2019版七年级数学下册第一章整式的乘除试题新版北师大

合集下载

北师大版2019-2020学年七年级数学下册第一章 整式的乘除单元测试卷及答案

北师大版2019-2020学年七年级数学下册第一章 整式的乘除单元测试卷及答案

北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x3•x2等于()A.2B.x5C.2x5D.2x62.下列运算止确的是()A.x2•x3=a6 C.(﹣3x)3=27x3B.(x3)2=x6 D.x4+x5=x93.下列计算结果为a6 A.a8﹣a2的是()B.a12÷a2C.a3•a2D.(a2)34.若(x+2m)(x﹣8)中不含有x的一次项,则m的值为()A.4B.﹣4C.0D.4或者﹣45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56B.66C.76D.866.下列各式,能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.()(﹣)C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)7.若x2+(m﹣3)x+16是完全平方式,则m的值是()A.﹣5B.11C.﹣5或11D.﹣11或58.已知a+b=2,ab=﹣2,则a2+b2=()A.0B.﹣4C.4D.89.下列运算中,正确的是()A.a2+a2=2a4B.(a﹣b)2=a2﹣b2C.(﹣x6)•(﹣x)2=x8D.(﹣2a2b)3÷4a5=﹣2ab310.在长方形A BCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图 1 中阴影部分的面积为S1的是()图2中阴影部分的面积和为S ,则关S,S2 1 2的大小关系表述正确A.S <S1 2B.S>S1 2C.S =S1 2D.无法确定二.填空题(共8小题,每小题3 分,共24分)11.若53•5m•52m+1=525,则(6﹣m)2019的值为.12.已知2x=3,6x=12,则 3x=.13.已知x=3m+1,y=2+9m,则用x的代数式表示y,结果为.14.已知x m=3,x n=2,则x m﹣n=.15.已知a+b=3,ab=4,则(a﹣2)(b﹣2)=.16.计算(1﹣)(1﹣)(1﹣)…(1﹣)=.17.已知:x2+y2=5,xy=﹣3,则(x﹣y)2=.18.4 个数a、b、c、d排列,我们称之为二阶行列式,规定它的运算法则为=ad﹣bc,若=17,则x=.三.解答题(共7小题,共66分)19.计算:(1)(2x﹣3)2﹣6x(x﹣2);(2)(a+2b)(a﹣2b)+(6a3b﹣15ab3)÷3ab,其中a=2,b=﹣1.20.先化简,再求值:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y,其中x=1,y=﹣1.21.计算:(1)(﹣+﹣)×(﹣24)(2)已知a m=5,a n=25(其中m,n都是正整数),求a m+n?22.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.的值,喜欢数学的小亮手做出了这道题,他的解题23.数学课上老师出了一题用简便方法计算2962过程如下2962=(300﹣4)2第一步=3002﹣2×300×(﹣4)+42第二步=90000+2400+16第三步=92416第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第步开始出错.(2)请你写出正确的解题过程.24.[问题1]在学完平方差公式后,小滨出示了一串呈“数字”链的计算题:(2+1)(22+1)(24+1)(28+1)小梅根据算式的特点,结合平方差公式,发现:只要在算式最前面添上一个“引线”一一数字1,就可用平方差公式,像点鞭炮一样依次“点燃”整个“数字”链.(1)请根据小梅的思路,求出这个算式的值.(2)计算:+(3+1)(32+1)(34+1)(38+1)(316+1).25.阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a ﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=;(2)根据(1)的结论若(m+n)2=9,(m﹣n)2=1,求出下列各式的值:①mn;②m2+n2;(3)观察图4,请写出图4所表示的代数恒等式:.参考答案与试题解析一.选择题1.解:x3•x2=x5故选:B.2.解:∵x2•x3≠a6,∴选项A不符合题意;∵(x3)2=x6,∴选项B符合题意;∵(﹣3x)3=﹣27x3,∴选项C不符合题意;∵x4+x5≠x9,∴选项D不符合题意.故选:B.3.解:A、a8﹣a2不能再化简,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、a3•a2=a5,此选项不符合题意;D(a2)3=a6,此选项符合题意;故选:D.4.解:原式=2由结果不含x x2+(2m﹣8)x﹣16m,的一次项,得到2m﹣8=0,解得:m=4,故选:A.5.解:∵76=202﹣182,∴76是“神秘数”,故选:C.6.解:A、该代数式中既不含有相同项,也不含有相反项,不能用平方差公式计算,故本选项错误;B、该代数式中只含有相同项和1,不含有相反项,不能用平方差公式计算,故本选项错误;C、该代数式中只含有相同项a和﹣3b,不含有相反项,不能用平方差公式计算,故本选项错2误;D、该代数式中既含有相同项﹣a,也含有相反项2b,能用平方差公式计算,故本选项正确;故选:D.7.解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故选:C.8.解:∵a+b=2,ab=﹣2,ab=4+4=8,∴原式=(a+b)2﹣2故选:D.9.解:A、原式=2a2,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣x8,不符合题意;D、原式=﹣8a6b3÷4a5=﹣2ab3,符合题意,故选:D.a+(CD﹣b)(AD﹣a)=(AB﹣a)⋅a+(AB﹣b)(AD﹣a),10.解:S =(AB﹣a)⋅1S =(AB﹣a)(AD﹣b)+(AD﹣a)(AB﹣b),2∴S ﹣S=(AB﹣a)(AD﹣b)﹣(AB﹣a)a=(AB﹣a)(AD﹣b﹣a)<0,2 1即S>S,1 2故选:B.二.填空题,11.解:∵53•5m•52m+1=525∴3+m+2m+1=25,解得:m=7,故(6﹣m)2019 的值为:(﹣1)2019=﹣1.故答案为:﹣1.12.解:因为x=12,6所以(2×3)x=12,即2x×3x=12,因为2x=3,所以3x=12÷3=4.故答案为:4.13.解:∵x=2m+1,y=2+9m=2+32m,∴y=2+(x﹣1)2=x2﹣2x+3.故答案为:y=x2﹣2x+3.14.解:∵x m=3,x n=2,∴x m﹣n=x m÷x n=.故答案为:.15.解:∵a+b=3,ab=4,∴(a﹣2)(b﹣2)==ab﹣2b﹣2a+4=ab﹣2(a+b)+4=4﹣2×3+4=2,故答案为:2.16.解:原式=(1+ )(1﹣)(1+)(1﹣)…(1+)(1﹣)===××,×…××××…×故答案为:17.解:∵x2+y2=5,xy=﹣3∴原式=x2+y2﹣2故答案为:11xy=5+6=11,18.解:根据题意得(x﹣2)2﹣(x+1)(x+3)=17,整理得,﹣8x+1=17,解得x=﹣2.故答案为﹣2.三.解答题19.解:(1)原式=4=﹣2x2+9;x2﹣12x+9﹣6x2+12x(2)原式=a2﹣4b2+2a2﹣5b2=3a2﹣9b2,∵a=2,b=﹣1,∴原式=12﹣9=3.20.解:原式=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(﹣4y2+4xy)÷4y=﹣y+x,当x=1,y=﹣1时,原式=1+1=2.21.解:(1)原式=﹣×(﹣24)+=12﹣2+3=13;(2)当a m=5,a n=25时,×(﹣24)﹣×(﹣24)a m+n=a m•a n=5×25=125.22.解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.23.解:(1)从第二步开始出错;故答案为:二;(2)正确的解题过程是:2962=(300﹣4)22=3002﹣2×300×4+4=90000﹣2400+16=87616.24.解:(1)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(2=(22﹣1)(24﹣1)(22+1)(24+1)(24+1)(28+1)8+1)=(28﹣1)(28+1)=216﹣1;(2)原式=+(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=+(32﹣1)(32+1)(34+1)(38+1)(316+1)…=+(332﹣1)=×332.25.解:(1)由图3得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a+b)2﹣4ab;(2)解:①根据(1)的结论,可得(m﹣n)2=(m+n)2﹣4mn,∵(m+n)2=9,(m﹣n)2=1,即1=9﹣4mn,解得mn=2;②由(m+n)2=m2+2mn+n2,可得,9=m2+2×2+n2,所以m2+n2=9﹣4=5;(3)由图4得:(2a+b)(a+b)=2a2+3ab+b2.故答案为:(2a+b)(a+b)=2a2+3ab+b2.(注:等式2a2+3ab+b2=(2a+b)(a+b)也可得分)。

