认识一元一次方程(第1课时)教学设计

合集下载

北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。

3.1一元一次方程(第一课时)教学设计

3.1一元一次方程(第一课时)教学设计

课题:沪科版七年级数学上册3.1一元一次方程及其解法(第一课时)●教材分析一元一次方程及其解法是沪科版七年级数学上册第三章《一次方程与方程组》第一节内容。

本节主要了解一元一次方程的概念及如何解一元一次方程,按照教材编排共分4个课时。

方程有悠久的历史,它随着实践需要而产生,是应用广泛的数学工具,是代数学的核心内容。

通过对一元一次方程的学习,可以对已经学过的有理数的运算、代数式等知识加以巩固,同时又是今后学习二元一次方程组、三元一次方程组、一元二次方程、一元一次不等式(组)、一次函数等知识的基础.此外,学习方程也是几何的相关计算的重要模型,甚至对其他学科也有十分重要作用.【这部分内容要求教师有扎实学科专业知识,能理清教材知识体系,了解初中数学知识背景。

】●学情分析从学生的年龄特点和认知特点来看,初中阶段是智力和心理发展的关键阶段,学生的逻辑思维从经验型逐步向理论型发展.并且具备活泼好动、好奇、好表现等特点.而从学生所具备的基本技能来看,在小学阶段已学习了用算术方法解决应用题,还学习了等式的基本性质,并利用该性质解一些简易方程,学生已经对方程有了初步的认识,积累了一些用方程表示简单情境中的数量关系的经验,但是对于方程认识的还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握。

【这部分内容要求老师了解学生学习行为的知识,了解学生的年龄特点及认知特点,清楚学生有哪些知识储备,在本课时学习中可能会存在困难.】●教学目标:按照新课标的要求及教材地位,我将本节课的教学目标设计如下:1.通过对两个实际问题的分析,感受用方程来解决实际问题的优越性;2.了解一元一次方程的概念;3.会根据等式的基本性质解简单的一元一次方程;根据以上教学目标及学情分析,我把本节课教学重难点定位如下:1.教学重点:一元一次方程的定义,利用等式的基本性质解简单的一元一次方程;2。

教学难点:利用等式的基本性质对方程进行适当变形;【这部分内容要求老师储备了教学目标知识,知道教育目标和单元教学目标,并根据教材学情分析准确定位教学重难点。

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教学设计一. 教材分析《一元一次方程》是北师大版七年级数学上册3.1.1的内容,这部分内容是在学生已经学习了有理数的运算、不等式的性质等知识的基础上进行学习的。

一元一次方程是初中数学中的一个重要概念,也是学习更高级数学的基础。

本节课的主要内容是一元一次方程的定义、性质和解法,通过学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的运算、不等式的性质等知识有一定的了解。

但是,对于一元一次方程的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解方程的过程和技巧还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.理解一元一次方程的概念和性质。

2.掌握一元一次方程的解法。

3.能够应用一元一次方程解决实际问题。

4.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.一元一次方程的概念和性质。

2.一元一次方程的解法。

3.应用一元一次方程解决实际问题。

五. 教学方法采用讲授法、案例分析法、练习法、小组合作学习法等方法进行教学。

通过实例和练习,引导学生理解一元一次方程的概念和性质,掌握一元一次方程的解法,并通过小组合作学习,培养学生的合作意识和解决问题的能力。

六. 教学准备1.PPT课件。

2.教学案例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引入一元一次方程的概念,例如:小明的年龄问题是这样的:小明的年龄加上3等于13,请问小明的年龄是多少?引导学生思考和解答,从而引出一元一次方程的概念。

