除① 单项式×单项式: _____5=⋅x x ; 2a ·2a= ; ______=⋅ab ab ; -4xy • 3x 2y=_______5343=⋅x x ; _______)2)((=--x x ;_________)2(32=-∙a b a② 单项式×多项式: ()m a b c ++=a (2a 2-4a +3)= ; -2a 2(3a 2+4a -2)= 。
③多项式×多项式相乘:=++))((b a n m __________________(x -2)(x -6)= =(2x -1)(3x +2)= = ________________)75)(4(=-+y x y x =④单项式÷单项式:27x 3x ÷= 12mn 4mn ÷=-⑤多项式÷单项式:(4x 3y +6x 2y 2-xy 3)÷2xy=(6a 4-4a 3-2a 2)÷(-2a 2)=3.乘法公式: 平方差公式:___________________))((=-+b a b a完全平方和公式:______________________)(2=+b a 完全平方差公式:______________________)(2=-b a (1)(x +2)(x -2) (2)(x -8y )(x +8y ) (3)(2x -3)(-2x -3)解:原式= 解:原式= 解:原式=(4)2(3)a b -= (5)21(4)2x + (6)2(2)a b -+=解:原式= 解:原式= 解:原式=综合练习:1.x m =3,x n =5,则x m+n = ,x 3m+2n = , x m-n = , x 3m-2n = 。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要 注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a++=⋅⋅(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1. 幂的乘方法则:mn n m a a=)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3 ⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。
6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)((n为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a-=÷ (a ≠0,m 、n 都是正数, 且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.四. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx +++=++)())((2五.平方差公式1.平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b ab a b a -=-+。
其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
六.完全平方公式1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;口决:首平方,尾平方,2倍乘积在中央;2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。
七.整式的除法1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
【典例讲解】(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x( )2.4(m -n )3÷(n -m )2=___________.3.-x 2·(-x )3·(-x )2=__________.4.(2a -b )()=b 2-4a 2.5.(a -b )2=(a +b )2+_____________.6.(31)-2+ 0=_________;4101×0.2599=__________.7.2032×1931=( )·( )=___________.8.用科学记数法表示-0.0000308=___________.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是………………………………………………………………( )(A )a n ·a 2=a2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6 12.x 2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +113.下列运算正确的是………………………………………………………………( )(A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n )(21×10n )=102n 14.化简(a n b m )n ,结果正确的是………………………………………………………( )(A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )nm n b a 2 15.若a ≠b ,下列各式中不能成立的是………………………………………………( )(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )(C )(a -b )2n =(b -a )2n (D )(a -b )3=(b -a )316.下列各组数中,互为相反数的是…………………………………………………( )(A )(-2)-3与23 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)3 17.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-2718.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………() (A )a +b (B )a -b (C )b -a (D )-a -b(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2;(2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(2a -3b )2(2a +3b )2;(4)(2x +5y )(2x -5y )(-4x 2-25y 2);(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );(6)(x -3)(2x +1)-3(2x -1)2.20.用简便方法计算:(每小题3分,共9分)(1)982; (2)899×901+1; (3)(710)2002·(0.49)1000.(四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.22.已知a +b =5,ab =7,求222b a ,a 2-ab +b 2的值.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).。