北师大版2019年春七年级数学下册第一章【整式的乘除】单元检测卷含答案

北师大版2019年春七年级数学下册第一章【整式的乘除】单元检测卷含答案

2019年春七年级数学下册第一章【整式的乘除】单元检测卷一、单选题1.化简(a3)2的结果是A.a6B.a5C.a9D.2a32.下列运算正确的是()A.a3+a2=2a5B.2a(1﹣a)=2a﹣2a2C.(﹣ab2)3=a3b6D.(a+b)2=a2+b23.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占为7×10-7平方毫米,这个数用小数表示为()A.0.000007B.0.000070C.0.0000700D.0.00000074.下列运算正确的是()A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xyD.x6÷x3=x25.计算b2•b3正确的结果是()A.2b6B.2b5C.b6D.b56.如果x2﹣6x+k是完全平方式,则k的值为()A.±9B.±36C.36D.97.下列运算中正确的是()A.a3·a4=a12B.(-a2)3=-a6C.(ab)2=ab2D.a8÷a4=a28.若a+b=﹣3,ab=1,则a2+b2=()A.-11B.11C.-7D.79.3﹣1等于()A.3B.﹣C.﹣3D.10.要使(x2+ax+1)(﹣6x3)的展开式中不含x4项,则a应等于()A.6B.-1C.D.011.下列计算中,错误的是()A.3a﹣2a=aB.﹣2a(3a﹣1)=﹣6a2﹣1C.﹣8a2÷2a=﹣4aD.(a+3b)2=a2+6ab+9b212.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣613.不论x、y取任何实数,x2﹣4x+9y2+6y+5总是()A.非负数B.正数C.负数D.非正数14.已知a+=3,则a2+的值是()A.9B.7C.5D.315.人体中红细胞的直径约为0.0000077m,将数0.0000077m用科学记数法表示为()A.7.7B.0.77C.77D.7.7二、填空题16.(-a5)4•(-a2)3=________.17.计算:﹣2x(x﹣2)=________18.若a﹣b=﹣3,ab=2,则a2+b2的值为________19.图a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)请用两种不同的方法求图b中阴影部分的面积:方法1:________(只列式,不化简)方法2:________(只列式,不化简)(2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系:________;(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=________.20.已知(x+1)(x﹣2)=x2+mx+n,则m+n=________三、解答题21.()如果,求的值.22.已知10x=5,10y=6,求:(1)102x+y;(2)103x﹣2y.四、综合题23.已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2;(2)a2-ab+b2.24.计算:(1)(2)(2a﹣b﹣3)(2a+b﹣3)答案解析部分一、单选题1.【答案】A【解析】【分析】(a3)2=a2×3=a6.故选:A.问题解析:根据幂的乘方的性质可解.即(a m)n=a mn.2.【答案】B【解析】【解答】解:A、原式不能合并,不符合题意;B、原式=2a﹣2a2,符合题意;C、原式=﹣a3b6,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B【分析】各项计算得到结果,即可作出判断.3.【答案】D【解析】【分析】根据科学记数法的表示方法,指数是负几,小数点向左移动几位,可得答案.【解答】7×10-7=0.0000007,故选:D.【点评】本题考查了科学计数法,指数是负几,小数点向左移动几位.4.【答案】B【解析】【解答】解:A、x2与x3不是同类项,不能合并,错误;B、(x3)2=x6,正确;C、2x与3y不是同类项,不能合并,错误;D、x6÷x3=x3,错误;故选B【分析】根据同类项、幂的乘方和同底数幂的除法计算判断即可.5.【答案】D【解析】【解答】b2•b3=b2+3=b5.【分析】根据同底数幂的乘法法则计算.6.【答案】D【解析】【解答】解:∵x2﹣6x+k是完全平方式,∴k=9,故选D.【分析】利用完全平方公式的结构特征判断即可.7.【答案】B【解析】【解答】解:A a3·a4=a7,故A不符合题意;B(-a2)3=-a6故B符合题意;C(ab)2=a2b2故C不符合题意;Da8÷a4=a4故D不符合题意,故应选B。

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。

北师大版2019七年级数学下册第一章整式的乘除单元过关练习题一(含答案)

北师大版2019七年级数学下册第一章整式的乘除单元过关练习题一(含答案)

