《一元一次方程》教案 人教数学七年级上册

合集下载

人教版七年级数学上册:3.1.1《一元一次方程》教学设计

人教版七年级数学上册:3.1.1《一元一次方程》教学设计

人教版七年级数学上册:3.1.1《一元一次方程》教学设计一. 教材分析《一元一次方程》是人教版七年级数学上册第三章第一节的内容,主要是让学生掌握一元一次方程的概念、解法及其应用。

本节课的内容是初中的基础内容,对于学生以后学习其他数学知识有着重要的铺垫作用。

二. 学情分析学生在进入七年级之前,已经学习了代数的基本概念,如整数、有理数等,对代数有一定的认识。

但他们对一元一次方程的概念和解法可能还没有完全理解,因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次方程。

三. 教学目标1.让学生了解一元一次方程的概念,理解一元一次方程的意义。

2.让学生掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念及其应用。

2.难点:一元一次方程的解法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题引导学生思考,通过案例让学生理解一元一次方程的应用,通过小组合作学习,让学生互相讨论,共同解决问题。

六. 教学准备1.准备相关的教学案例和问题。

2.准备PPT,展示一元一次方程的相关知识。

3.准备黑板,用于板书一元一次方程的解法。

七. 教学过程1.导入(5分钟)通过一个实际问题,如“小明买了一本书,定价为x元,打了8折后,他支付了8元。

请问这本书的原价是多少?”引导学生思考,引入一元一次方程的概念。

2.呈现(10分钟)通过PPT,展示一元一次方程的定义、解法和应用。

让学生了解一元一次方程的基本知识。

3.操练(10分钟)让学生解决一些简单的一元一次方程问题,如“2x + 1 = 7”等。

引导学生运用一元一次方程的解法,求解未知数的值。

4.巩固(10分钟)让学生解决一些实际问题,如“一个水果摊贩卖出x个苹果,每个苹果的价格为2元,如果他总共收入了20元,那么他卖出了多少个苹果?”让学生将所学的一元一次方程应用到实际问题中。

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

人教版数学七年级上册第三章一元一次方程(教案)

人教版数学七年级上册第三章一元一次方程(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课的核心素养目标主要包括以下几方面:
1.理解与运用:使学生理解一元一次方程的概念,掌握其解法,并能将其应用于解决实际问题。
2.思维能力:培养学生逻辑思维和分析问题的能力,提高他们从实际问题中抽象出一元一次方程的能力。
3.数学表达:训练学生运用数学语言表达问题和解决问题的过程,提高他们的数学表达能力。
举例:在讲解移项难点时,可以使用数轴辅助教学,让学生直观地看到移项时数字的正负变化。对于合并同类项,可以通过具体的例题,如2x+3x-5x=4,让学生通过实际计算来理解合并的过程。在方程建模方面,可以给出如“小明买了3本书和一支笔花了32元,已知每本书的价格相同,求每本书的价格”这样的问题,引导学生如何设未知数并建立方程。至于解的检验,通过具体方程的解,如x=2,展示如何将x=2代入原方程进行验证,确保解的正确性。
-解方程的步骤:详细讲解移项、合并同类项、化简等基本解法,确保学生能够熟练运用。
-实际问题的方程建模:通过具体例题,展示如何从实际问题中抽象出一元一次方程,并运用解方程的方法求解。
-方程解的检验:教授并强调解方程后必须进行检验,确保解是正确的。
举例:在教学过程中,以方程3x-7=11为例,重点讲解移项(将-7移至等号右边)、合并同类项(将11和-7合并)和化简(求解x)的过程。

七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。

七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。

二、教学难点、知识重点1、重点:建立一元一次方程的概念。

2、难点:理解用方程来描述和刻画事物间的相等关系。

三、教学方法讲练结合、注重师生互动。

四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。

问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

二、教学重难点重点:一元一次方程的解法。

难点:实际问题中的一元一次方程的应用。

三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。

2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。

(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。

2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。

(2)引导学生模仿:解方程3x+4=7。

(3)学生独立完成:解方程5x9=2。

3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。

(2)小组讨论,给出解决方案。

4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。

(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。

3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。

(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。

(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。

(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

2024年人教版七年级上册教学设计 第五章 一元一次方程方程

2024年人教版七年级上册教学设计 第五章  一元一次方程方程

5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。

七年级数学《一元一次方程》教案

七年级数学《一元一次方程》教案

七年级数学《一元一次方程》教案七年级数学《一元一次方程》教案(精选10篇)作为一名教职工,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。