2.呈现(10分钟)通过PPT课件,呈现一元一次方程的定义和性质,让学生直观地了解一元一次方程的形式和特点。

同时,通过实例和练习,让学生进一步理解和掌握一元一次方程的性质。

认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念3、积累活动经验。

二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。

已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。

一元一次方程第一课时教学设计

一元一次方程第一课时教学设计

一元一次方程第一课时教学设计教学目标本课程的教学目标主要包括:理解一元一次方程的定义和基本性质,掌握解一元一次方程的方法,能够应用一元一次方程解决实际问题。

教学重点一元一次方程的定义和基本性质,解一元一次方程的方法的掌握。

教学难点运用一元一次方程解决实际问题的能力培养。

教学准备1.教师:教师教学课件、教学笔记、黑板、彩色粉笔。

2.学生:学生教材、作业本、笔、纸。

教学步骤步骤一:导入新知识1.教师利用引入问题导入新知识,激发学生对一元一次方程的兴趣。

2.教师介绍一元一次方程的定义,并与学生进行互动讨论,引导学生理解方程的含义。

步骤二:讲解一元一次方程的基本性质1.通过示例,教师讲解一元一次方程的基本性质,包括只含有一个未知数、未知数的次数为1、未知数的系数为常数等。

2.教师使用教学课件和黑板示例展示不同形式的一元一次方程,引导学生理解方程的形式和特点。

步骤三:解一元一次方程的方法1.教师依次介绍一元一次方程的三种解法:等式性质法、逆运算法和代入法。

2.为了帮助学生理解解一元一次方程的方法,教师提供一些简单的方程进行解答,并引导学生按照不同的解法来解答问题。

3.教师与学生进行互动讨论,总结三种解法的特点和适用场景。

步骤四:巩固练习1.教师让学生完成教材上的练习题,检验学生对一元一次方程的理解和掌握程度。

2.在学生完成练习题后,教师指导学生对答案进行订正,并解答学生遇到的问题。

步骤五:应用解一元一次方程的实际问题1.教师选取一些与学生生活相关的实际问题,引导学生运用一元一次方程解决问题。

2.教师与学生讨论解决问题的思路和具体步骤,鼓励学生展示解题过程。

教学总结本节课通过导入新知识、讲解一元一次方程的基本性质、解一元一次方程的方法、巩固练习和应用实际问题等环节,帮助学生理解和掌握了一元一次方程的相关知识和解题方法。

通过课堂互动和实际问题的应用,培养了学生解决问题的能力和思维方法。

在教学过程中,教师注重培养学生的主动性和合作精神,提高学生的学习兴趣和动手能力。

一元一次方程(第一课时)教学设计人教版数学七年级上册

一元一次方程(第一课时)教学设计人教版数学七年级上册

集体备课教学设计日学科:数学年级:七年级主备人:上课时间:月二、讲授新课问题:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70km/h,慢车的行驶速度是60km/h,快车比慢车早1h到达B地,A,B两地间的路程是多少?(1)上述问题中涉及了哪些量?路程:AB之间的路程速度:快车70km/h,慢车 60km/h(快车每小时比慢车多走10km)时间:快车比慢车早1h到达B地(相同的时间,快车比慢车多走60km)算式:60÷(7060)×70=420(km)(2)如果将AB之间的路程用x表示,用含有x的式子表示下列时间关系:快车行完AB全程所用时间:x70h快车行完AB全程所用时间:x60h两车所用的时间关系为:快车比慢车早到1h即:(慢车用时)(快车用时)=1x 60x70=1(3)如果用y表示快车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?等量关系:快车y小时路程=慢车(y+1)小时路程70y=60(y+1)(4)如果用z表示慢车行完AB的总时间,你能找到等量关系列出方程吗?等量关系:慢车z小时路程=快车提前1小时走的路程列方程0.52x(10.52)x=80上面的分析过程可以表示如下:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

列方程是解决问题的重要方法,利用方程可以求出未知数。

四、巩固练习1.下列方程中,是一元一次方程的是()A.5x+3yB. 2m3>1C. 25+7=18+14D.3t8=t+532.若关于x的方程(k1)x²+(4k+3)x+3k5=0 是一元一次方程,则k 的值为()A.0B.C.1D.3.下列方程中,是一元一次方程的是()A. x+y=1B. x²﹣x=1C.+1=3xD.+1=34.已知(m 3)+m3=0 是关于x的一元一次方程,则m的值为_________.5.已知方程(m4)x+2=2009 是关于x的一元一次方程,则m的取值范围是_________.6.有一养殖专业户,饲养的鸡的只数与猪的头数之和是 70,而鸡与猪的腿数之和是 196,问该专业户饲养多少只鸡和多少头猪?设鸡的只数为 x,则列出的方程应是()A.2x+(70x)=196 B.2x+4(70x)=196C.4x+2(70x)=196 D.2x+4(70x)=五、课堂小结引导学生归纳出列方程的方法:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,列出方程。

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计一. 教材分析《一元一次方程(第1课时)》这一节内容是北师大版七年级数学上册的重点内容。

本节课的主要内容是一元一次方程的定义、性质和解法。

通过本节课的学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。

教材中通过丰富的实例和具体的操作,引导学生逐步掌握一元一次方程的知识,同时培养学生的数学思维和解决问题的能力。

二. 学情分析七年级的学生已经具备了一些基本的数学知识,比如代数的初步知识,能够进行简单的代数运算。

但是学生对于一元一次方程的概念和解法可能还比较陌生,需要通过具体的实例和操作来理解和掌握。

学生的学习兴趣和积极性较高,对于新的知识有较强的求知欲,但也有一部分学生可能对于一些抽象的概念和理论感到困惑,需要教师耐心引导和讲解。

三. 教学目标1.知识与技能:学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。

2.过程与方法:学生通过观察、操作、思考、交流等过程,培养自己的数学思维和解决问题的能力。

3.情感态度与价值观:学生能够积极参与课堂学习,克服困难,自主探索,增强对数学的兴趣和信心。

四. 教学重难点1.重点:一元一次方程的概念、性质和解法。

2.难点:一元一次方程的解法和应用。

五. 教学方法1.情境教学法:通过具体的实例和实际问题,引发学生的思考和兴趣,引导学生主动参与学习。

2.启发式教学法:教师提出问题,引导学生思考和探索,激发学生的学习积极性和创造力。

3.合作学习法:学生通过小组合作,共同解决问题,培养学生的合作意识和团队精神。

六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、教案、例题、练习题等。

2.学生准备:学生需要预习相关的知识,了解一元一次方程的基本概念。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入一元一次方程的概念,激发学生的兴趣和思考。