绝密★启用前2018-2019学年度???学校2月月考卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.计算(5a+2)(2a-1)等于()A.B.C.D.2.下列运算结果正确的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+b D.6ab2÷2ab=3b3.已知a m=3,a n=4,则a m+n的值为()A.B.C.7D.124.下列各式中错误的是( )A.(2a+3)(2a-3)=4a2-9B.(3a+4b)2=9a2+24ab+4b2C.(x+2)(x-10)=x2-8x-20D.(x+y)(x2-xy+y2)=x3+y35.5.下列计算正确的是()A.a 2 +a 2 =a 4B.30 =3 C.x 6 ÷x 2 =x 4D.(a 3 )2 =a 56.下列运算正确的是( )A.B.C.D.(a≠0) 7.已知,,,则、、的大小关系是()A.>>B.>>C.<<D.>>8.已知实数x满足x+=,则x2+=( )A.4B.3C.6D.59.下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5D.2a﹣1=(a≠0)10.x2·(xy2+z)等于()A.xy+xz B.-x2y4+x2z C.x3y2+x2z D.x2y4+x2z第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.(6a 3b 2+14a 2c )÷a 2等于_______; 12.计算: 23a a a ⋅+=__________. 13.(1)()()322?3a ab-=________;(2)()2231x x x -+=________.14.已知x m =2,x n =3,则x 2m+n =_____. 15.请你解决下面的问题:(1)3325⨯=__________, ()325⨯=__________,你发现了什么?__________. (2)8825⨯=__________, ()825⨯=__________,你发现了什么?__________. (3)()()()7353___5___⨯=⨯. (4)()()()______n ab a b =. 16.若x+4y=-1,则2x •16y 的值为_____. 17.计算:=______.18.计算:=______.19.某中学有一块边长为a 米的正方形草坪,经统一规划后,边长比原来增加3米,则改造后的正方形草坪的面积比原来的面积多_____平方米(结果写成几个整式乘积的形式).20.20.化简:(x-1)(2x-1)-(x+1) 2 +1=_______________三、解答题21.化简:(2x ﹣y)(4x 2﹣y 2)(2x+y) 22.(1)计算:;(2)化简:(a+b )2+b (a-b ).23.已知一个正方体的棱长是310cm .(1)求正方体的表面积. (2)求正方体的体积.332323125.已知,,,求的值.26.(-10x2y)·(2xy4z)27.若x+y=5,xy=4..(1)求的值(2)求x-y的值.28.化简:(1)﹣5a+(3a﹣2)﹣(3a﹣7)(2)3(8xy﹣3x2)﹣5xy﹣2(3xy﹣2x2)参考答案1.D【解析】【分析】根据多项式乘多项式的法则计算即可.【详解】解:(5a+2)(2a-1)=10a2-5a+4a-2=,故选:D.【点睛】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.2.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.D【解析】分析:直接根据同底数幂的乘法法则进行计算即可.详解:∵a m=3,a n=4,∴a m+n=a m•a n=3×4=12.故选D.点睛:本题考查的是同底数幂的乘法,熟知同底数幂相乘,底数不变,指数相加是解答此题的关键.4.B【解析】解:A. (2a+3)(2a-3)=4a2-9,正确;B . (3a +4b )2=2292416a ab b ++,故B 错误;C . (x +2)(x -10)=x 2-8x -20,正确;D . (x +y )(x 2-xy +y 2)= 33x y +,正确. 故选B . 5.C【解析】试题分析:A 根据合并同类项法则可知原式=22a ,故错误;B 根据任何非零实数的零次幂为1可知原式=1,故错误;C 根据同底数幂除法,底数不变,指数相减,故正确;D 根据幂的乘方法则,底数不变,指数相乘,原式=6a ,故错误.本题选C . 6.D【解析】分析:根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解. 详解:A .同底数幂相乘,底数不变,指数相加,故A 错误; B .系数相加字母及指数不变,故B 错误; C .幂的乘方,底数不变,指数相乘,故C 错误; D .同底数幂相除,底数不变,指数相减,故D 正确. 故选D .点睛:本题考查了合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键. 7.B【解析】分析:根据幂的乘方和积的乘方的运算法则求解. 详解:a =8131=3124,b =2741=3123,c =961=3122. ∵a 、b 、c 的底数相同,∴a >b >c . 故选B .点睛:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则. 8.B【解析】∵x +=,∴(x +)2=5,即x 2++2=5,∴x 2+=3,故选B .9.C【解析】分析:根据整式的加减乘除运算的法则,完全平方公式,同底数幂相乘,负整指数幂的性质求解即可.详解:根据完全平方公式,可知(a+b )2=a 2+2ab+b 2,故A 错误;根据整式的加减法,可由2a 2+a 中没有同类项,不能合并,故B 错误; 根据同底数幂相乘,底数不变,指数相加,可知a 3•a 2=a 5,故正确;根据负整指数幂的性质,可知2a ﹣1=,故D 错误;故选:C .点睛:此题主要考查了整式的加减和整式的乘除,熟记完全平方公式,同底数幂相乘,负整指数幂的性质是解题关键. 10.C【解析】解:x 2.(xy 2+z )=x 3y 2+x 2z ,故选C . 11.6ab 2+14c【解析】(6a 3b 2+14a 2c )÷a 2=6a 3b 2÷a 2+14a 2c÷a 2=6ab 2+14c, 故答案为:6ab 2+14c. 12.32a【解析】试题解析:原式3332.a a a =+=故答案为: 32a .13. 4224a b - 3223x x x -+【解析】解:(1)原式=()3283a ab ⋅-=4224a b -;(2)原式= 3223x x x -+.故答案为: 4224a b -; 3223x x x -+.14.12 【解析】 【分析】利用幂的乘方以及同底数的幂的乘法公式,x 2m+n =(x m )2•x n =22×3代入求值.x 2m+n =(x m )2•x n =22×3=4×3=12. 故答案为12. 【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂的乘法运算.15.(1)1000; 1000; ()3332525⨯=⨯;(2)810; 810; ()8882525⨯=⨯;(3)7; 7;(4)n ; n .【解析】(1)3325⨯=8×125=1000, ()325⨯=310=1000, 3325⨯=()325⨯;(2)8825⨯=()825⨯=810, ()825⨯=810, 8825⨯=()825⨯;(3)()735⨯=7735⨯ ;(4)()nab =n n a b .故答案为:(1)1000; 1000; ()3332525⨯=⨯;(2)810; 810; ()8882525⨯=⨯;(3)7; 7;(4)n ;n .16. 【解析】 【分析】把所求的式子利用幂的乘方公式把所求的式子化成即可求解;【详解】,.【点睛】本题考查的知识点是幂的运算性质以及完全平方公式,解题关键是理解公式的结构. 17.a 8【解析】分析:根据同底数幂的乘法法则计算即可. 详解:=.故答案为:.点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答18. 【解析】 【分析】根据积的乘方计算即可. 【详解】(−)2017×22018=[−×2]2017×2, =-2.故答案为-2. 【点睛】此题考查积的乘方,关键是根据法则计算. 19.3(2a+3). 【解析】 【分析】分别表示出原来正方形和改造后正方形的面积,求其差即可得到答案. 【详解】改造后长方形草坪的面积是:(a+3)2=a 2+6a+9(平方米),改造后的正方形草坪的面积比原来的面积多a 2+6a+9-a 2=6a+9=3(2a+3)平方米, 故答案为:3(2a+3). 【点睛】本题考查了完全平方公式的几何背景,解题时也可以分别算得面积求其差,属于基础题,难道不大. 20.x 2-5x+1【解析】解:原式=22231211x x x x -+---+=251x x -+.故答案为: 251x x -+.21.16x 4﹣8x 2y 2+y 4 【解析】本题利用平方差公式、完全平方公式就可以简单方便的求出值. 【详解】(2x ﹣y)(4x 2﹣y 2)(2x+y) = (2x ﹣y)(2x+y)(4x 2﹣y 2) = (4x 2﹣y 2)2=16x 4﹣8x 2y 2+y 4【点睛】本题主要考查多项式乘法和平方差公式、完全平方公式的运用,解题关键是平方差公式、完全平方公式的运用. 22.(1)8(2)a 2+3ab【解析】分析:(1)、根据绝对值、平方和零次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据完全平方公式和多项式的乘法计算法则将括号去掉,然后进行合并同类项得出答案.详解:(1)原式=5+4-1=8.(2)原式=a 2+2ab+b 2+ab-b 2=a 2+3ab .点睛:本题主要考查的是实数的计算以及多项式的乘法计算法则,属于基础题型.理解计算的法则是解决这个问题的关键.23.(1)62610cm ;(2)9310cm .【解析】分析:(1)正方体有6个面,且每个面都是正方形,根据正方形面积等于棱长的平方从而求得;(2)正方体的体积等于棱长的立方,据此求值即可. 本题解析:(1) 正方体的表面积是S= 6×3210()=6000000 cm² ;(2)正方体的体积为V=3310()=910 故答案为:(1) 6000000 cm²;(2) 910cm³点睛:本题考查的是正方体的表面积和体积的求法,表面积要知道正方体有几个面,体积的求法就是长×宽×高,代入数据就可解出题中的问题. 24.378a 3b 6;-37【解析】整体分析:用积的乘方法则和幂的乘方法则化简后,再合并同类项,然后再代入求值.解:-()32a -·()23b -+3232ab ⎛⎫ ⎪⎝⎭- =836a b -36278a b =36378a b . 当a =-12, b =2时, 原式=36378a b =36371282⎛⎫⨯⨯ ⎪⎝⎭-=-37. 25.3【解析】试题分析:把目标代数式改写成完全平方公式,把已知代入求值.试题解析:, ∵,,, 代入原式.26.-20 x 3 y 5 z【解析】试题分析:由单项式乘单项式法则与同底数幂的乘法法则即可.试题解析:解:(-10x 2y )·(2xy 4z )= -20 x 2+1·y 4+1·z =-20 x 3 y 5 z .27.(1)17;(2);【解析】【分析】(1)所求式子利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)所求式子利用完全平方公式变形,计算即可得到结果.【详解】(1)当,时…(2)当,时∵∴【点睛】本题考察了完全平方公式的应用,正确将原式变形是解题的关键.28.(1)﹣5a+5;(2)13xy﹣5x2.【解析】试题分析:(1)首先去括号,找出同类项进行合并即可;(2)首先去括号,然后再合并同类项即可.试题解析:(1)原式=﹣5a+3a﹣2﹣3a+7=﹣5a+5;(2)原式=24xy﹣9x2﹣5xy﹣6xy+4x2=13xy﹣5x2.。

北师大版2019七年级数学下册第一章整式的乘除综合练习题一(基础含答案)

北师大版2019七年级数学下册第一章整式的乘除综合练习题一(基础含答案)
【详解】
解:x3m﹣n=x3m÷xn=(xm)3÷xn=43÷8=64÷8=8,
故选:C.
【点睛】
此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.
3.D
【解析】
【分析】
这里首末两项是6x和4这两个数的平方,那么中间一项为加上或减去6x和4的积的2倍,故k±2×4×6=±48.

