江西省都昌一中2019-2020学年下学期高二期中考试线上数学试卷(含答案)
2019-2020年高二下学期期中联考数学(理)试题 含答案

2019-2020年高二下学期期中联考数学(理)试题含答案王永杰李好敬一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数满足,则的共轭复数的虚部是()A、B、C、D、2.若,则a的值是()A、2B、3C、4D、63.已知随机变量服从正态分布则()A、0.89B、0.78C、0.22D、0.114.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内极值点有()A、1个B、2个C、3个D、4个5.用数学归纳法证明不等式“”的过程中,由n=k到n=k+1时,不等式的左边()A.增加了一项 B. 增加了两项C. 增加了一项,又减少了一项D. 增加了两项,又减少了一项6.已知随机变量X的分布列如下表(其中为常数):则下列计算结果错误的是()A、B、C、D、7.用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12B.24C.30D.368.直线a//b, a上有5个点,b上有4 个点,以这九个点为顶点的三角形个数为()A、B、 C、D、9.某种玉米种子,如果每一粒发芽的概率为90%,播下5粒种子,则其中恰有两粒未发芽的概率约是()A.0.07B.0.27 C.0.30 D.0.3310.展开式中的常数项是( )A .B .18C .20D .011.给出下列命题:(1)已知事件是互斥事件,若,则;(2)已知事件是互相独立事件,若,则(表示事件的对立事件);(3)的二项展开式中,共有4个有理项. 则其中真命题的序号是( )A .(1)、(2).B .(1)、(3).C .(2)、(3).D .(1)、(2)、(3).12.函数是函数的导函数,且函数在点处的切线为000:()'()()(),()()()l y g x f x x x f x F x f x g x ==-+=-,如果函数在区间上的图像如图所示, 且,那么( )A .是的极大值点B .=是的极小值点C .不是极值点D .是极值点二、填空题:本大题共4小题,每小题5分。
2019—2020学年第二学期期中考试高二数学试题(含答案)

2019—2020学年第二学期期中考试高二数学试题一.选择题(每小题5分,共60分)1.设i 是虚数单位,则复数i 3-2i=( )A.-iB.-3iC.iD.3i2.某物体做直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B.12516米/秒 C .8米/秒D.674米/秒3.函数y =cos(-x )的导数是( )A .cos xB .-cos xC .-sin xD .sin x4. 校园科技节展览期间,安排小王、小李等4位志愿者到3个不同展区提供义务服务,每个展区至少有1人,则不同的安排方案共有的种数为( )。
A 、36B 、72C 、18D 、815. 过曲线y =cos x 上一点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在点P 处的切线垂直的直线方程为( ) A .2x -3y -2π3+32=0 B.3x +2y -3π3-1=0 C .2x +3y -2π3+32=0 D.3x +2y -3π3+1=0 6. 已知函数y =f (x )的图象如图所示,则函数y =f ′(x )的图象可能是图中的( )7. 给出下列结论:①(sin x)′=cos x;②若f(x)=1x2,则f′(3)=-227;③(e x)′=e x;④(log4x)′=1x ln 4.其中正确的有( )A.1个B.2个C.3个D.4个8. 若复数z满足z1+i=2i,则z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限9. 函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)10. 已知函数y=f(x),x∈R有唯一的极值,且x=1是f(x)的极小值点,则( ) A.当x∈(-∞,1)时,f′(x)≥0;当x∈(1,+∞)时,f′(x)≤0B.当x∈(-∞,1)时,f′(x)≥0;当x∈(1,+∞)时,f′(x)≥0C.当x∈(-∞,1)时,f′(x)≤0;当x∈(1,+∞)时,f′(x)≥0D.当x∈(-∞,1)时,f′(x)≤0;当x∈(1,+∞)时,f′(x)≤011. (X+2)6的展开式中x3的系数是()。
江西省都昌县第一中学2019_2020学年高二数学下学期期中试题理

江西省都昌县第一中学2019-2020学年高二数学下学期期中试题 理注意事项:1. 因疫情影响无法开学,本次考试采取网络阅卷方式,答题后请拍照上传。
2.答题前,考试务必将自己的姓名、班级填写在答题卡上3.作答时,请将答案写在答题卡上指定位置,写在本卷上无效。
第Ⅰ卷一、选择题:本题共19小题,每小题5分,共95分,在每小题给出的四个选项中,只有一项是符合要求的. 1.设1i2i 1iz -=++,则||z =( ) A .0B .12C .1D .22.已知函数()ln f x x =,则曲线()y f x =在1x =处的切线的倾斜角为( )A .4πB .34π C .3π D .23π 3.利用反证法证明:若0x y +=,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为04.已知i 是虚数单位,则20201i 1()1i i++=-( ) A .i -1B .i +1C .iD .2i5.甲、乙、丙、丁四个人安排在周一到周四值班,每人一天,若甲不排周一,乙不排周二,丙不排周三,则不同的排法有( ) A .10种 B .11种C .14种D .16种6.已知2m a a =--,13n a a =---,其中3a ≥,则,m n 的大小关系为( )A .m n >B .m n =C .m n <D .大小不确定7.已知直线21y x =-+是曲线213ln 2y x x m =-+的一条切线,则实数m 的值为( ) A .1B .2C .21-D .23-8.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种9.函数()2ln xf x x x=-的图象大致为( ) A .B .C .D .10.二项式812x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于( ) A .448B .900C .1120D .179211.已知函数2()ln 1f x x a x =-+在(1,3)内不是单调函数,则实数a 的取值范围是( )A .()2,18B .[]2,18C .(][),218,-∞+∞UD .[)2,1812.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”,根据图形的构成,此数列的第2020项与5的差,即20205a -=( )A .20192018⨯B .20172018⨯C .20181013⨯D .20191013⨯13.若6260126(2)x a a x a x a x -=++++L ,则1236a a a a +++⋅⋅⋅+等于( ) A .-4B .4C .-64D .-6314.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .36种B .42种C .48种D .60种15.已知()f x 为定义在R 上的可导函数,()f x '为其导函数,且()()f x f x '<恒成立,则( )A .()()202002020e f f > B .()()20192020f ef < C .()()202002020ef f <D .()()20192020ef f >16.已知1ex =是函数()(ln 1)f x x ax =+的极值点,则实数a 的值为( ) A .21e B .1eC .1D .e17.在nx x ⎛- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中系数最小项的系数为( ) A .-126B .-70C .-56D .-2818.已知复数(,)z x yi x y =+∈R ,且|2|3z -=,则1y x+的最大值为( ) A .3B .6C .26+D .26-19.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有2()6()f x x f x =--,当(,0)x ∈-∞时,2()112f x x '+<,若221(2)(2)1192f m f m m m +≤-++-,则实数m 的取值范围是( ) A .2,3⎡⎫-+∞⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .[1,)-+∞D .[2,)-+∞第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 20.函数()ln f x x x =-的极大值是______.21.若的展开式的二项式系数之和为,则展开式的常数项为________.22.设函数()323ax f x bx=-213a x +-在1x =处取得极值为0,则a b +=__________. 23.已知函数1()ln f x x a x x=-+,存在不相等的常数,m n ,使得()()0f m f n ''==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.三、解答题:本题共3个题,24题10分,25题12分,26题13分,共35分. 24.(10分)已知函数()()3113()f x x ax a f x '=-+∈R ,是()f x 的导函数,且()20f '=. (1)求a 的值;(2)求函数()f x 在区间[]3,3-上的最值.25.(12分)(1)已知,x y 为正实数,用分析法证明:2223x y x y x y +≤++.(2)若,,a b c 均为实数,且2123a x y =-+,223b y z =-+,2126c z x =-+,用反证法证明:c b a ,,中至少有一个大于0.26.(13分)已知函数()ln (1)f x x a x =--,a ∈R . (1)讨论函数()f x 的单调性; (2)当1x ≥时,ln ()1xf x x ≤+恒成立,求实数a 的取值范围.理科数学 答案第Ⅰ卷一、选择题:本题共19小题,每小题5分,共95分,在每小题给出的四个选项中,只有一项是符合要求的. 1.【答案】C 【解析】()()()()1i 1i 1i2i 2i i 2i i 1i 1i 1i z ---=+=+=-+=+-+,则1z =,故选C . 2.【答案】A【解析】函数()ln f x x =的导数为()1f x x'=, 可得()y f x =在1x =处的切线的斜率为1k =, 即tan 1α=,α为倾斜角,可得4πα=,故选A .3.【答案】B【解析】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,故选B . 4.【答案】A【解析】由题意可得202020201111i i i i i i+⎛⎫+=-=- ⎪-⎝⎭,故选A . 5.【答案】B【解析】当乙在周一时有:乙甲丁丙,乙丙丁甲,乙丙甲丁,乙丁甲丙; 当丙在周一时有:丙甲乙丁,丙甲丁乙,丙丁甲乙,丙丁乙甲; 当丁在周一时有:丁甲乙丙,丁丙甲乙,丁丙乙甲. 所以共11种,故选B . 6.【答案】C 【解析】m n -=-=<,所以m n <,故选C . 7.