七年级数学上册《认识一元一次方程》教案、教学设计

七年级数学上册《认识一元一次方程》教案、教学设计
3.学生的学习习惯和方法。部分学生可能还保留着小学时期的学习习惯,依赖教师的讲解,缺乏自主探究的能力。教学中应鼓励学生主动参与,培养他们独立思考和合作交流的习惯。
4.学生的情感态度。初中生对新鲜事物充满好奇,但也可能因为遇到困难而产生挫败感。在教学过程中,应注重激发学生的学习兴趣,及时给予鼓励和支持,帮助他们建立自信心,形成积极向上的学习态度。
1.学生对方程概念的理解程度。大部分学生可能对方程的认识仅限于等式的平衡性,对于一元一次方程的解法和应用还不够熟悉,需要通过具体例子的引导和解释来帮助他们理解。
2.学生的数学思维能力。七年级学生正处于抽象逻辑思维的发展阶段,他们需要通过具体操作和形象思维来辅助理解和解决问题,因此在教学中应注重形象与抽象的结合,逐步引导学生向更高层次的数学思维过渡。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握一元一次方程的概念及其解法是本章节的重点。学生需要从具体的实例中抽象出一元一次方程的一般形式,并学会运用基本的解法步骤进行求解。
-重难点突破设想:通过生活实例引入一元一次方程,如购物找零、年龄问题等,让学生在实际问题中发现方程的模型,进而理解方程的含义。在教学过程中,逐步引导学生从特殊到一般,从直观到抽象,最终掌握一元一次方程的解法。
-设想实施:利用交互式白板、教学软件等现代教学工具,设计互动性强、形象直观的课件,让学生在视觉和操作上更好地理解一元一次方程的解法。
3.实施分层次教学,关注学生的个体差异。针对不同学生的学习能力和学习风格,设计不同难度的问题和练习,使每个学生都能在原有基础上得到提高。
-设想实施:准备基础、提高、拓展三个层次的问题和练习,让学生自主选择适合自己水平的任务,同时提供个别辅导,帮助学习有困难的学生克服困难。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1认识一元一次方程(第一课时)
方程是中学数学的重要内容,一元一次方程作为内容最基本、形式最简单的方程,在初中数学中占有极其重要的地位.本章内容在整个代数知识的学习中起着承上启下的作用,一方面是对已经学过的代数式、有理数的运算、整式的加减等知识的巩固和加深,另一方面又为今后学习方程组、分式方程、函数等知识奠定基础。

1.在具体情景中,理解方程的意义和作用.
2.理解一元一次方程的概念.
1.通过一元一次方程的引入,培养学生的建模思想,归纳、分析问题及解决问题的能力.
1.培养学生主动探究知识、自主学习和合作交流的意识.
2.在分析实际问题情景的活动中体会数学与现实的密切联系.
3.经历观察、归纳、应用等环节,形成良好的学习态度和学习方法.
【重点】建立一元一次方程的概念,会根据具体问题中的数量关系列出一元一次方程,体会数学的应用价值.
【难点】能根据具体问题中的等量关系列出一元一次方程.
【教师准备】多媒体课件.
【学生准备】预习教材.
(出示投影)同学们请看大屏幕,小彬和小华在进行猜年龄游戏,我们来看一看,小华是怎样猜出小彬的年龄的?他是利用什么样的方法呢?
法一:(21+5)÷2=13
法二:【分析】如果设小彬的年龄为x岁,那么“乘2再减5”就是,因此可以得到方程:.
生:我知道是怎么回事,如果设小彬的年龄为x岁,那么“乘2再减5”就是2x- 5,因此可以得到方程:2x - 5=21.
师:这位同学非常聪明,能够利用小学的知识把它解出来很好,而且非常正确,同学们给他掌声鼓励.
那我们是否也可以用列方程的方式来解决生活中的实际问题呢?这节课我们开始学习一元一次方程.(板书课题)
【知识拓展】
方程:含有未知数的等式。