A. B.4C.8D.56
3.若 是一个完全平方式,则k的值为
A.48B.24C. D.
4.下列计算中正确的是( )
A. · B. C. D. ·
5.计算a3•(﹣a)2的结果是( )
A.a5B.﹣a5C.a6D.﹣a6
6.计算-5a5b3c÷15a4b3结果是( )
【解析】(1)原式=4a2+4ab+b2–4a2–3ab=ab+b2,
当a=1,b= 时,原式= +2.
(2)由 得:–2x≥–2,即x≤1,
由 得:4x–2<5x+5,即x>–7,
所以–7<x≤1.
在数轴上表示为:
25.答案见解析
【解析】
试题分析:(1)根据平方差公式,立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x-1)(x99+x98+x97+…+x+1)=x100-1;
详解:(1)原式
(2)原式
点睛:考查整式的混合运算,熟练掌握运算法则是解题的关键.
23.-11, , ,
【解析】分析:(1)根据零指数幂、负整数指数幂以及有理数的乘方的意义计算即可;

北师大版数学七年级下册第一章整式的乘除-测试卷及答案

北师大版数学七年级下册第一章整式的乘除-测试卷及答案

北师大版七年级数学下册第一章整式的乘除评卷人得分一、单选题1.计算(a3)2的结果是()A.a5B.a6C.a8D.a9 2.下列计算正确的是()A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4 3.已知x+y﹣4=0,则2y•2x的值是()A.16B.﹣16C.18D.84.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b25.下列计算正确的是()A.a3•a=a3B.(2a+b)2=4a2+b2C.a8b÷a2=a4b D.(﹣3ab3)2=9a2b66.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④7.如果x2+10x+_____=(x+5)2,横线处填()A.5B.10C.25D.±108.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.239.已知a=96,b=314,c=275,则a、b、c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>c>a10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b )10的展开式第三项的系数是()A .36B .45C .55D .66评卷人得分二、填空题11.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn=_____.12.若162482m m ⋅⋅=,则m =______.13.若3x =12,3y =4,则3x ﹣y =_____.14.3108与2144的大小关系是__________15.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.16.若4x 2+2(k-3)x+9是完全平方式,则k=______.17.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______18.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a-4b +13=0,则c 为______评卷人得分三、解答题19.化简:(x 4)3+(x 3)4﹣2x 4•x 820.化简:4(a+2)(a+1)-7(a+3)(a -3)21.化简:(x 3)2÷x 2÷x+x 3•(﹣x)2•(﹣x 2)22.化简:[a(a 2b 2-ab)-b(-a 3b-a 2)]÷a 2b23.化简:(x+2)(x-2)+(3x-1)(3x+1).24.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)25.化简:(2a+1)2﹣(2a+1)(﹣1+2a)26.化简:(x-1)2(x+1)2-1.27.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=______;(2)代数式为完全平方式,则k=______;(3)解方程:=6x2+7.参考答案1.B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.2.D【解析】A.a3与a2不能合并,故A错误;B.a2⋅a3=a5,故B错误;C.(3a)3=27a3,故C错误;D.(a2)2=a4,故D正确.故选D.3.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.点睛:a m·a n=a m+n.4.A【解析】【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【详解】A、-2x2-3x2=-5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选A.【点睛】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.5.D【解析】【分析】根据同底数幂的除法、完全平方公式、单项式除以单项式进行计算即可.【详解】A.a3•a=a4,故A错误;B.(2a+b)2=4a2+b2+4ab,故B错误;C.a8b÷a2=a6b,故C错误;D.(﹣3ab3)2=9a2b6,故D正确;故选D.【点睛】本题考查的是整式的计算,熟练掌握计算法则是解题的关键.6.A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.7.C【解析】试题解析:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选C.8.A【解析】∵a+b=5,∴a2+2ab+b2=25,∵ab=﹣24,∴a2+b2=25+2×24=73,故选A.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式是解题的关键.9.C【解析】【分析】根据幂的乘方可得:a=69=312,c=527=315,易得答案.【详解】因为a=69=312,b=143,c=527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方.解题关键点:熟记幂的乘方公式.10.B【解析】【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选B .【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.11.12【解析】41457222n m n m x y xy x y x y ++⋅==,∴n +1=5,m +4=7,解得:m =3,n =4,∴mn =12.故答案为12.12.3【解析】【分析】先将4m 、8m 化成底数为2的幂,然后利用同底数幂的乘法求解即可.【详解】∵248m m ⋅⋅=23511622222m m m +⨯⨯==,∴m=3.故答案为:3.【点睛】此题主要考查了同底数幂相乘的运算方法以及幂的逆运算,熟练掌握运算法则是解题的关键.13.3【解析】【分析】首先应用含3x,3y的代数式表示3x-y,然后将3x,3y的值代入即可求解.【详解】解:∵3x=12,3y=4,∴3x-y=3x÷3y,=12÷4,=3.故答案为:3.【点睛】本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.14.3108>2144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a2-4b2)÷(a+b)=4a-4b,∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,故:应填10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.16.9或﹣3【解析】原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x2+2(k-3)x+9=(2x±3)2,∴4x2+2(k-3)x+9=4x2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.17.64【解析】∵x2+y2+10=2x+6y,∴x2+y2+10-2x-6y=0,∴(x-1)2+(y-3)2=0,∵(x-1)2≥0,(y-3)2≥0,∴x-1=0,y-3=0,解得:x=1,y=3;∴x21+21y=121+21×3=63+1=64,故答案为:64.18.2或3或4【解析】【分析】由a2+b2-6a-4b+13=0,,得(a-3)2+(b-2)2=0,求得a、b的值,再根据三角形的三边关系定理求得c的取值范围,根据c为整数即可求得c值.【详解】∵a2+b2-6a-4b+13=0,∴(a-3)2+(b-2)2=0,∴a-3=0,b-2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,故答案为:2或3或4.【点睛】本题主要考查了非负数的性质、完全平方公式、三角形三边关系,根据非负数的性质求得a、b的值,再利用三角形的三边关系确定c的值是解决此类题目的基本思路.19.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 20.-3a2+12a+71【解析】【分析】根据整式四则混合运算的顺序和法则计算即可.【详解】解:4(a+2)(a+1)-7(a+3)(a-3)=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.故答案为:-3a2+12a+71.【点睛】本题考查了整式的混合运算.21.x3﹣x7【解析】【分析】直接利用整式运算法则-乘方的运算计算得出答案.【详解】(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)=x6÷x2÷x-x3•x2•x2=x6-2-1-x3+2+2=x3﹣x7【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 22.2ab【解析】【分析】先算乘法,再合并同类项,最后算除法.【详解】解:[a(a2b2-ab)-b(-a3b-a2)]÷a2b=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.故答案为:2ab.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.23.10x2-5.【解析】【分析】根据平方差公式以及整式的运算法则即可求出答案.【详解】原式=x 2-4+9x 2-1=10x 2-5.【点睛】本题考查了平方差公式,解答本题的关键是掌握平方差公式的形式,这是需要我们熟练记忆的内容,属于基础题型.24.a 2+4b 2﹣4ab ﹣9c 2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c---+=22a 2b 3c ()--=222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.25.4a+2【解析】【分析】运用完全平方和公式、多项式乘多项式法则去括号后,再合并同类项即可.【详解】(2a+1)2﹣(2a+1)(﹣1+2a)=4a 2+4a+1-4a 2+1=4a+2【点睛】考查了整式的混合运算,解本题的关键运用完全平方和公式((a+b)2=a2+2ab+b2)和多项式乘多项式法则((a+b)(c+d)=ac+ad+bc+bd).26.x4-2x2.【解析】【分析】先利用平方差公式进行计算,然后利用完全平方公式进行计算.【详解】解:(x-1)2(x+1)2-1=[(x-1)(x+1)]2-1=(x2-1)2-1=x4-2x2+1-1=x4-2x2.故答案为:x4-2x2.【点睛】本题考查了利用平方差公式和完全平方公式对整式进行化简.27.(1)4ab;(2)10.【解析】【分析】(1)根据长方形面积公式列①式,根据面积差列②式,得出结论;(2)由(1)的结论得出(2x+y)2-(2x-y)2=8xy,把已知条件代入即可.【详解】=4ab①,(1)S阴影=4S长方形S阴影=S大正方形-S空白小正方形=(a+b)2-(b-a)2②,由①②得:(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)∵(4x+y)2-(4x-y)2=16xy,∴16xy=169-9,∴xy=10.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.28.(1)32-;(2)±3;(3)x=-4.【解析】【详解】解:(1)=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-3 2.故答案为3 2-;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为±3;(3)=6x2+7,(3x-2)(3x+2)]-[(x+2)(3x-2)+32]=6x2+7,解得x=-4.。