【答案】D 【解析】曲线213ln 0)2(y x x m x =-+>的导数为3y x x'=-,由题意直线21y x =-+是曲线213ln 2y x x m =-+的一条切线,可知32x x -=-,所以1x =,所以切点坐标为11,2m ⎛⎫+ ⎪⎝⎭,切点在直线上,所以1212m +=-+,即32m =-,故选D . 8.【答案】C【解析】222122322322C A A C A A 24+=,故选C .9.【答案】A【解析】因为()()f x f x -=,所以()f x 是偶函数,排除C 和D ,当0x >时,()2ln x x f x x =-,()332ln 1x x f x x '=+-,令()0f x '<,得01x <<,即()f x 在()0,1上递减; 令()0f x '>,得1x >,即()f x 在()1,+∞上递增, 所以()f x 在1x =处取得极小值,排除B ,故选A . 10.【答案】C【解析】该二项展开式通项为8882881C (2)2C rrrr r rx x x ---⎛⎫= ⎪⎝⎭, 令820r -=,则4r =,常数项等于448C 02112=,故选C .11.【答案】A【解析】∵()2af x x x'=-,()2ln 1f x x a x =-+在()1,3内不是单调函数, 故20ax x-=在()1,3存在变号零点,即22a x =在()1,3存在零点,∴182<<a , 故选A . 12.【答案】D【解析】由已知可以得出图形的编号与图中石子的个数之间的关系为:1n =时,1123(23)22a =+=⨯+⨯;2n =时,21234(24)32a =++=⨯+⨯;⋯由此可以推断:123(2)[2(2)](1)2n a n n n =++++=++⨯+L ;202015[2(20202)](20201)5101320192a ∴-=⨯++⨯+-=⨯.故选D . 13.【答案】D【解析】因为6260126(2)x a a x a x a x -=++++L ,令0x =,得60126(210)000a a a a -⨯=+⨯+⨯+⋅⋅⋅+⨯,即064a =, 再令1x =,可得1236641a a a a +++++=L ,123663a a a a ∴++++=-L , 故选D . 14.【答案】B【解析】根据题意,最左端只能排甲或乙,可分为两种情况讨论:①甲在最左端,将剩余的4人全排列,共有44A 24=种不同的排法;②乙在最左端,甲不能在最右端,有3种情况,将剩余的3人全排列,安排好在剩余的三个位置上,此时共有333A 18=种不同的排法,由分类计数原理,可得共有241842+=种不同的排法,故选B . 15.【答案】C【解析】构造函数()()xf xg x e=,则()()()x f x f x g x e '-'=, ()()f x f x '<Q ,则()0g x '>,所以,函数()y g x =在R 上为增函数.则()()02020g g <,即()()202020200f f e<,所以,()()202002020e f f <; ()()20202019g g >,即()()2020201920202019f f e e>,所以,()()20192020ef f <, 故选C . 16.【答案】B【解析】()()'ln 112ln f x ax ax =++=+, 因为1x e =是函数()()ln 1f x x ax =+的极值点,则12ln 0a f e e ⎛⎫'=+= ⎪⎝⎭,所以ln2a e =-,解得1a e =,则实数a 的值为1e, 故选B . 17.【答案】C【解析】Q 只有第5项的二项式系数最大, 8n ∴=,8(x的展开式的通项为()3882188C ((1)C 0,1,2,,8k k kk k kk T x x k --+==-=L ,∴展开式中奇数项的二项式系数与相应奇数项的展开式系数相等,偶数项的二项式系数与相应偶数项的展开式系数互为相反数, 而展开式中第5项的二项式系数最大,因此展开式第4项和第6项的系数相等且最小,系数为()3381C 56-=-.故选C . 18.【答案】C【解析】∵复数(,)z x yi x y =+∈R ,且2z -==()2223x y -+=.设圆的切线:1l y kx =-=化为2420k k --=,解得2k =±∴1y x+的最大值为2C . 19.【答案】A【解析】因为()()26f x x f x =--,所以()()()()22113322f x x x f x x x ⎡⎤-+=----+-⎢⎥⎣⎦, 记()()2132g x f x x x =-+,则()()g x g x =--,所以()g x 为奇函数,且()()1'62g x f x x '=-+, 又因为当(),0x ∈-∞时,()2112f x x +'<,即()1602f x x +'-<, 所以当(),0x ∈-∞时,()0g x '<,()g x 单调递减, 又因为()g x 为奇函数,所以()g x 在R 上单调递减, 若()()221221192f m f m m m +≤-++-, 则()()()()()()22112322232222f m m m f m m m +-+++≤---+-, 即()()22g m g m +≤-,所以22m m +≥-,所以23m ≥-.故选A .第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 20.【答案】1-【解析】()ln f x x x =-Q ,()11f x x'∴=-, 令()0f x '=,解得1x =,当01x <<时,()0f x '>;当1x >时,()0f x '<, 故()f x 在1x =处取得极大值,极大值为()1ln111f =-=-,故答案为1-. 21.【答案】-20 【解析】由于的展开式的二项式系数之和为,可得,所以的展开通项为,令,解得.因此,展开式的常数项为,故答案为.22.【答案】79-【解析】22()2f x ax bx a '=-+,因为函数)(x f y =在1=x 处取得极值为0,所以21(1)033a fb a =-+-=,2(1)20f a b a =-+=',解得1a b ==或23a =-,19b =-, 代入检验1a b ==时,22()21(1)0f x x x x =-+=-≥'无极值,所以1a b ==(舍);23a =-,19b =-符合题意,所79a b +=-.23.【答案】4e【解析】因为1()ln f x x a x x=-+的定义域为()0,+∞, 22211()1a x ax f x x x x++'=++=, 令()0f x '=,即210x ax ++=,()0,x ∈+∞,因为存在,m n ,使得()()0f m f n ''==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根,m n ,且m n a +=-,1m n ⋅=,所以1n m =,1a m m=--, 1111ln ln 1()()m m m m m m m f m f n m m m ⎛⎫⎛⎫---+--- ⎪ ⎪⎝⎭⎝⎭∴-=-+ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h x x x x x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦,则()()()22211121ln ln x x h x x x x x -+⎛⎫'=-=⎪⎝⎭,当10,x e ⎛⎤∈ ⎥⎝⎦时,()0h x '<恒成立, 所以()h x 在10,x e ⎛⎤∈ ⎥⎝⎦上单调递减,()min 14h x h e e⎛⎫∴== ⎪⎝⎭,即()()f m f n -的最小值为4e . 故答案为4e.三、解答题:本题共3个题,24题10分,25题12分,26题13分,共35分. 24.【答案】(1)4;(2)函数()f x 在[]3,3-区间上的最大值为319,最小值为133-.【解析】(1)()311()3f x x ax x =-+∈R Q ,()2 f x x a '∴=-, ()2 40f a '=-=Q ,4a ∴=.(2)由(1)可得()31413f x x x =-+,()24f x x '=-, 令()240f x x '=-=,解得2x =±,列出表格如下:又() 343f -=<Q ,()323f =->-, 所以函数()f x 在[]3,3-区间上的最大值为319,最小值为133-.25.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)证:因为x ,y 为正实数,要证2223x y x y x y +≤++,只要证(2)(2)2(2)(2)3x x y y x y x y x y +++≤++, 即证2231232(2)(2)x xy y x y x y ++≤++, 即证2220x xy y -+≥,即证2()0x y -≥,显然成立,所以原不等式成立. (2)证明:假设,,a b c 都小于等于0,则0a b c ++≤,又由2123a x y =-+,223b y z =-+,2126c z x =-+, 得22211223236a b c x y y z z x ++=-++-++-+,()()()222111102x y z =-+-+-+>,这与0a b c ++≤矛盾,所以假设不成立,所以原命题成立. 26.【答案】(1)见解析;(2)1,2⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()f x 的定义域为()0,+∞,()1ax f x x='-, 若0a ≤,则()0f x '>恒成立,∴()f x 在()0,+∞上单调递增;若0a >,则由()10f x x a =⇒=', 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<, ∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上可知:若0a ≤,()f x 在()0,+∞上单调递增;若0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减. (2)()()2ln 1ln 11x x a x x f x x x ---=++, 令()()2ln 1g x x x a x =--,()1x ≥,()ln 12g x x ax +'=-, 令()()ln 12h x g x x ax ==+-',()12ax h x x-'=, ①若0a ≤,()0h x '>,()g x '在[)1,+∞上单调递增,()()1120g x g a ≥=-'>', ∴()g x 在[)1,+∞上单调递增,()()10g x g ∴≥=,从而()ln 01x f x x -≥+不符合题意; ②若102a <<,当11,2x a ⎛⎫∈ ⎪⎝⎭,()0h x '>,∴()g x '在11,2a ⎛⎫ ⎪⎝⎭上单调递增, 从而()()1120g x g a ≥=-'>',∴()g x 在[)1,+∞上单调递增,()()10g x g ∴≥=,从而()ln 01x f x x -≥+不符合题意; ③若12a ≥,()0h x '≤在[)1,+∞上恒成立, ∴()g x '在[)1,+∞上单调递减,()()1120g x g a ≤=-'≤',∴()g x 在[)1,+∞上单调递减,()()10g x g ∴≤=,()ln 01x f x x -≤+, 综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.。
江西省九江市都昌第一中学2020年高二数学理月考试卷含解析