等式:表示两个数或两个代数式相等关系的式子
判断以下哪些是方程。

(1)-2+5=3;
(2)3x-1=7;
(3)m=0;
(4)x>3;
(5)x+y=8;
(6)2x2-5x+1=0;
(7) 2a +b.
[设计意图]通过小彬和小华进行的猜年龄游戏,把现实生活中的问题转化为数学中的方程问题,从而认识一元一次方程的重要作用.
情景1:如图所示,小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约15 cm,大约几周后树苗长高到1 m?
提示思考问题:
(1)原来高多少?40 cm.
(2)x周后长高了多少?15x cm.
(3)本题中的等量关系是什么?树苗开始的高度+长高的高度=树苗将达到的高度.
(4)如何列方程表达等量关系?
情景2:甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每时比原计划多行走1 km,因此提前12 min到达乙地,张叔叔原计划每时行走多少千米?
思路一
若设张叔叔原计划每时行走x km,则实际每小时走km,由此,我们可以列出方程:.
师生活动:设未知数,根据题意列出方程,老师点评并分析如何建立一元一次方程的数学模型,并整理.
思路二
小组活动,共同探究、思考:
(1)题中的已知条件是什么?
(2)题中的等量关系是什么?动手写出来.
(3)如何设未知数,根据题中等量关系怎样列方程?
[处理方式]教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.
情景3:根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?
思路一
如果设2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度,那么可以得到方程:.
思路二
(1)想一想:题目中的已知条件是什么?题目中各个量之间有什么关系?
(2)品一品:你能正确地找出题目中的等量关系吗?动手写一写.
(3)考一考:看谁能正确地列出方程?
学生活动,教师巡视发现问题,并及时解决.
[设计意图]设置丰富的问题情景,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.
探究活动2什么是一元一次方程
1.问题导学
观察下面所列的方程,哪些是你熟悉的?有何共同特点?
2x - 5=2140+15x=100(1+147.30%)x=8930
在学生共同分析总结的基础上,指出这些方程中含有未知数的个数有什么特点?未知数的指数有什么特点?
上面方程中的第1,2,4个都具有以下特点:(1)都只含一个未知数x;(2)未知数的指数都是1;(3)方程两边都是整式.
板书:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫一元一次方程.
[知识拓展]1.判定一个方程是不是一元一次方程需同时满足三个条件:(1)只含有一个未知数;(2)未知数的指数都是1(3)方程中的代数式都是整式.
[设计意图]让学生通过观察、类比的方法得到定义,从而达到真正理解定义的目的,同
判断以下哪些是一元一次方程.
(1)x+y=8;(2)3x - 1=7;(3)m=0; (4)2x2 - 5x+1=0;
[处理方式]以抢答的形式来完成此题,并让学生找出错误理由.教师应注意对学生给出的答案作出点评和归纳.
[设计意图]进一步强化一元一次方程的概念满足的条件,采取抢答的形式,提高学生学习数学的兴趣和积极性.
例:x=2是下列方程的解吗?
(1)3x+(10-x)=7;
(2)2x2+6=7x.
1.一元一次方程:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫一元一次方程.
2.方程的解:使方程左、右两边的值相等的未知数的值,叫做方程的解.
1.在①2x- 1;②2x+1=3x;③|π - 3|=π - 3;④t+1=3中,等式有,方程有.(填序号)
解析:一元一次方程必须满足三个条件:(1)未知数的指数是1;(2)是整式方程;(3)含有一个
未知数.
答案:②③④②④
2.方程4x= - 4的解是x=.
解析:由题意可知x= - 1.故填- 1.
3.根据“x的2倍与5的和比x的小10”,可列方程为.
解析:由题意可知2x+5= - 10.故填2x+5= - 10.
4.若2x=6与3(x+a)= - 5x有相同的解,那么a - 1=.
解析:由2x=6,得x=3,因为2x=6与3(x+a)= - 5x有相同的解,所以把x=3代入3(x+a)= - 5x,解得a= - 8,所以a - 1= - 9.故填- 9.
5.若关于x的方程mx m - 2 - m+3=0是一元一次方程,则这个方程的解是.
解析:由关于x的方程mx m - 2 - m+3=0是一元一次方程可知m - 2=1,解得m=3,所以把m=3代入mx m - 2 - m+3=0,得3x - 3+3=0,解得x=0.故填x=0.
6.小明买了80分与2元的邮票共16枚,花了18元8角,求他买了80分的邮票和2元的邮票各多少枚.(只需列出方程)
解:设他买了80分的邮票x枚,
则2元的邮票(16 - x)枚,
所以方程为0.8x+2(16 - x)=18.8.
第1课时
1.对实际问题通过列方程的形式表达
2.什么是一元一次方程
3.什么是方程的解
一、教材作业
【必做题】
教材第132页习题5.1的1题.
【选做题】
教材第132页习题5.1的2题.
二、课后作业
本节优化设计。

相关文档
最新文档