北师大七年级下册数学第一章整式的乘除附答案

北师大七年级下册数学第一章整式的乘除附答案

word整理版七年级数学下册——第一章整式的乘除(复习)单项式整式多项式整同底数幂的乘法幂的乘方式积的乘方的幂运算同底数幂的除法零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完整平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每题3分,共30分)1.以下运算正确的选)项是(A.a4a5a9B.a3a3a33a3C.2a43a56a9D.a34a720123201 22.52()135A.1B.1C.0D.19973.设5a3b25a3b2A,则A=()A.30abB.60abC.15abD.12ab4.已知x y5,xy3,则x2y2()A.25.B25C19D、195.已知x a3,x b5,则x3a2b()A、27B、9C、3D、52251056..如图,甲、乙、丙、丁四位同学给出了四a b a种表示该长方形面积的多项式:m学习参照资料nword 整理版①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b); ④2am+2an+bm+bn ,你以为此中正确的有A 、①②B 、③④C 、①②③D 、①②③④()7.如(x+m)与(x+3) 的乘积中不含 x 的一次项,则m 的值为()A 、–3B 、3C 、0D 、12128.已知.(a+b)=9,ab=-12,则a2+b 的值等于()A 、84B、78C 、12D 、62 244)9.计算(a -b )(a+b )(a+b )(a -b )的结果是(A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810. 已知P7 m 1,Qm 28m (m 为随意实数),则P 、Q 的大小关系为15 15()A 、P QB 、P QC 、PQ D、不可以确立二、填空题(共 6小题,每题4分,共 24分)11. 设4 x 2mx 121 是一个完整平方式,则m=_______。