江西省九江市都昌第一中学2020年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在线性约束条件下,则目标函数的最大值为()A.26 B.24 C. 22 D.20参考答案:A2. 已知椭圆的方程为+=1,则该椭圆的焦点坐标为( )A.(0,﹣5),(0,5)B.(0,﹣7),(0,7)C.(﹣2,0),(2,0)D.(0,﹣2),(0,2)参考答案:C【考点】椭圆的简单性质.【专题】方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】由椭圆的方程为+=1,可得a=7,b=5,可得c=.【解答】解:由椭圆的方程为+=1,∴a=7,b=5,∴c===2,则该椭圆的焦点坐标为.故选:C.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于基础题.3. 在中,分别是的对边,若,则等于().A. 1B.C.D. 参考答案:B4. 如果执行右图3的程序框图,那么输出的()A、22B、46C、94D、190参考答案:C5. 已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)参考答案:C【考点】利用导数研究函数的单调性;函数零点的判定定理;利用导数研究函数的极值.【分析】(i)当a=0时,f(x)=﹣3x2+1,令f(x)=0,解得x=±,两个解,舍去.(ii)当a≠0时,f′(x)=3ax2﹣6x=3ax(x﹣),令f′(x)=0,解得x=0或.对a分类讨论:①当a<0时,由题意可得;②当a>0时,推出极值点不满足题意,推出结果即可.【解答】解:(i)当a=0时,f(x)=﹣3x2+1,令f(x)=0,解得x=±,函数f(x)有两个零点,舍去.(ii)当a≠0时,f′(x)=3ax2﹣6x=3ax(x﹣),令f′(x)=0,解得x=0或.①当a<0时,<0,当x<或x>0时,f′(x)<0,此时函数f(x)单调递减;当<x<0时,f′(x)>0,此时函数f(x)单调递增.∴是函数f(x)的极小值点,0是函数f(x)的极大值点.∵函数f(x)=ax3﹣3x2+1存在唯一的零点x0,且x0>0,则:,即:,可得a<﹣2.②当a>0时,>0,当x>或x<0时,f′(x)>0,此时函数f(x)单调递增;当0<x<时,f′(x)<0,此时函数f(x)单调递减.∴是函数f(x)的极小值点,0是函数f(x)的极大值点.不满足函数f(x)=ax3﹣3x2+1存在唯一的零点x0,且x0>0,综上可得:实数a的取值范围是(﹣∞,﹣2).故选:C.6. 若复数z2+2=0,则z3等于()A.±2B.2 C.±2i D.﹣2i参考答案:C【考点】A7:复数代数形式的混合运算.【分析】设z=x+yi,其中x,y∈R,代入已知式子由复数相等的定义可得xy的方程组,解方程组可得z,可得答案.【解答】解:设z=x+yi,其中x,y∈R,由题意可得(x+yi)2+2=0,化简可得x2﹣y2+2+2xyi=0,∴x2﹣y2+2=0且2xy=0,解得,∴z=i,∴z3=(i)3=±2i故选:C.【点评】本题考查复数的代数形式的混合运算,属基础题.7. 设F1,F2是椭圆=1的左、右两个焦点,若椭圆上满足PF1⊥PF2的点P有且只有两个,则离心率e的值为()A. B. C. D.参考答案:C略8. 已知,若不等式的解集为,则的值为()A.B.C.D.参考答案:C略9. 当0 < a < 1时,方程=1表示的曲线是()A.圆B.焦点在x轴上的椭圆C.焦点在y轴上的椭圆D.双曲线参考答案:B略10. 圆的半径为( )A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. (N*)展开式中不含的项的系数和为参考答案:1略12. 若方程有解,则实数的取值范围是▲.参考答案:略13. 若log4(3a+4b)=log2,则a+b的最小值是.参考答案:7+4考点:基本不等式.专题:不等式的解法及应用.分析:log4(3a+4b)=log2,可得3a+4b=ab,a,b>0.>0,解得a>4.于是a+b=a+=+7,再利用基本不等式的性质即可得出.解答:解:∵log4(3a+4b)=log2,∴=,∴,∴3a+4b=ab,a,b>0.∴>0,解得a>4.a+b=a+=+7≥7+=,当且仅当a=4+2时取等号.∴a+b的最小值是7+4.故答案为:7+4.点评:本题考查了对数的运算性质、基本不等式的性质,考查了计算能力,属于基础题.14. 如果双曲线的一条渐近线与直线平行,则双曲线的离心率为.参考答案:215. 已知函数的图象如图所示,则该函数的解析式是__________.参考答案:【分析】根据所给的图象,得到三角函数的振幅,根据函数的图象过点的坐标,代入解析式求出φ,ω,得到函数的解析式【详解】根据图象可以看出A=2,图像过(0,1)∴2sinφ=1,故φ∵函数的图象过点(,0)所以=2k,k∈Z,故, k∈Z由题即故当k=-1,∴函数的解析式是.故答案为【点睛】本题考查三角函数的解析式,三角函数基本性质,熟记五点作图法是解题关键,是中档题.16. 若双曲线的离心率为,则其渐近线方程为_________________.参考答案:17. 函数f(x)=2x2﹣lnx的单调递减区间是.参考答案:【考点】利用导数研究函数的单调性.【分析】求出原函数的导函数,由导函数小于0求出自变量x在定义域内的取值范围,则原函数的单调减区间可求.【解答】解:由f(x)=2x2﹣lnx,得:f′(x)=(2x2﹣lnx)′=.因为函数f(x)=2x2﹣lnx的定义域为(0,+∞),由f′(x)<0,得:,即(2x+1)(2x﹣1)<0,解得:0<x<.所以函数f(x)=2x2﹣lnx的单调递减区间是.三、解答题:本大题共5小题,共72分。
2019-2020年高二下学期期中联考数学理试题 含答案

2019-2020年高二下学期期中联考数学理试题含答案一、选择题(本题12小题,每题5分共60分)1.已知复数的共轭复数(为虚数单位),则在复平面内对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限2.若命题:,命题:,则是的( )A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分也不必要条件3.几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.4.设函数,则该函数曲线在处的切线方程是( )A. B.C. D.5.观察按下列顺序排列的等式:,,,,…,猜想第个等式应为( )A.B.C.D.6.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是( )A. B. C. D.7.已知抛物线的顶点在原点,焦点在轴上,抛物线上的点到焦点的距离为4,则的值为() A.6或-6 B.2或-2 C.4或-4 D.12或-128. 七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( )A .240种 B.192种 C.120种 D.96种9. 若的展开式中的系数为,则的值等于( )A. B. C. D.10.设函数在R上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是() A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值11.已知双曲线,过其右焦点作圆的两条切线,切点记作,,双曲线的右顶点为,,其双曲线的离心率为( )A.B.C.D.12. 如图,已知正四棱锥所有棱长都为1,点是侧棱上一动点,过点垂直于的截面将正四棱锥分成上、下两部分.记,截面下面部分的体积为,则函数的图象大致为()二、填空题(本题4小题,每题5分,共20分)13.已知抛物线的焦点是双曲线的右焦点,则双曲线的渐近线方程为14. 将甲、乙、丙、丁四名学生分配到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为__________.15.如图,由曲线和直线,,所围成的图形(阴影部分)的面积的最小值是__________16.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x 求导数,得 于是()()()[()ln ()()]()x f x y f x x f x x f x ϕϕϕ'''=+, 运用此方法可以求得函数在(1,1)处的切线方程是 .三解答题(本题6小题,17题10分,18-22题各12分,共70分)17.已知的展开式中前三项的系数成等差数列.设.求:(1)的值; (2)的值;(3) 的值;18.平行四边形中,且以为折线,把折起,使平面平面,连接(1)求证:;(2)求二面角 的余弦值.19.已知关于的不等式对任意恒成立;,不等式成立.若为真,为假,求的取值范围.20.设函数(1)当时,求函数的单调区间;(2)当时,方程在区间内有唯一实数解,求实数的取值范围.21.椭圆E: 离心率为,且过.(1)求椭圆E 的方程;(2)已知直线过点,且与开口朝上,顶点在原点的抛物线C 相切于第二象限的一点,直线与椭圆E 交于两点,与轴交与点,若,,且,求抛物线C 的标准方程.22.已知函数在处取得极值2.(1)求的表达式;(2)设函数若对于任意的,总存在唯一的,使得,求实数的取值范围.xx 学年第二学期赣州市十二县(市)期中联考高二年级理科数学试卷答案一.选择题DCCAB DCBAD DA12.解析:选A.“分段”表示函数y =V (x ),根据解析式确定图象.y xD B O M NA ••当0<x <12时,截面为五边形,如图所示. 由SC ⊥平面QEPMN ,且几何体为正四棱锥,棱长均为1,可求得正四棱锥的高h =22,取MN 的中点O ,易推出OE ∥SA ,MP ∥SA ,NQ ∥SA ,则SQ =SP =AM =AN =2x ,四边形OEQN 和OEPM 为全等的直角梯形,则V S -AMN =13×12·AM ·AN ·h =23x 2, 此时V (x )=V S -ABCD -V S -AMN -V S -EQNMP =26-23x 2-13×(22x -32x 2)x =2x 3-2x 2+26⎝⎛⎭⎫0<x <12, 非一次函数形式,排除选项C ,D.当E 为SC 中点时,截面为三角形EDB ,且S △EDB =24. 当12<x <1时,S 截面24=(1-x 12)2 ⇒S 截面=2(1-x )2. 此时V (x )=23(1-x )3⇒V ′(x)=-2(1-x )2. 当x →1时,V ′→0,则说明V (x )减小越来越慢,排除选项B.二.填空题13. 14. 30 15. 14 16.16. 试题分析:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.三.解答题17解:(1) 由题设,得C 0n +14×C 2n =2×12×C 1n, 即n 2-9n +8=0,解得n =8,n =1(舍). (3)(2). ,令8-r =5r =3,所以a 5=7 (6)(3) 在等式的两边取x =-1,得a 0-a 1+a 2-a 3+…+a 8=1256…………….10 18.解:(1)在中,2222cos 603,BD AB AD AB AD =+-⋅⋅⋅=所以所以,因为平面平面,所以平面,所以(5分)(2)在四面体ABCD 中,以D 为原点,DB 为轴,DC 为轴,过D 垂直于平面BDC 的射线为轴,建立如图的空间直角坐标系. 则D (0,0,0),B (,0,0),C (0,1,0),A (,0,1)(6分)设平面ABC 的法向量为,而由得:取(8分)再设平面DAC 的法向量为而由得:取 (10分)所以即二面角B-AC-D 的余弦值是 (12分)19.解:关于的不等式对任意恒成立,即在上恒成立。