那么优秀的教案是什么样的呢?下面是店铺收集整理的七年级数学《一元一次方程》教案,希望对大家有所帮助。

七年级数学《一元一次方程》教案篇1教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:设计理念:数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。

课程标准的建议要求教师不再是“教教材”而是“用教材”。

本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念师:同学们,老师学会了一个魔术,情你们配合表演。

请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗?生:想!师:通过这节课的学习,同学们一定能学会!一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程一、教学目标【知识与技能】1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;【过程与方法】初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;【情感态度与价值观】经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。

二、课型新授课三、课时1课时四、教学重难点【教学重点】1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

【教学难点】分析实际问题中的数量关系,利用其中的相等关系列出方程。

五、课前准备教师:课件、直尺、客车模型等。

学生:三角尺、练习本、圆珠笔或钢笔、铅笔。

六、教学过程 (一)导入新课一起来思考下面的问题?教师问1:汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

王家庄到翠湖的路程有多远?(出示课件2-3)学生回答:15−13×(13-10)+50教师问2:如果设王家庄到翠湖的路程为x 千米,你会用方程方法解决这个实际问题吗?(出示课件4)师生共同解答如下:设王家庄到翠湖的路程为x 千米,由题意得:x−5013−10=x+7015−10 (二)探索新知1.师生互动,探究一元一次方程的定义教师问3:在小学,我们已经见过像 2x=50,3x+1=4,5x-7=8 这样简单的方程,还有前面列出的式子:x−5013−10=x+7015−10,即x−503=x+705(出示课件6)又如: 6x-11=12,x+1=2x-5,x 2 –8x+2=0,|x+5| =2请同学们给方程下个定义.学生回答:含有未知数的等式叫做方程.教师出示问题:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h 经过B地,A,B两地间的路程是多少?(出示课件7)教师问4:上述问题中涉及到了哪些量?(出示课件8)师生共同讨论后解答如下:已知条件:路程:AB之间的路程.速度:快车70 km/h,慢车60 km/h.快车每小时比慢车多走10km.时间:快车比慢车早1h经过B地.相同的时间,快车比慢车多走60km.快车走了6h.教师问5:请同学们想一想,如何列算式呢?学生回答:算式:60 ÷(70-60)×70=420(km).教师问6:如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:(出示课件9)(1)快车行完AB全程所用时间:(2)慢车行完AB全程所用时间:(3)两车所用的时间关系为:快车比慢车早到1h, 即:()- ()=1学生回答:(1)x70h ;(2)x60h ;(3)慢车用时-快车用时=1 教师问7:如何列方程解答呢?学生讨论后:设AB 之间的路程为x 千米,由题意得:x60-x70=1教师问8:如果用y 表示快车行完AB 的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(出示课件10)学生讨论后回答:等量关系: 快车y 小时路程=慢车(y+1)小时路程.方程: 70 y =60(y+1).教师问9:如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(出示课件11)学生回答:等量关系:慢车z 小时路程=快车提前1小时走的路程.方程:70(z-1)=60z. 总结点拨:(出示课件12) 比较:列算式和列方程.列算式:列出的算式表示解题的计算过程, 只能用已知数.对于较复杂的问题,列算式比较困难.列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题比较方便.教师出示问题:(出示课件13) 观察下列方程,它们有什么共同点? x60-x70=1,70 y =60(y+1),70(z-1)=60z. 教师问10:每个方程中,各含有几个未知数? 学生回答:1个.教师问11:说一说每个方程中未知数的次数是几次?. 学生回答:一次.教师问12:等号两边的式子有什么共同点? 学生回答:都是整式.教师问13:向上边的方程叫做一元一次方程,请同学们想一想一元一次方程的定义,并且口述一下.学生回答:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