(完整版)北师大初中数学七年级(下册)第一章整式的乘除练习题(带答案)【幂的乘方、积的乘方、完全平方公式】

(完整版)北师大初中数学七年级(下册)第一章整式的乘除练习题(带答案)【幂的乘方、积的乘方、完全平方公式】

北师大版 七年级(下册) 第一章整式的乘除 分节练习第1节 同底数幂的乘法01、【基础题】 (1)67)3()3(-⨯-; (2)111111113⨯)(; (3)—53x x ⋅ (4)122+⋅m m b b01.1、【基础题】 (1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a01.2、【综合I 】 (1)=++⋅⋅21n n n a a a (2)=⋅⋅n n n b b b 53 (3)=+-⋅⋅132m m b b b b (4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯54373602、【基础题】光在真空中的速度约为3⨯810m/s ,太阳光照耀到 地球 上大约需要5210⨯s ,那么 地球距离太阳大约有多远?02.1、【基础题】已知每平方千米的土地上,一年内从太阳得到的能量相当于燃烧81.310kg ⨯煤所产生的能量,那么我国629.610km ⨯的土地上,一年内从太阳得到的能量相当于燃烧煤多少千克?第2节 幂的乘方与积的乘方03、【基础题】 (1) (102)3 ; (2) (b 5)5 ; (3) (a n )3;(4) -(x 2)m ; (5) (y 2)3 · y ; (6) 2(a 2)6 - (a 3)403.1【基础题】 (1)_____)(33=x (2)_____)(52=-x (3)_____)(532=⋅a a(4)________)()(4233=⋅-m m (5)_____)(32=n x03.2、 【综合II 】04、【基础题】 (1)2)3(x ; (2)5)2(b -; (3)4)2(xy -; (4)na )3(2. 04.1、【基础题】 (1)4()ab ; (2)3(2)xy -; (3)23(310)-⨯; (4)23(2)ab 04.2、【综合I 】 (1)200720080.254⨯; (2)2334(310)(10)⨯⋅-;(3)2323()()()n n na b a b -⋅--; (4)3232733(3)(4)(5)a a a a a -⋅+-⋅-04.3、【综合II 】 若2,3,n n x y == 求 3()n xy 的值.04.4【综合I 】 计算:1010)128910()1218191101(⨯⨯⋯⨯⨯⨯•⨯⨯⋯⨯⨯⨯.第3节 同底数幂的除法05、【基础题】计算 :(1)m 9÷m 3; (2)(﹣a )6÷(﹣a )3;(3)(﹣8)6÷(﹣8)5; (4)62m+3÷6m .05.1、【基础题】计算 (1)a 7÷a 4; (2)(﹣m )8÷(﹣m )3; (3)(xy )7÷(xy )4; (4)x 2m+2÷x m+2; (5)x 6÷x 2•x ; (6)(x ﹣y )5÷(y ﹣x )305.2【综合I 】计算: ⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;⑶533248÷•; ⑷[]233234)()()()(x x x x -÷-•-÷-.05.3、【综合 I 】 已知n m n ma a a -==243,求,的值.06、【基础题】用小数或分数表示下列各数: (1)310—; (2)2087—⨯; (3)4106.1—⨯.06.1、【基础题】用分数或小数表示下列各数: (1)0)21(; (2)33—; (3)5103.1—⨯; (4)25—. 07、【基础题】用科学记数法表示下列各数 (1) 732400 (2) -6643919000(3) 0.00000006005 (4) -0.0000021707.1、【基础题】用科学记数法表示下列各数 (1)0.00000072; (2)0.000861; (3)0.0000000003425第4节 整式的乘法 08、【基础题】计算:(1)xy xy 3122•; (2)322b a —)3(a —•; (3)22)2(7xyz z xy •.08.1、【基础题】计算: (1)xy 4·(-23xy ); (2)b a 3·c ab 5; (3)y x 22·2)(xy -; (4)3252y x ·xyz 85; (5)-32z xy ·32)(y x -; (6)-3ab ·22abc ·32)(c a .09、【基础题】计算: (1)6x 2•3xy (2)(4a ﹣b 2)•(﹣2b )(3)(3x 2y ﹣2x+1)•(﹣2xy ); (4) 2(322z xy z y x ++)•xyz09.1、【基础题】(1) (﹣12a 2b 2c )•(﹣abc 2)2 ; (2) (3a 2b ﹣4ab 2﹣5ab ﹣1)•(﹣2ab 2);(3)﹣6a •(﹣﹣a+2); (4)﹣3x •(2x 2﹣x+4)(5) (﹣a 2b )(b 2﹣a+); (6).09.2、【综合Ⅰ】 先化简,再求值 3a (2a 2﹣4a+3)﹣2a 2(3a+4),其中a=-210、【基础题】 计算: (1)(21)(3)x x ++; (2)(2)(3)m n m n +-; (3)2(1)a -; (4)(3)(3)a b a b +-;(5)2(21)(4)x x --; (6)2(3)(25)x x +-; (7)(7)()()33a bc bc a ---; (8)(3x -2y)2-(3x +2y)210.1【基础题】计算:(1)(6)(3)x x -- ; (2)11()()23x x +-; (3)(32)(2)x x ++; (4)(41)(5)y y --;(5)2(2)(4)x x -+; (6)22()()x y x xy y -++10.2、【基础题】计算: ))((e d c c b a ++++第5节 平方差公式11、【基础题】利用平方差 公式 计算: (1)(2)(2)(a a +-= 2)(- 2)= ;(2)(43)(34)(a b b a -+= 2)(- 2)= ; (3)(58)(58)(x x -+--= 2)(- 2)= ; (4)(23)(23)(a b a b -++= 2)(- 2)= ; (5)()()(a b c a b c +++-= 2)(- 2);(6)()()(x y a b x y a b ++++--= 2)(- 2).11.1、【基础题】利用平方差公式 计算: (1)(3)(3)a b a b +-; (2)(32)(32)a a +-+ ; (3)5149⨯;(4) (34)(34)(23)(32)x x x x +--+-; (5) ))((y x y x nn +-; (6) )231)(312(a b b a ---.11.2、【基础题】用平方差公式进行计算: (1)103×97; (2)118×122; (3)20011 ⨯ 99911.3、【综合Ⅰ】计算:(1))1)(1)(1(2+-+a a a ; (2) 2244()()()()a b a b a b a b -+++.(3)222))((b a b a b a a +-+; (4))32(2)52)(52(--+-x x x x ;(5))1)(1()2)(2(-++-+x x y x y x ; (6))31)(31()1(+---x x x x ; (7))()3)(3(y x y y x y x +++-; (8))23)(23()21)(21(b a b a b a b a +---+第6节 完全平方公式12、【基础题】 用完全平方公式 计算: (1)2)32(-x ; (2)2)54(y x +; (3)2)(a mn -;(4)263; (5)299812.1、【基础题】用完全平方公式计算:(1)(a+3)2 ; (2)(5x -2)2 ; (3)(-1+3a )2; (4)(13a+15b )2 ; (5)(-a -b )2 ; (6)(-a 2+12)2; (7)(xy 2+4)2 ; (8)(a+1)2-a 2 (9)(-2m 2-12n 2)2; (10)1012 ; (11)1982 ; (12)19.9212.2、【综合Ⅰ】计算: (1)(a+2b )(a -2b )-(a+b )2 ; (2)(x -12)2-(x -1)(x -2); (3)(x -2y )(x +2y )-(x +2y )2; (4)(a +b +c )(a +b -c );(5)(2a +1)2-(1-2a )2; (6)(3x -y )2-(2x +y )2+5x (y -x ).(7))12)(12(-+++y x y x ; (8))3)(1()2)(2(-+-+-x x x x ; (9)22)1()1(--+ab ab ; (10))2)((4)2(2y x y x y x +---. 12.3、【综合Ⅰ】先化简,再求值: (1) (2x -1)(x+2)-(x -2)2-(x+2)2,其中x=-13. (2) (x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.12.4【综合Ⅲ】 根据已知条件,求值:(1)已知x -y =9,x ·y =5,求x 2+y 2的值;(2)已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.(3)已知x +1x =3, 求 x 2+21x和(x -1x )2的值.第7节 整式的除法 13、【基础题】计算:(1)y x y x 232353÷-; (2)bc a c b a 3234510÷; (3)3423214)7()2(y x xy y x ÷-•; (4)24)2()2(b a b a +÷+.14、【基础题】计算:(1)b b ab 2)86(÷+; (2)a a a a 3)61527(23÷+-; (3)xy xy y x 3)69(22÷-;(4))21()213(22xy xy xy y x -÷+-.14.1、【综合Ⅰ】填空:(1)223293m m m m a b a b +-÷ =___________; (2) 8a 2b 2c ÷_________=2a 2bc ; (3)(7x 3-6x 2+3x)÷3x=_________. (4)__________÷73(210)510⨯=-⨯. (5)(____________________)·235444234826x y x y x y x y =--.七(下)第一章分节练习 参考答案 第1节 答案01、【答案】 (1)13)3(-; (2)41111)(; (3)—8x ; (4)1m 4+b . 