学2019-2020学年高二数学下学期期中试题理(含解析)_3 2)

学2019-2020学年高二数学下学期期中试题理(含解析)第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.设全集,,,则()A. B. C. D.【答案】A【解析】【分析】先求的补集,再求交集.【详解】因为全集,,,所以,∴.故选:A.【点睛】本题考查集合的综合运算,掌握交并补的定义是解题关键.2.设,则=A. 2B.C.D. 1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得,再求.【详解】因为,所以,所以,故选C.【点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.3.的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题.4.中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A. 174斤B. 184斤C. 191斤D. 201斤【答案】B【解析】用表示8个儿按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,∴,解得.∴.选B.5.等于A. 1B. e-1C. eD. e+1【答案】C【解析】【分析】由题意结合微积分基本定理求解定积分的值即可.【详解】由微积分基本定理可得:.故选C.【点睛】本题主要考查微积分基本定理计算定积分的方法,属于基础题.6.若是两条不同的直线,垂直于平面,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】若,因为垂直于平面,则或;若,又垂直于平面,则,所以“”是“的必要不充分条件,故选B.考点:空间直线和平面、直线和直线的位置关系.7.阅读下图所示的程序框图,运行相应的程序,输出的结果是()A. -1B. 2C. 3D. 4【答案】D【解析】试题分析:解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前 2 1第一圈-1 2第二圈 3 是,第三圈 2 4 否,则输出的结果为4,故选D考点:程序框图点评:本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.8.已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为()A. B. C. D.【答案】A【解析】【分析】求出双曲线的渐进线方程,可得到值,再由的关系和离心率公式,即可得到答案.【详解】双曲线的一条渐近线的倾斜角为,则,所以该条渐近线方程为;所以,解得;所以,所以双曲线的离心率为.故选A.【点睛】本题考查双曲线的方程与性质,考查离心率的求法,考查学生基本的运算能力,属于基础题,9.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A. 8号学生B. 200号学生C. 616号学生D. 815号学生【答案】C【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.10.某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是()A. B. C. D.【答案】C【解析】【详解】想听电台整点报时,时间不多于15分钟的概率可理解为:一条线段长为60,其中听到整点报时的时间不多于15分钟为线段长为15.则由几何概型,化为线段比得:,故选C.11.将函数的图象向左平移个单位长度后,得到函数的图象关于轴对称,则()A. B. C. D.【答案】D【解析】【分析】根据函数平移关系求出,再由的对称性,得到的值,结合其范围,即可求解.【详解】因为图象关于轴对称,所以,因为,所以.故选:D.【点睛】本题考查三角函数图象变换关系以及余弦函数的对称性,属于基础题.12.已知函数.设,若关于的不等式在上恒成立,则的取值范围是A. B.C. D.【答案】A【解析】【详解】满足题意时的图象恒不在函数下方,当时,函数图象如图所示,排除C,D选项;当时,函数图象如图所示,排除B选项,本题选择A选项.第Ⅱ卷(非选择题,共90分)注意事项:第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试卷上作答无效.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量,且,则_______.【答案】2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.14.若,满足约束条件,则的最大值为_____________.【答案】6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z 取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15.已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于_________________.【答案】16π【解析】本小题考查球的截面圆性质、球的表面积,基础题.设球半径为,圆M的半径为,则,即由题得,所以.16.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在数列中,,点在直线上(Ⅰ)求数列的通项公式;(Ⅱ)记 ,求数列的前n项和.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)根据点在直线上,代入后根据等差数列定义即可求得通项公式.(Ⅱ)表示出的通项公式,根据裂项法即可求得.【详解】(Ⅰ)由已知得,即∴数列是以为首项,以为公差的等差数列∵∴(Ⅱ)由(Ⅰ)得∴∴【点睛】本题考查了等差数列定义求通项公式,裂项法求和的应用,属于基础题.18.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到列联表:且已知在100个人中随机抽取1人,抽到喜欢游泳的学生的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由.参考公式与临界值表:.0.1002.706【答案】(1)列联表见解析(2)有,说明见解析【解析】【分析】(1)根据题意随机抽取1人喜欢游泳的概率为,喜欢游泳的人数为,即可列出列联表.(2)计算出观测值,利用独立性检验的思想即可求解.【详解】解:(1)因为在100人中随机抽取1人喜欢游泳的概率为.所以喜欢游泳的人数为,所以列联表如下:(2),所以有99.9%的把握认为“喜欢游泳与性别有关系”.【点睛】本题考查了列联表、独立性检验的基本思想,属于基础题.19.在中,内角所对的边分别为,已知.(1)求角C的大小(2)若,的面积为,求的周长.【答案】(Ⅰ).(Ⅱ).【解析】【分析】(Ⅰ)利用正弦定理化简已知等式可得值,结合范围,即可得解的值.(Ⅱ)利用正弦定理及面积公式可得,再利用余弦定理化简可得值,联立得从而解得周长.【详解】(Ⅰ)由正弦定理,得,在中,因,所以故,又因为0<C<,所以.(Ⅱ)由已知,得.又,所以.由已知及余弦定理,得,所以,从而.即又,所以的周长为.【点睛】本题主要考查了正弦定理,余弦定理的应用,考查了转化思想和数形结合思想,属于基础题.20.如图,在底面是正方形的四棱锥中,,点在底面的射影恰是的中点.(1)证明:平面平面;(2)求二面角的正弦值大小.【答案】(1)见解析(2)【解析】分析】(1)推导出,,从而平面,由此能证明平面平面.(2)取的中点以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的大小.【详解】(1)证明:依题意,得平面,又平面,所以.又,,所以平面.又平面,所以平面平面.(2)取的中点,依题意,得,,两两互相垂直,所以以,,为,,轴建立如图所示的空间直角坐标系,由已知得,,所以,,,,则,,.设是平面法向量,则令,则.设是平面的法向量,则令,则,,二面角的正弦值为.【点睛】本题考查面面垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.已知函数在处取得极值.(1)求实数的值;(2)当时,求函数的最小值.【答案】(1);(2).【解析】【分析】(1)求导,根据极值的定义可以求出实数的值;(2)求导,求出时的极值,比较极值和之间的大小的关系,最后求出函数的最小值.【详解】(1),函数在处取得极值,所以有;(2)由(1)可知:,当时,,函数单调递增,当时,,函数单调递减,故函数在处取得极大值,因此,,,故函数的最小值为.【点睛】本题考查了求闭区间上函数的最小值,考查了极值的定义,考查了数学运算能力.22.已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)直线:与椭圆相交于,两点,若,试用表示.【答案】(1) (2)【解析】【分析】(1)由题意列方程组,求解方程组即可得解;(2)由直线和椭圆联立,利用弦长公式结合韦达定理求表示即可.【详解】(1)由题意解得故椭圆C的方程为.(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m2-8=0,所以,.因为|AB|=4|,所以,所以,整理得k2(4-m2)=m2-2,显然m2≠4,又k>0,所以.故.【点睛】本题主要考查了直线与椭圆相交的弦长问题,属于基础题.学2019-2020学年高二数学下学期期中试题理(含解析)第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.设全集,,,则()A. B. C. D.【答案】A【解析】【分析】先求的补集,再求交集.【详解】因为全集,,,所以,∴.故选:A.【点睛】本题考查集合的综合运算,掌握交并补的定义是解题关键.2.设,则=A. 2B.C.D. 1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得,再求.【详解】因为,所以,所以,故选C.【点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.3.的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题.4.中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A. 174斤B. 184斤C. 191斤D. 201斤【答案】B【解析】用表示8个儿按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,∴,解得.∴.选B.5.等于A. 1B. e-1C. eD. e+1【答案】C【解析】【分析】由题意结合微积分基本定理求解定积分的值即可.【详解】由微积分基本定理可得:.故选C.【点睛】本题主要考查微积分基本定理计算定积分的方法,属于基础题.6.若是两条不同的直线,垂直于平面,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】若,因为垂直于平面,则或;若,又垂直于平面,则,所以“”是“的必要不充分条件,故选B.考点:空间直线和平面、直线和直线的位置关系.7.阅读下图所示的程序框图,运行相应的程序,输出的结果是()A. -1B. 2C. 3D. 4【答案】D【解析】试题分析:解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前 2 1第一圈-1 2第二圈 3 是,第三圈 2 4 否,则输出的结果为4,故选D考点:程序框图点评:本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.8.