总结点拨:(出示课件14) 一元一次方程只含有一个未知数(一元), 未知数的次数都是1(一次), 等号两边都是整式,这样的方程叫做一元一次方程.例:哪些是一元一次方程?(出示课件15)(1)1x−6=1; (2)3a+9>15; (3)2x+1 ; (4)2m+15=3 ;(5)3x-5=5x+4 ; (6) x 2+2x-6=0 ;(7) -3x+1.8=3y . 师生共同解答如下:分析:(1)不是整式方程,所以不是一元一次方程;(2)是不等式,不是方程;(3)不是等式,所以不是一元一次方程;(4)是一元一次方程;(5)是一元一次方程;(6)未知数的次数是2,所以不是一元一次方程;(7)含有两个未知数,所以不是一元一次方程;答案:(4)(5)是一元一次方程.总结点拨:只含有一个未知数(元),未知数的次数都是1(次)的整式方程叫做一元一次方程.例:若关于x的方程2x|n|−1−9=0是一元一次方程,则n 的值为__________ . (出示课件17)【变式题】方程(m+1)x|m|+1=0是关于x的一元一次方程,则m=_______ .师生共同解答如下:解:|n|-1=1,n=2或-2.|m|=1,m+1≠0,解得m=1.总结点拨:一元一次方程中求字母的值,需谨记两个条件:①未知数的次数为1;②未知数的系数不为0.例:根据下列问题,设未知数并列出方程:(出示课件19)(1) 用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?师生共同解答如下:解:设正方形的边长为x cm.等量关系:正方形边长×4=周长,列方程:4x=24 .(2) 一台计算机已使用1700 h,预计每月再使用150 h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?(出示课件20)师生共同解答如下:解:设x月后这台计算机的使用时间达到2450h.等量关系:已用时间+再用时间=检修时间,列方程:1700+150x=2450 .(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学生?(出示课件21)师生共同解答如下:解:设这个学校的学生人数为x,那么女生人数为0.52x,男生人数为(1- 0.52)x.等量关系:女生人数- 男生人数=8,列方程:0.52x- (1-0.52)x=8.例:某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.(出示课件22)师生共同解答如下:解:设卖出铅笔x支,则卖出圆珠笔(60-x)支.等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87列方程:1.2×0.8x+2×0.9(60-x)=87 .总结点拨:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.2.师生互动,探究方程的解教师问14:对于方程4x=24,容易知道x = 6可以使等式成立,对于方程170+15x =245,你知道x 等于什么时,等式成立吗?我们来试一试.(出示课件25)师生共同讨论后解答如下:知数的值应是5.教师问15:x=3是不是方程2x-3=5x-15的解呢?师生共同讨论后解答如下:解:把x=3代入方程:左边=2×3-3 = 3,右边=5×3-15 = 0,因为左边≠右边,所以x=3不是方程的解.教师问16:x= 4, 5, 6时呢? 是不是方程2x-3=5x-15的解?学生回答:x=4是方程2x-3=5x-15的解.总结点拨:(出示课件27)方程的解:使方程左右两边相等的未知数的值叫方程的解.求方程解的过程叫做解方程.例5:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80 的解?(出示课件28)师生共同解答如下:解:当x=1000时,方程左边=0.52×1000-(1-0.52)×1000=520-480=40,右边=80,左边≠右边,所以x=1000不是此方程的解.当x=2000时,方程左边= 0.52×2000-(1-0.52)×2000=1040-960=80,右边=80,左边=右边,所以x=2000是此方程的解.总结点拨:(出示课件29)判断一个数值是不是方程的解的步骤:1. 将数值代入方程左边进行计算;2. 将数值代入方程右边进行计算;3. 若左边=右边,则是方程的解,反之,则不是.(三)课堂练习(出示课件31-31)1. 由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则( )A. m=24(1-a%-b%)B. m=24(1-a%)b%C. m=24-a%-b%D. m=24(1-a%)(1-b%)2. x =1是下列哪个方程的解()A. 1-x=2B.2x-1=4-3xC. x+12=x-2 D. x-4=5x-23. 若x =1是方程x2-2mx +1=0的一个解,则m的值为()A. 0B. 2C. 1D. -14.下列方程:①x-2=1x ;②3x=11;③x2=5x−1;④y2-4y=3;⑤x+2y=1其中是方程的是_______,是一元一次方程的是_____________.(填序号)5.根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买了两种铅笔共20 支,两种铅笔各买了多少支?(3)一个梯形的下底比上底多2 cm,高是5 cm,面积是40 cm2,求上底6. 已知方程(m-2)x|m|−1+3=m-5 是关于x的一元一次方程,求m的值,并写出其方程.参考答案:1.D2.B3.C4. ①②③④⑤;②③5.(1)一周长×周数=总路程解:设沿跑道跑x周.400x=3000,是一元一次方程.(2)买甲种铅笔共用的钱数+买乙种铅笔共用的钱数= 9 元,甲种支数+乙种支数=20支解:设甲种铅笔买了x支,乙种铅笔买了(20-x)支.0.3x+0.6(20-x)=9,是一元一次方程.(上底+下底)×高=梯形面积(3)12解:设上底为x cm,则下底为(x+2)cm.6. 解:因为方程(m-2)x|m|−1+3=m-5是关于x的一元一次方程,所以|m|-1 = 1,且m-2≠0,得m = -2.所以原方程为-4x+3 = -7.(四)课堂小结今天我们学了哪些内容:1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程(五)课前预习预习下节课(3.1.2)的相关内容。

相关文档
最新文档