01.1【答案】(1)5b - (2)4a - (3)5y - (4)7a - (5)-729 (6)135- (7)32+-n q(8)6m - (9)-8 (10)-512 (11)15b - (12)6a01.2【答案】 (1)33+n a (2)n b 9 (3)22+m b (4)-1 (5)0 (6)73 02、【答案】 1.51110⨯ m. 02.1【答案】 解:9.6×106×1.3×108=1.248×1015(kg)第2节 答案03、【答案】 (1)106;(2)b 25;(3)a 3n ;(4)-x 2m ;(5)y 7;(6)a 12.03.1【答案】 (1)9x ; (2)—10x ; (3)11a ; (4)—17m ; (5)n x 6 03.2【答案 】04、【答案】 (1)92x ; (2)—325b ; (3)1644y x ; (4)n n a 23. 04.1【答案】 (1)44a b ; (2)338x y -; (3)72.710-⨯; (4)368a b . 04.2【答案】 (1)4; (2)192.710⨯; (3)232n n a b -; (4)9100a -. 04.3【答案】 216【解析】 333()n n n xy x y =⋅33()()n n x y =⋅3323=⨯216= 04.4【答案】 1第3节 答案05、【答案】(1)m 9÷m 3=m 9﹣3=m 6; (2)(﹣a )6÷(﹣a )3=(﹣a )6﹣3=(﹣a )3=﹣a 3; (3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8; (4)62m+3÷6m =6(2m+3)﹣m =6m+305.1、【答案】(1)a 7÷a 4=a 3; (2)(﹣m )8÷(﹣m )3=(﹣m )5=﹣m 5; (3)(xy )7÷(xy )4=(xy )3=x 3y 3; (4)x 2m+2÷x m+2=x m ; (5)x 6÷x 2•x=x 4•x=x 5. (6)(x ﹣y )5÷(y ﹣x )3=﹣(y ﹣x )5÷(y ﹣x )3=﹣(y ﹣x )2;05.2【答案】 ⑴2a ; ⑵6a ;⑶533248÷•=569222÷•=102; ⑷7x -.05.3 【答案】49 【解析】∵a m =3,a n =4,∴a 2m ﹣n =a 2m ÷a n =(a m )2÷a n =32÷4=.06、【答案 】(1)0.001 (2)641(3)0.00016 06.1【答案】 (1)1 (2)271 (3)0.000013 (4)25107、【答案】 (1)7.324×105; (2)-6.643919×109; (3)6.005×10-8; (4)-2.17×10-6 07.1、【答案】 (1) 7.2710—⨯; (2) 8.61410—⨯; (3)3.4251010—⨯第4节 答案 08、【答案】 (1)3232y x ; (2)336b a ; (3)34328z y x 08.1【答案】(1)-842y x ; (2)c b a 64; (3)234y x ; (4)z y x 4341; (5)357z y x ; (6)-2548c b a .09、【答案】(1)18x 3y ; (2)﹣8ab+2b 3; (3)﹣6x 3y 2+4x 2y ﹣2xy ;(4)432232222z y x z xy yz x ++09.1【答案 】(1)﹣; (2)﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2;(3) 3a 3+2a 2﹣12a . (4)﹣6x 3+3x 2﹣12x . (5)﹣a 2b 3+a 3b ﹣a 2b ; (6)x 3y 5﹣x 3y 6+x 2y 4.09.2、【答案】-98【解析】3a (2a 2﹣4a+3)﹣2a 2(3a+4)=6a 3﹣12a 2+9a ﹣6a 3﹣8a 2=﹣20a 2+9a ,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.10、【答案】(1)2273x x ++; (2)226m mn n --; (3)221a a -+; (4)229a b -;(5)32284x x x --+; (6)3225615x x x -+-; (7)-29a +22c b ; (8)-xy 2410.1【答案】(1)2918x x -+; (2)21166x x +-; (3)2384x x ++; (4)24215y y -+; (5)32248x x x -+-; (6)33x y -.10.2【答案】 ce cd c be bd bc ae ad ac ++++++++2第5节 答案 11、【答案】(1)(2)(2)(a a +-=a 2)(- 22)= - 2 4 a ;(2)(43)(34)(a b b a -+=4a 2)(-3b 2)=22169a b - ; (3)(58)(58)(x x -+--=5- 2)(-8x 2)=22564x - ;(4)(23)(23)(a b a b -++=3b 2)(-2a 2)=2294b a - ; (5)()()(a b c a b c +++-=a b + 2)(-c 2);(6)()()(x y a b x y a b ++++--=x y + 2)(-a b + 2).11.1【答案】(1)229a b -; (2)249a -; (3)2499; (4)23510x x --; (5)22y xn-; (6)22491a b -.11.2【答案】 (1)9991; (2)14396; (3)399999911.3【答案】 (1)14-a ; (2)88a b -; (3)4a ; (4)256-x ; (5)14222--y x ;(6)91+x -; (7)xy x +29; (8)228415a b -第6节 答案12、【答案】 (1) 91242+-x x ; (2) 22254016y xy x ++; (3)2222a amn n m +-; (4)3969;(5)99600412.1【答案】(1)a 2+6a+9; (2)25x 2-20x+4 ; (3)9a 2-6a+1; (4)19a 2+215ab+125b 2; (5)a 2+2ab+b 2 ; (6)a 4-a 2+14; (7)x 2y 4+8xy 2+16; (8)2a+1; (9)4m 4+2m 2n 2+14n 4; (10)10 201; (11)39 204; (12)396.01 12.2【答案】 (1)-2ab -5b 2 ; (2)2x -74; (3)-4xy -8y 2; (4)a 2+2ab+b 2-c 2; (5)8a ; (6)-5xy ; (7)14422-++y xy x ; (8)12-x ; (9)ab 4; (10)xy y 892-.12.3、【答案】 (1)原式=3x -10=-11(12) 原式=x 4-8x 2y 2+16y 4=012.4、【答案】 (1)91; (2)249; (3) x 2+21x=7, (x -1x )2 =5第7节 答案 13、【答案】 (1)251y -; (2)c ab 22; (3)234y x -; (4)2244b ab a ++. 14、【答案】 (1)43+a ; (2)2592+-a a ; (3)y x 23-; (4)126-+-y x 14.1【答案】 (1)33m a b -;(2)4b ; (3)273x -2x+1;(4)1110-; (5)3213222x y x y --。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章整式的乘除1.逆用幂的运算法则解题(1)逆用同底数幂相乘的法则解题:同底数幂相乘的法则是a m×a n=a m+n(m,n都是正整数),反过来是a m+n=a m×a n.逆用同底数幂相乘的法则解题,能使运算简便.【例】已知a m=2,a n=3,求a m+n的值.【标准解答】因为a m+n=a m·a n,把a m=2,a n=3代入a m+n,得a m+n=2×3=6.(2)逆用幂的乘方的法则解题:幂的乘方法则是(a m)n=a mn(m,n都是正整数),反过来是a mn=(a m)n.逆用幂的乘方的法则解题,能使运算简便.【例】已知a m=2,求a2m的值.【标准解答】因为a2m=(a m)2,把a m=2代入a2m,得a2m=22=4.(3)逆用积的乘方的法则解题:积的乘方的法则是(a×b)n=a n×b n(n是正整数).反过来是a n×b n=(a×b)n.逆用积的乘方的法则解题,能使运算简便.【例】计算:×22016.【标准解答】×22016=×2=12015×2=2.(4)逆用同底数幂相除的法则解题:同底数幂相除的法则是a m÷a n=a m-n(m、n都是正整数),反过来是a m-n=a m÷a n.逆用同底数幂相除的法则解题,能使运算简便.【例】已知a m=2,a n=3,求a m-n的值.【标准解答】因为a m-n=a m÷a n,把a m=2,a n=3代入a m-n,得a m-n=2÷3=.1.已知a m=2,a n=3,求a3m+2n的值.2.当4x=9时,计算21-2x的值是多少?3.求(-8)2015×(0.125)2016的值.2.用图形面积表示整式的乘法法则(公式)(1)用图形面积表示平方差公式:数形结合是重要的数学思想方法之一,通过两个图形的面积变化来直观的反映平方差公式.【例】将图甲中阴影部分的小长方形变换到图乙位置,你根据两个图形的面积关系得到的数学公式是.【标准解答】图甲的面积可以表示为(a-b)·(a+b),图乙可以看作一个边长为a的正方形去掉一个边长为b的正方形,其面积等于a2-b2,因此有(a+b)(a-b)=a2-b2.答案:(a+b)(a-b)=a2-b2(2)用图形面积表示多项式乘以多项式的法则:数形结合是重要的数学思想方法之一,通过数和形两个方面可说明多项式乘以多项式的法则.【例】新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础上进行联系、推广等方式产生的知识,大多数知识是这样的知识.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则是如何获得的?(用(a+b)(c+d)来说明)【标准解答】(1)是第二类知识.(2)单项式乘以多项式(分配律),字母表示数,数可以表示线段的长或图形的面积等.(3)用数来说明:(a+b)(c+d)=(a+b)c+(a+b)d=ac+bc+ad+bd.用形来说明:如图,边长为a+b和c+d的矩形,分割前后的面积相等,即(a+b)(c+d)=ac+bc+ad+bd.(3)用杨辉三角表示完全平方公式的系数:杨辉三角反映了两数和的n次方,即展开式各项的系数的规律,直观形象,简单易记. 【例】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着=a3+3a2b+3ab2+b3展开式中的系数等.(1)根据上面的规律,写出的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.【标准解答】(1)=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.1.如图,矩形ABCD的面积为(用含x的代数式表示).2.