已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为()A. B. C. D.【答案】A【解析】【分析】求出双曲线的渐进线方程,可得到值,再由的关系和离心率公式,即可得到答案.【详解】双曲线的一条渐近线的倾斜角为,则,所以该条渐近线方程为;所以,解得;所以,所以双曲线的离心率为.故选A.【点睛】本题考查双曲线的方程与性质,考查离心率的求法,考查学生基本的运算能力,属于基础题,9.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A. 8号学生B. 200号学生C. 616号学生D. 815号学生【答案】C【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.10.某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是()A. B. C. D.【答案】C【解析】【详解】想听电台整点报时,时间不多于15分钟的概率可理解为:一条线段长为60,其中听到整点报时的时间不多于15分钟为线段长为15.则由几何概型,化为线段比得:,故选C.11.将函数的图象向左平移个单位长度后,得到函数的图象关于轴对称,则()A. B. C. D.【答案】D【解析】【分析】根据函数平移关系求出,再由的对称性,得到的值,结合其范围,即可求解.【详解】因为图象关于轴对称,所以,因为,所以.故选:D.【点睛】本题考查三角函数图象变换关系以及余弦函数的对称性,属于基础题.12.已知函数.设,若关于的不等式在上恒成立,则的取值范围是A. B.C. D.【答案】A【解析】【详解】满足题意时的图象恒不在函数下方,当时,函数图象如图所示,排除C,D选项;当时,函数图象如图所示,排除B选项,本题选择A选项.第Ⅱ卷(非选择题,共90分)注意事项:第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试卷上作答无效.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量,且,则_______.【答案】2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.14.若,满足约束条件,则的最大值为_____________.【答案】6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15.已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于_________________.【答案】16π【解析】本小题考查球的截面圆性质、球的表面积,基础题.设球半径为,圆M的半径为,则,即由题得,所以.16.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在数列中,,点在直线上(Ⅰ)求数列的通项公式;(Ⅱ)记 ,求数列的前n项和.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)根据点在直线上,代入后根据等差数列定义即可求得通项公式.(Ⅱ)表示出的通项公式,根据裂项法即可求得.【详解】(Ⅰ)由已知得,即∴数列是以为首项,以为公差的等差数列∵∴(Ⅱ)由(Ⅰ)得∴∴【点睛】本题考查了等差数列定义求通项公式,裂项法求和的应用,属于基础题.18.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到列联表:且已知在100个人中随机抽取1人,抽到喜欢游泳的学生的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由.参考公式与临界值表:.0.1002.706【答案】(1)列联表见解析(2)有,说明见解析【解析】【分析】(1)根据题意随机抽取1人喜欢游泳的概率为,喜欢游泳的人数为,即可列出列联表.(2)计算出观测值,利用独立性检验的思想即可求解.【详解】解:(1)因为在100人中随机抽取1人喜欢游泳的概率为.所以喜欢游泳的人数为,所以列联表如下:(2),所以有99.9%的把握认为“喜欢游泳与性别有关系”.【点睛】本题考查了列联表、独立性检验的基本思想,属于基础题.19.在中,内角所对的边分别为,已知.(1)求角C的大小(2)若,的面积为,求的周长.【答案】(Ⅰ).(Ⅱ).【解析】【分析】(Ⅰ)利用正弦定理化简已知等式可得值,结合范围,即可得解的值.(Ⅱ)利用正弦定理及面积公式可得,再利用余弦定理化简可得值,联立得从而解得周长.【详解】(Ⅰ)由正弦定理,得,在中,因,所以故,又因为0<C<,所以.(Ⅱ)由已知,得.又,所以.由已知及余弦定理,得,所以,从而.即又,所以的周长为.【点睛】本题主要考查了正弦定理,余弦定理的应用,考查了转化思想和数形结合思想,属于基础题.20.如图,在底面是正方形的四棱锥中,,点在底面的射影恰是的中点.(1)证明:平面平面;(2)求二面角的正弦值大小.【答案】(1)见解析(2)【解析】分析】(1)推导出,,从而平面,由此能证明平面平面.(2)取的中点以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的大小.【详解】(1)证明:依题意,得平面,又平面,所以.又,,所以平面.又平面,所以平面平面.(2)取的中点,依题意,得,,两两互相垂直,所以以,,为,,轴建立如图所示的空间直角坐标系,由已知得,,所以,,,,则,,.设是平面法向量,则令,则.设是平面的法向量,则令,则,,二面角的正弦值为.【点睛】本题考查面面垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.已知函数在处取得极值.(1)求实数的值;(2)当时,求函数的最小值.【答案】(1);(2).【解析】【分析】(1)求导,根据极值的定义可以求出实数的值;(2)求导,求出时的极值,比较极值和之间的大小的关系,最后求出函数的最小值.【详解】(1),函数在处取得极值,所以有;(2)由(1)可知:,当时,,函数单调递增,当时,,函数单调递减,故函数在处取得极大值,因此,,,故函数的最小值为.【点睛】本题考查了求闭区间上函数的最小值,考查了极值的定义,考查了数学运算能力.22.已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)直线:与椭圆相交于,两点,若,试用表示.【答案】(1) (2)【解析】【分析】(1)由题意列方程组,求解方程组即可得解;(2)由直线和椭圆联立,利用弦长公式结合韦达定理求表示即可.【详解】(1)由题意解得故椭圆C的方程为.(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m2-8=0,所以,.因为|AB|=4|,所以,所以,整理得k2(4-m2)=m2-2,显然m2≠4,又k>0,所以.故.【点睛】本题主要考查了直线与椭圆相交的弦长问题,属于基础题.。
2019-2020年高二下学期期中考试数学(理)试题含答案

2019-2020年高二下学期期中考试数学(理)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3-4页。
试卷满分150分。
考试时间120分钟。
第I 卷(选择题,共60分)一、选择题:(本大题共12小题,每题5分,满分60分)1.曲线y =13x 3-2在点(1,-53)处切线的倾斜角为( )A .30°B .45°C .135°D .150° 2.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32 D .33 3.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .eC .ln 22D .ln 2 4.曲线y =cos x 与坐标轴所围成图形面积是( ) A .4B .2C .52D .35.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .在(0,π)上递增,在(π,2π)上递减C .减函数D .在(0,π)上递减,在(0,2π)上递增6.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 有一个能被5整除D .a ,b 有一个不能被5整除7.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 8.设a >0,b >0,则以下不等式中不一定成立的是( )A . a 2+b 2+2≥2a +2bB .ln(ab +1)≥0C .b a +ab≥2 D .a 3+b 3≥2ab 29.在平行六面休ABCD -A ′B ′C ′D ′中,若'23'AC xAB yBC zC C =++u u u u r u u u r u u u r u u u u r, 则x +y +z 等于( )A .B .76C .56D .2310.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A .20B .18C .3D .011.利用数学归纳法证明不等式1+12+13+ (1)2n -1<f(n) (n≥2,n ∈N *)的过程中,由n =k变到n =k +1时,左边增加了( ) A .1项B .k 项C .2k-1项 D .2k 项12.已知f (x )=x 3+x ,若a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( )A .一定大于0B .一定等于0C .一定小于0D .正负都有可能第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每题5分,满分20分)13.函数f (x )=x (1-x 2)在[0,1]上的最大值为 . 14.则常数T 的值为 .15.在12221111,,;Rt ABC CA CB h h CA CB∆⊥=+中,斜边上的高为则类比此性质,如下图,在四面体P -ABC 中,若PA 、PB 、PC 两两 垂直,底面ABC 上的高为h ,则得到的正确结论为__________________________. .16.若函数在区间上是单调递增函数,则实数的取值范围是.hP三、解答题:(本大题共6小题,满分70分) 17.(本题满分10分) 若,求证:33222()()()a b a b a b ++≥+ .18.(本题满分12分) 已知函数在处取得极值-2. (1)求函数的解析式; (2)求曲线在点处的切线方程;19.(本题满分12分)用总长为14.8米的钢条制成一个长方体容器的框架,如果所制的容器的底面的长比宽多0.5米,那么高为多少时容器的容器最大?并求出它的最大容积.20.(本题满分12分)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。
2019-2020学年江西省都昌县第一中学高二下学期期中考试数学(理)试题

2019-2020学年下学期高二期中考试数学试卷理 科 数 学★祝考试顺利★ 注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本题共19小题,每小题5分,共95分,在每小题给出的四个选项中,只有一项是符合要求的.1.设1i2i 1iz -=++,则||z =( ) A .0 B .12C .1D .22.已知函数()ln f x x =,则曲线()y f x =在1x =处的切线的倾斜角为( )A .4πB .34π C .3π D .23π 3.利用反证法证明:若0x y +=,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为04.已知i 是虚数单位,则20201i 1()1i i++=-( ) A .i -1B .i +1C .iD .2i5.甲、乙、丙、丁四个人安排在周一到周四值班,每人一天,若甲不排周一,乙不排周二,丙不排周三,则不同的排法有( ) A .10种B .11种C .14种D .16种6.已知2m a a =--,13n a a =---,其中3a ≥,则,m n 的大小关系为( )A .m n >B .m n =C .m n <D .大小不确定7.已知直线21y x =-+是曲线213ln 2y x x m =-+的一条切线,则实数m 的值为( ) A .1B .2C .21-D .23-8.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种9.函数()2ln xf x x x=-的图象大致为( ) A . B .C .D .10.二项式812x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于( ) A .448B .900C .1120D .179211.已知函数2()ln 1f x x a x =-+在(1,3)内不是单调函数,则实数a 的取值范围是( ) A .()2,18B .[]2,18C .(][),218,-∞+∞UD .[)2,1812.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”,根据图形的构成,此数列的第2020项与5的差,即20205a -=( )A .20192018⨯B .20172018⨯C .20181013⨯D .20191013⨯13.若6260126(2)x a a x a x a x -=++++L ,则1236a a a a +++⋅⋅⋅+等于( ) A .-4B .4C .-64D .-6314.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .36种B .42种C .48种D .60种15.已知()f x 为定义在R 上的可导函数,()f x '为其导函数,且()()f x f x '<恒成立,则( )A .()()202002020e f f > B .()()20192020f ef < C .()()202002020ef f <D .()()20192020ef f >16.已知1ex =是函数()(ln 1)f x x ax =+的极值点,则实数a 的值为( ) A .21e B .1eC .1D .e17.在nx x ⎛- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中系数最小项的系数为( ) A .-126B .-70C .-56D .-2818.已知复数(,)z x yi x y =+∈R ,且|2|3z -=,则1y x+的最大值为( ) A .3B .6C .26+D .26-19.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有2()6()f x x f x =--,当(,0)x ∈-∞时,2()112f x x '+<,若221(2)(2)1192f m f m m m +≤-++-,则实数m 的取值范围是( ) A .2,3⎡⎫-+∞⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .[1,)-+∞D .[2,)-+∞第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 20.函数()ln f x x x =-的极大值是______.21.若的展开式的二项式系数之和为,则展开式的常数项为________.22.设函数()323ax f x bx=-213a x +-在1x =处取得极值为0,则a b +=__________. 23.已知函数1()ln f x x a x x=-+,存在不相等的常数,m n ,使得()()0f m f n ''==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.三、解答题:本题共3个题,24题10分,25题12分,26题13分,共35分. 24.(10分)已知函数()()3113()f x x ax a f x '=-+∈R ,是()f x 的导函数,且()20f '=. (1)求a 的值;(2)求函数()f x 在区间[]3,3-上的最值.25.(12分)(1)已知,x y 为正实数,用分析法证明:2223x y x y x y +≤++.(2)若,,a b c 均为实数,且2123a x y =-+,223b y z =-+,2126c z x =-+,用反证法证明:c b a ,,中至少有一个大于0.26.(13分)已知函数()ln (1)f x x a x =--,a ∈R . (1)讨论函数()f x 的单调性; (2)当1x ≥时,ln ()1xf x x ≤+恒成立,求实数a 的取值范围.理科数学 答案第Ⅰ卷一、选择题:本题共19小题,每小题5分,共95分,在每小题给出的四个选项中,只有一项是符合要求的. 1.【答案】C 【解析】()()()()1i 1i 1i2i 2i i 2i i 1i 1i 1i z ---=+=+=-+=+-+,则1z =,故选C . 2.【答案】A【解析】函数()ln f x x =的导数为()1f x x'=, 可得()y f x =在1x =处的切线的斜率为1k =, 即tan 1α=,α为倾斜角,可得4πα=,故选A .3.【答案】B【解析】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,故选B . 4.【答案】A【解析】由题意可得202020201111i i i i i i+⎛⎫+=-=- ⎪-⎝⎭,故选A . 5.【答案】B【解析】当乙在周一时有:乙甲丁丙,乙丙丁甲,乙丙甲丁,乙丁甲丙; 当丙在周一时有:丙甲乙丁,丙甲丁乙,丙丁甲乙,丙丁乙甲; 当丁在周一时有:丁甲乙丙,丁丙甲乙,丁丙乙甲. 所以共11种,故选B . 6.【答案】C 【解析】m n -=-=<,所以m n <,故选C . 7.【答案】D【解析】曲线213ln 0)2(y x x m x =-+>的导数为3y x x'=-, 由题意直线21y x =-+是曲线213ln 2y x x m =-+的一条切线,可知32x x -=-,所以1x =,所以切点坐标为11,2m ⎛⎫+ ⎪⎝⎭,切点在直线上,所以1212m +=-+,即32m =-,故选D . 8.【答案】C【解析】222122322322C A A C A A 24+=,故选C .9.【答案】A【解析】因为()()f x f x -=,所以()f x 是偶函数,排除C 和D ,当0x >时,()2ln x x f x x =-,()332ln 1x x f xx '=+-, 令()0f x '<,得01x <<,即()f x 在()0,1上递减; 令()0f x '>,得1x >,即()f x 在()1,+∞上递增, 所以()f x 在1x =处取得极小值,排除B ,故选A . 10.【答案】C【解析】该二项展开式通项为8882881C (2)2C rrrr r rx x x ---⎛⎫= ⎪⎝⎭, 令820r -=,则4r =,常数项等于448C 02112=,故选C .11.【答案】A【解析】∵()2af x x x'=-,()2ln 1f x x a x =-+在()1,3内不是单调函数, 故20ax x-=在()1,3存在变号零点,即22a x =在()1,3存在零点,∴182<<a , 故选A . 12.【答案】D【解析】由已知可以得出图形的编号与图中石子的个数之间的关系为:1n =时,1123(23)22a =+=⨯+⨯;2n =时,21234(24)32a =++=⨯+⨯;⋯由此可以推断:123(2)[2(2)](1)2n a n n n =++++=++⨯+L ;202015[2(20202)](20201)5101320192a ∴-=⨯++⨯+-=⨯.故选D . 13.【答案】D【解析】因为6260126(2)x a a x a x a x -=++++L ,令0x =,得60126(210)000a a a a -⨯=+⨯+⨯+⋅⋅⋅+⨯,即064a =, 再令1x =,可得1236641a a a a +++++=L ,123663a a a a ∴++++=-L , 故选D . 14.【答案】B【解析】根据题意,最左端只能排甲或乙,可分为两种情况讨论:①甲在最左端,将剩余的4人全排列,共有44A 24=种不同的排法;②乙在最左端,甲不能在最右端,有3种情况,将剩余的3人全排列,安排好在剩余的三个位置上,此时共有333A 18=种不同的排法,由分类计数原理,可得共有241842+=种不同的排法,故选B . 15.【答案】C【解析】构造函数()()xf xg x e=,则()()()x f x f x g x e '-'=, ()()f x f x '<Q ,则()0g x '>,所以,函数()y g x =在R 上为增函数. 则()()02020g g <,即()()202020200f f e<,所以,()()202002020e f f <;()()20202019g g >,即()()2020201920202019f f e e >,所以,()()20192020ef f <,故选C . 16.【答案】B【解析】()()'ln 112ln f x ax ax =++=+, 因为1x e =是函数()()ln 1f x x ax =+的极值点,则12ln 0a f e e ⎛⎫'=+= ⎪⎝⎭,所以ln2a e =-,解得1a e =,则实数a 的值为1e, 故选B . 17.【答案】C【解析】Q 只有第5项的二项式系数最大, 8n ∴=,8(x的展开式的通项为()3882188C ((1)C 0,1,2,,8k k kk k kk T x x k --+==-=L ,∴展开式中奇数项的二项式系数与相应奇数项的展开式系数相等,偶数项的二项式系数与相应偶数项的展开式系数互为相反数, 而展开式中第5项的二项式系数最大,因此展开式第4项和第6项的系数相等且最小,系数为()3381C 56-=-.故选C . 18.【答案】C【解析】∵复数(,)z x yi x y =+∈R ,且2z -==()2223x y -+=.设圆的切线:1l y kx =-=化为2420k k --=,解得2k =±∴1y x+的最大值为2C .19.【答案】A【解析】因为()()26f x x f x =--,所以()()()()22113322f x x x f x x x ⎡⎤-+=----+-⎢⎥⎣⎦, 记()()2132g x f x x x =-+,则()()g x g x =--, 所以()g x 为奇函数,且()()1'62g x f x x '=-+,又因为当(),0x ∈-∞时,()2112f x x +'<,即()1602f x x +'-<, 所以当(),0x ∈-∞时,()0g x '<,()g x 单调递减, 又因为()g x 为奇函数,所以()g x 在R 上单调递减, 若()()221221192f m f m m m +≤-++-, 则()()()()()()22112322232222f m m m f m m m +-+++≤---+-, 即()()22g m g m +≤-,所以22m m +≥-,所以23m ≥-.故选A .第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 20.