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式.(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.3.有足够多的长方形和正方形的卡片,如图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义..这个长方形的代数意义是.(2)小明想用类似的方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片张,3号卡片张. 4.如图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块形状大小完全一样的小长方形,然后按图b形状拼成一个大正方形.(1)你认为图b中的阴影部分的正方形的边长等于多少?(2)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(3)已知m+n=9,mn=14,求(m-n)2的值.3.整式乘除中的整体思想(1)先利用公式将所求多项式变形,再整体代入求值.【例】已知实数a,b满足a+b=5,ab=3,则a-b=.【标准解答】将a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=3代入得:a2+b2=19,所以(a-b)2=a2+b2-2ab=19-6=13,则a-b=±.答案:±(2)当两个三项式相乘时,通过添括号把其中两项看成一个整体,再利用乘法公式进行计算. 【例】化简:(x+2y-z)(x-2y-z)-(x+y-z)2.【标准解答】(x+2y-z)(x-2y-z)-(x+y-z)2=[(x-z)+2y][(x-z)-2y]-[(x+y)-z]2=(x-z)2-4y2-(x+y)2+2z(x+y)-z2=x2-2xz+z2-4y2-x2-2xy-y2+2xz+2yz-z2=-5y2-2xy+2yz.1.若m+n =2,mn =1,则m2+n2=.2.计算:(1)(3x-2y+5)2.(2)(2a-b+1)(b-1+2a).3.如果(2a+2b+1)(2a+2b-1)=63,求a+b的值.4.整式加减中的规律探索问题(1)数表中的“规律探究”通过观察、分析、比较数表,根据数表中每一行、列中数的自身特点和数表中前后数之间的联系来发现、归纳规律.【例】观察下列数表:第一列第二列第三列第四列第一行 1 2 3 4第二行 2 3 4 5第三行 3 4 5 6第四行 4 5 6 7………………请猜想第n行第n列上的数是.【标准解答】通过观察、分析、比较可知:第1行与第1列,第2行与第2列,第3行与第3列,第4行与第4列,交叉点上的数依次为1、3、5、7,它们是连续的奇数,所以可猜想第n行与第n列交叉点上的数为2n-1. 答案:2n-1(2)图形中的“规律探究”从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,通过类比、计算等方法找出数量上的变化规律,从而推出一般性的结论,再验证所总结规律的正确性.【例1】如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有个.【标准解答】第1个图有1个黑色正六边形,第2个图有4=22个黑色正六边形,第3个图有9=32个黑色正六边形,…,第n个图有n2个黑色正六边形,因此第10个图有100个黑色正六边形.答案:100【例2】如图,每个图案都由若干个棋子摆成,按照此规律,第n个图案中棋子的总个数可用含n的代数式表示为.【标准解答】从行上看,每个图中棋子的行数等于图形的序号n,而列数比图形的序号多1,即为n+1,所以第n个图案中棋子的总个数为n(n+1).答案:n(n+1)(3)等式中的“规律探究”观察等式的左、右两边的数式,随着序号变化有何特点,通过分析、比较、归纳,得出规律.【例】观察下列等式:12+2×1=1×(1+2)22+2×2=2×(2+2)32+2×3=3×(3+2)……则第n个等式可以表示为.【标准解答】通过观察可以发现,等式的左边是两项,第1项是从1开始的整数的平方,第2项是2与这个整数的乘积,所以在左边可用一般式子表示为n2+2n(n为大于等于1的整数),每一项等式的右边是这个整数与2的和的积,所以可用一般的式子表示为n,所以第n个等式为n2+2n=n.答案:n2+2n=n(4)算式中的“规律探究”依据算式找寻规律就是根据每个算式自身特点,以及前后算式之间的联系发现归纳规律.【例】已知:=3×2=6,=5×4×3=60,=5×4×3×2=120,=6×5×4×3=360,…,观察前面的计算过程,寻找计算规律计算=(直接写出计算结果),并比较(填“>”“<”或“=”). 【标准解答】=7×6=42,=9×8×7×6×5=15 120,=10×9×8=720,所以>.答案:42 >1.观察下列各式及其展开式=a2+2ab+b2=a3+3a2b+3ab2+b3=a4+4a3b+6a2b2+4ab3+b4=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想的展开式第三项的系数是( )A.36B.45C.55D.662.一组按照规律排列的式子:x,,,,,……,其中第8个式子是;第n个式子是.(n为正整数)3.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.4.将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是.12 34 5 67 8 9 10……5.观察下列关于自然数的等式:(1)32—4×12=5 ①(2)52—4×22=9 ②(3)72—4×32=13 ③……根据上述规律解决下列问题:(1)完成第四个等式:92—4×( )2=( ).(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.5.乘法公式在实际生活中的应用乘法公式在实际应用中主要是解决有关整式的计算求值问题,使运算量大大减少,显示利用公式的优越性和使用价值,是数学联系实际的一个重要方面.(1)用乘法公式解决面积问题【例】光明幼儿园有一个游戏场和一个桂花园,所占地的形状都是正方形,面积也相同.后来重新改建,扩大了游戏场,缩小了桂花园,扩大后的游戏场地仍为正方形,边长比原来增大了3米,缩小后的桂花园也为正方形,边长比原来减少了2米,设它们原来的边长为x米,请表示出扩大后的游戏场地比缩小后的桂花园的面积多多少平方米,并计算x=16时的值.【标准解答】(x+3)2-(x-2)2=(x2+6x+9)-(x2-4x+4)=x2+6x+9-x2+4x-4=10x+5.当x=16时,原式=10×16+5=165(平方米)所以扩大后的游戏场地比缩小后的桂花园的面积多(10x+5)平方米,当x=16时,为165平方米.(2)用乘法公式解决包装问题【例】将一条边长为2.4m镀金彩边剪成两段,恰好可用来镶两张大小不同的正方形壁画的边,而两张壁画的面积相差1 200 cm2,这条彩边应剪成多长的两段?【标准解答】设较大正方形壁画的周长为xcm,则较小正方形壁画的周长为(240-x)cm.由题意,得-=1200,即-=1200.去括号,得-3600+30x-=1200,即30x=4800.解得x=160,240-160=80(cm).所以这条彩边应剪成长为160cm,80cm的两段.某商人对数字“8”情有独钟,他每年八月份都要到制作广告牌的张师傅那里做两个一大一小的正方形广告牌,面积之差为8的倍数.请问两张广告牌的边长至少要满足什么样的条件,才能符合商人的要求.跟踪训练答案解析1.逆用幂的运算法则解题【跟踪训练】1.【解析】a3m+2n=a3m×a2n=×.把a m=2,a n=3代入得a3m+2n=23×32=8×9=72.2.【解析】因为4x=(2)2x=9,所以21-2x=2÷22x=2÷9=.3.【解析】∵(ab)n=a n b n,∴(-8)2015×(0.125)2016=[(-8)×0.125]2015×0.125=(-1)2015×0.125=(-1)×0.125=-0.125.2.用图形面积表示整式的乘法法则(公式)【跟踪训练】1.【解析】面积=AD×AB=(x+3)(x+2). 答案:(x+3)(x+2)2.【解析】(1)(a+2b)(2a+b)=2a2+5ab+2b2.(2)画出的图形如图所示.3.【解析】(1)图形如下:代数意义为:a2+3ab+2b2=(a+b)(a+2b). (2)需用2号卡片3张,3号卡片7张. 4.【解析】(1)m-n.(2)(m-n)2=(m+n)2-4mn.(3)当m+n=9,mn=14时,(m-n)2=(m+n)2-4mn=92-4×14=81-56=25.3.整式乘除中的整体思想【跟踪训练】1.【解析】m2+n2=(m+n)2-2mn=2.答案:22.【解析】(1)(3x-2y+5)2=[(3x-2y)+5]2=(3x-2y)2+10(3x-2y)+25=9x2-12xy+4y2+30x-20y+25.(2)(2a-b+1)(b-1+2a)=[2a-(b-1)][2a+(b-1)]=4a2-(b-1)2=4a2-b2+2b-1.3.【解析】∵(2a+2b+1)(2a+2b-1)=63,∴[(2a+2b)+1][(2a+2b)-1]=63,∴(2a+2b)2-1=63,∴(2a+2b)2=64,∴2a+2b=8或2a+2b=-8,∴a+b=4或a+b=-4,∴a+b的值为4或-4.4.整式加减中的规律探索问题【跟踪训练】1.【解析】选B.∵由杨辉三角可得:∴的展开式第三项的系数是45.2.【解析】根据前5个数,可以得到这一组数排列的规律是分子的指数是从1开始的奇数,分母是底数从1开始的自然数的平方,因此第8个式子是=,第n个式子是.答案:3.【解析】观察发现:第一个图形有3×2-3+1=4个三角形;第二个图形有3×3-3+1=7个三角形;第三个图形有3×4-3+1=10个三角形;…第n个图形有3(n+1)-3+1=3n+1个三角形.答案:3n+14.【解析】由排列的规律可得,第n-1行结束的时候排了1+2+3+…+n-1=n(n-1)个数.所以第n行从左向右的第5个数为n(n-1)+5.所以当n=10时,第10行从左向右的第5个数为50.答案:505.【解析】(1)92-4×42=17.(2)(2n+1)2-4×n2=4n+1;∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.5.乘法公式在实际生活中的应用【跟踪训练】分析:若设两张广告牌的边长大的为a米,小的为b米,即可得a2-b2=8n(n为正整数),若以a=3,b=1为例发现32-12=8,符合条件;若a=4,b=2,则42-22=12,不符合条件;若a=5,b=3,则52-32=16=8×2,符合条件……这样多写几组,便可发现两个相邻的奇数,其中较大的与较小的平方差是8的倍数.【解析】设两张广告牌的边长是相邻的奇数时,两张广告牌的面积之差是8的倍数,因为(2n+1)2-(2n-1)2=(4n2+4n+1)-(4n2-4n+1)=8n(n为正整数).。

相关文档
最新文档