【答案】1-【解析】()ln f x x x =-Q ,()11f x x'∴=-, 令()0f x '=,解得1x =,当01x <<时,()0f x '>;当1x >时,()0f x '<, 故()f x 在1x =处取得极大值,极大值为()1ln111f =-=-,故答案为1-. 21.【答案】-20 【解析】由于的展开式的二项式系数之和为,可得,所以的展开通项为,令,解得.因此,展开式的常数项为,故答案为.22.【答案】79-【解析】22()2f x ax bx a '=-+,因为函数)(x f y =在1=x 处取得极值为0,所以21(1)033a fb a =-+-=,2(1)20f a b a =-+=', 解得1a b ==或23a =-,19b =-,代入检验1a b ==时,22()21(1)0f x x x x =-+=-≥'无极值,所以1a b ==(舍);23a =-,19b =-符合题意,所79a b +=-.23.【答案】4e【解析】因为1()ln f x x a x x=-+的定义域为()0,+∞, 22211()1a x ax f x x x x++'=++=, 令()0f x '=,即210x ax ++=,()0,x ∈+∞,因为存在,m n ,使得()()0f m f n ''==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根,m n ,且m n a +=-,1m n ⋅=,所以1n m =,1a m m=--, 1111ln ln 1()()m m m m m m m f m f n m m m ⎛⎫⎛⎫---+--- ⎪ ⎪⎝⎭⎝⎭∴-=-+ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h x x x x x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln ln x x h x x x x x -+⎛⎫'=-= ⎪⎝⎭,当10,x e ⎛⎤∈ ⎥⎝⎦时,()0h x '<恒成立, 所以()h x 在10,x e ⎛⎤∈ ⎥⎝⎦上单调递减,()min 14h x h e e ⎛⎫∴== ⎪⎝⎭,即()()f m f n -的最小值为4e .故答案为4e.三、解答题:本题共3个题,24题10分,25题12分,26题13分,共35分. 24.【答案】(1)4;(2)函数()f x 在[]3,3-区间上的最大值为319,最小值为133-. 【解析】(1)()311()3f x x ax x =-+∈R Q ,()2 f x x a '∴=-, ()2 40f a '=-=Q ,4a ∴=.(2)由(1)可得()31413f x x x =-+,()24f x x '=-, 令()240f x x '=-=,解得2x =±,列出表格如下:又() 343f -=<Q ,()323f =->-, 所以函数()f x 在[]3,3-区间上的最大值为319,最小值为133-.25.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)证:因为x ,y 为正实数,要证2223x y x y x y +≤++,只要证(2)(2)2(2)(2)3x x y y x y x y x y +++≤++,即证2231232(2)(2)x xy y x y x y ++≤++, 即证2220x xy y -+≥,即证2()0x y -≥,显然成立,所以原不等式成立. (2)证明:假设,,a b c 都小于等于0,则0a b c ++≤, 又由2123a x y =-+,223b y z =-+,2126c z x =-+,得22211223236a b c x y y z z x ++=-++-++-+, ()()()222111102x y z =-+-+-+>, 这与0a b c ++≤矛盾,所以假设不成立,所以原命题成立.26.【答案】(1)见解析;(2)1,2⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()f x 的定义域为()0,+∞,()1ax f x x='-, 若0a ≤,则()0f x '>恒成立,∴()f x 在()0,+∞上单调递增;若0a >,则由()10f x x a=⇒=', 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<, ∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上可知:若0a ≤,()f x 在()0,+∞上单调递增;若0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减. (2)()()2ln 1ln 11x x a x x f x x x ---=++, 令()()2ln 1g x x x a x =--,()1x ≥,()ln 12g x x ax +'=-, 令()()ln 12h x g x x ax ==+-',()12ax h x x-'=, ①若0a ≤,()0h x '>,()g x '在[)1,+∞上单调递增,()()1120g x g a ≥=-'>', ∴()g x 在[)1,+∞上单调递增,()()10g x g ∴≥=,从而()ln 01x f x x -≥+不符合题意; ②若102a <<,当11,2x a ⎛⎫∈ ⎪⎝⎭,()0h x '>,∴()g x '在11,2a ⎛⎫ ⎪⎝⎭上单调递增, 从而()()1120g x g a ≥=-'>',∴()g x 在[)1,+∞上单调递增,()()10g x g ∴≥=, 从而()ln 01x f x x -≥+不符合题意; ③若12a ≥,()0h x '≤在[)1,+∞上恒成立, ∴()g x '在[)1,+∞上单调递减,()()1120g x g a ≤=-'≤', ∴()g x 在[)1,+∞上单调递减,()()10g x g ∴≤=,()ln 01x f x x -≤+, 综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
— 高二期中线考理课数学 — 第1页(共6页)— 高二期中线考理课数学 — 第2页(共6页) 2019-2020学年下学期高二期中考试数学试卷理 科 数 学注意事项:1. 因疫情影响无法开学,本次考试采取网络阅卷方式,答题后请拍照上传。
2.答题前,考试务必将自己的姓名、班级填写在答题卡上3.作答时,请将答案写在答题卡上指定位置,写在本卷上无效。
第Ⅰ卷一、选择题:本题共19小题,每小题5分,共95分,在每小题给出的四个选项中,只有一项是符合要求的.1.设1i 2i 1i z -=++,则||z =( ) A .0 B .12 C .1 D .22.已知函数()ln f x x =,则曲线()y f x =在1x =处的切线的倾斜角为( )A .4πB .34πC .3πD .23π3.利用反证法证明:若0x y +=,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为04.已知i 是虚数单位,则20201i1()1i i ++=-( )A .i -1B .i +1C .iD .2i5.甲、乙、丙、丁四个人安排在周一到周四值班,每人一天,若甲不排周一,乙不排周二,丙不排周三,则不同的排法有( )A .10种B .11种C .14种D .16种6.已知2m a a =--,13n a a =---,其中3a ≥,则,m n 的大小关系为( )A .m n >B .m n =C .m n <D .大小不确定7.已知直线21y x =-+是曲线213ln 2y x x m =-+的一条切线,则实数m 的值为( )A .1B .2C .21- D .23-8.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( )A .12种B .18种C .24种D .64种 9.函数()2ln x f x x x =-的图象大致为( ) A . B . C . D . 10.二项式812x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于( ) A .448 B .900 C .1120 D .1792 11.已知函数2()ln 1f x x a x =-+在(1,3)内不是单调函数,则实数a 的取值范围是( ) A .()2,18 B .[]2,18 C .(][),218,-∞+∞U D .[)2,18 12.将石子摆成如图的梯形形状,称数列5,9,14,20,…为“梯形数”,根据图形的构成,此数列的第2020项与5的差,即20205a -=( ) A .20192018⨯ B .20172018⨯ C .20181013⨯ D .20191013⨯ 13.若6260126(2)x a a x a x a x -=++++L ,则1236a a a a +++⋅⋅⋅+等于( ) A .-4 B .4 C .-64 D .-63 14.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .36种 B .42种 C .48种 D .60种 15.已知()f x 为定义在R 上的可导函数,()f x '为其导函数,且()()f x f x '<恒成立,则( ) A .()()202002020e f f > B .()()20192020f ef < C .()()202002020e f f < D .()()20192020ef f > 16.已知1e x =是函数()(ln 1)f x x ax =+的极值点,则实数a 的值为( )— 高二期中线考理课数学 — 第3页(共6页)— 高二期中线考理课数学 — 第4页(共6页)A .21eB .1eC .1D .e17.在nx x ⎛- ⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中系数最小项的系数为( )A .-126B .-70C .-56D .-2818.已知复数(,)z x yi x y =+∈R ,且|2|3z -=,则1y x +的最大值为( )A .3B .6C .26+D .26-19.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有2()6()f x x f x =--,当(,0)x ∈-∞时,2()112f x x '+<,若221(2)(2)1192f m f m m m +≤-++-,则实数m 的取值范围是( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .[1,)-+∞ D .[2,)-+∞第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.20.函数()ln f x x x =-的极大值是______.21.若的展开式的二项式系数之和为,则展开式的常数项为________.22.设函数()323ax f x bx =-213a x +-在1x =处取得极值为0,则a b +=__________.23.已知函数1()ln f x x a x x =-+,存在不相等的常数,m n ,使得()()0f m f n ''==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.三、解答题:本题共3个题,24题10分,25题12分,26题13分,共35分.24.(10分)已知函数()()3113()f x x ax a f x '=-+∈R ,是()f x 的导函数,且()20f '=.(1)求a 的值; (2)求函数()f x 在区间[]3,3-上的最值. 25.(12分)(1)已知,x y 为正实数,用分析法证明:2223x y x y x y +≤++. (2)若,,a b c 均为实数,且2123a x y =-+,223b y z =-+,2126c z x =-+,用反证法证明:c b a ,,中至少有一个大于0.— 高二期中线考理课数学 — 第5页(共6页)— 高二期中线考理课数学 — 第6页(共6页)26.(13分)已知函数()ln (1)f x x a x =--,a ∈R .(1)讨论函数()f x 的单调性;(2)当1x ≥时,ln ()1xf x x ≤+恒成立,求实数a 的取值范围.理科数学 答案第Ⅰ卷一、选择题:本题共19小题,每小题5分,共95分,在每小题给出的四个选项中,只有一项是符合要求的.1.【答案】C 【解析】()()()()1i 1i 1i2i 2i i 2i i 1i 1i 1i z ---=+=+=-+=+-+,则1z =,故选C .2.【答案】A【解析】函数()ln f x x =的导数为()1f x x '=,可得()y f x =在1x =处的切线的斜率为1k =,即tan 1α=,α为倾斜角,可得4πα=,故选A .3.【答案】B【解析】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,故选B .4.【答案】A【解析】由题意可得202020201111i i i i i i +⎛⎫+=-=- ⎪-⎝⎭,故选A .5.【答案】B【解析】当乙在周一时有:乙甲丁丙,乙丙丁甲,乙丙甲丁,乙丁甲丙;当丙在周一时有:丙甲乙丁,丙甲丁乙,丙丁甲乙,丙丁乙甲;当丁在周一时有:丁甲乙丙,丁丙甲乙,丁丙乙甲.所以共11种,故选B .6.【答案】C【解析】0m n -=-=<,所以 m n <,故选C .7.【答案】D 【解析】曲线213ln 0)2(y x x m x =-+>的导数为3y x x '=-,由题意直线21y x =-+是曲线213ln 2y x x m =-+的一条切线,可知32x x -=-,所以1x =,所以切点坐标为11,2m ⎛⎫+ ⎪⎝⎭,切点在直线上, 所以1212m +=-+,即32m =-,故选D . 8.【答案】C 【解析】222122322322C A A C A A 24+=,故选C . 9.【答案】A 【解析】因为()()f x f x -=,所以()f x 是偶函数,排除C 和D , 当0x >时,()2ln x x f x x =-,()332ln 1x x f x x '=+-, 令()0f x '<,得01x <<,即()f x 在()0,1上递减; 令()0f x '>,得1x >,即()f x 在()1,+∞上递增, 所以()f x 在1x =处取得极小值,排除B ,故选A . 10.【答案】C 【解析】该二项展开式通项为8882881C (2)2C r r r r r r x x x ---⎛⎫= ⎪⎝⎭, 令820r -=,则4r =,常数项等于448C 02112=,故选C . 11.【答案】A 【解析】∵()2a f x x x '=-,()2ln 1f x x a x =-+在()1,3内不是单调函数, 故20a x x -=在()1,3存在变号零点,即22a x =在()1,3存在零点,∴182<<a ,故选A . 12.【答案】D 【解析】由已知可以得出图形的编号与图中石子的个数之间的关系为: 1n =时,1123(23)22a =+=⨯+⨯; 2n =时,21234(24)32a =++=⨯+⨯; ⋯ 由此可以推断: 123(2)[2(2)](1)2n a n n n =++++=++⨯+L ;202015[2(20202)](20201)5101320192a ∴-=⨯++⨯+-=⨯.故选D .13.【答案】D【解析】因为6260126(2)x a a x a x a x -=++++L ,令0x =,得60126(210)000a a a a -⨯=+⨯+⨯+⋅⋅⋅+⨯,即064a =,再令1x =,可得1236641a a a a +++++=L ,123663a a a a ∴++++=-L ,故选D .14.【答案】B【解析】根据题意,最左端只能排甲或乙,可分为两种情况讨论:①甲在最左端,将剩余的4人全排列,共有44A 24=种不同的排法;②乙在最左端,甲不能在最右端,有3种情况,将剩余的3人全排列,安排好在剩余的三个位置上,此时共有333A 18=种不同的排法,由分类计数原理,可得共有241842+=种不同的排法,故选B .15.【答案】C【解析】构造函数()()x f x g x e =,则()()()x f x f x g x e '-'=,()()f x f x '<Q ,则()0g x '>,所以,函数()y g x =在R 上为增函数.则()()02020g g <,即()()202020200f f e <,所以,()()202002020e f f <;()()20202019g g >,即()()2020201920202019f f e e >,所以,()()20192020ef f <,故选C .16.【答案】B【解析】()()'ln 112ln f x ax ax =++=+, 因为1x e =是函数()()ln 1f x x ax =+的极值点,则12ln 0af e e ⎛⎫'=+= ⎪⎝⎭, 所以ln 2ae =-,解得1a e =,则实数a 的值为1e ,故选B . 17.【答案】C 【解析】Q 只有第5项的二项式系数最大, 8n ∴=,8(x的展开式的通项为()3882188C ((1)C 0,1,2,,8k k k k k k k T x x k --+==-=L , ∴展开式中奇数项的二项式系数与相应奇数项的展开式系数相等, 偶数项的二项式系数与相应偶数项的展开式系数互为相反数, 而展开式中第5项的二项式系数最大, 因此展开式第4项和第6项的系数相等且最小,系数为()3381C 56-=-. 故选C . 18.【答案】C 【解析】∵复数(,)z x yi x y =+∈R,且2z -==()2223x y -+=. 设圆的切线:1l y kx =-= 化为2420k k --=,解得2k =, ∴1y x +的最大值为2+,故选C . 19.【答案】A 【解析】因为()()26f x x f x =--,所以()()()()22113322f x x x f x x x ⎡⎤-+=----+-⎢⎥⎣⎦, 记()()2132g x f x x x =-+,则()()g x g x =--, 所以()g x 为奇函数,且()()1'62g x f x x '=-+, 又因为当(),0x ∈-∞时,()2112f x x +'<,即()1602f x x +'-<, 所以当(),0x ∈-∞时,()0g x '<,()g x 单调递减, 又因为()g x 为奇函数,所以()g x 在R 上单调递减, 若()()221221192f m f m m m +≤-++-, 则()()()()()()22112322232222f m m m f m m m +-+++≤---+-,即()()22g m g m +≤-,所以22m m +≥-,所以23m ≥-.故选A .第Ⅱ卷 二、填空题:本题共4小题,每小题5分,共20分.20.【答案】1-【解析】()ln f x x x =-Q ,()11f x x '∴=-,令()0f x '=,解得1x =,当01x <<时,()0f x '>;当1x >时,()0f x '<,故()f x 在1x =处取得极大值,极大值为()1ln111f =-=-,故答案为1-.21.【答案】-20【解析】由于的展开式的二项式系数之和为,可得,所以的展开通项为,令,解得.因此,展开式的常数项为,故答案为.22.【答案】79-【解析】22()2f x ax bx a '=-+,因为函数)(x f y =在1=x 处取得极值为0,所以21(1)033af b a =-+-=,2(1)20f a b a =-+=',解得1a b ==或23a =-,19b =-,代入检验1a b ==时,22()21(1)0f x x x x =-+=-≥'无极值,所以1a b ==(舍); 23a =-,19b =-符合题意,所79a b +=-.23.【答案】4e【解析】因为1()ln f x x a x x =-+的定义域为()0,+∞,22211()1a x ax f x x x x ++'=++=,令()0f x '=,即210x ax ++=,()0,x ∈+∞, 因为存在,m n ,使得()()0f m f n ''==,且10,m e ⎛⎤∈ ⎥⎝⎦, 即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根,m n ,且m n a +=-,1m n ⋅=, 所以1n m =,1a m m =--, 1111ln ln 1()()m m m m m m m f m f n m m m ⎛⎫⎛⎫---+--- ⎪ ⎪⎝⎭⎝⎭∴-=-+ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=, 令()112ln h x x x x x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln ln x x h x x x x x -+⎛⎫'=-= ⎪⎝⎭,当10,x e ⎛⎤∈ ⎥⎝⎦时,()0h x '<恒成立, 所以()h x 在10,x e ⎛⎤∈ ⎥⎝⎦上单调递减,()min 14h x h e e ⎛⎫∴== ⎪⎝⎭,即()()f m f n -的最小值为4e . 故答案为4e . 三、解答题:本题共3个题,24题10分,25题12分,26题13分,共35分. 24.【答案】(1)4;(2)函数()f x 在[]3,3-区间上的最大值为319,最小值为133-. 【解析】(1)()31 1()3f x x ax x =-+∈R Q ,()2 f x x a '∴=-, ()2 40f a '=-=Q ,4a ∴=. (2)由(1)可得()31413f x x x =-+,()24f x x '=-, 令()240f x x '=-=,解得2x =±,列出表格如下: x (,2)-∞- 2- ()2,2- 2 (2,)+∞ ()f x ' + 0 - 0 + ()f x Z 极大值193 ] 极小值133- Z又()19343f -=<Q ,()13323f =->-,所以函数()f x 在[]3,3-区间上的最大值为319,最小值为133-.25.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)证:因为x ,y 为正实数,要证2223x y x y x y +≤++, 只要证(2)(2)2(2)(2)3x x y y x y x y x y +++≤++,即证2231232(2)(2)x xy y x y x y ++≤++,即证2220x xy y -+≥,即证2()0x y -≥,显然成立,所以原不等式成立.(2)证明:假设,,a b c 都小于等于0,则0a b c ++≤, 又由2123a x y =-+,223b y z =-+,2126c z x =-+, 得22211223236a b c x y y z z x ++=-++-++-+,()()()222111102x y z =-+-+-+>,这与0a b c ++≤矛盾,所以假设不成立,所以原命题成立. 26.【答案】(1)见解析;(2)1,2⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()f x 的定义域为()0,+∞,()1axf x x ='-,若0a ≤,则()0f x '>恒成立,∴()f x 在()0,+∞上单调递增; 若0a >,则由()10f x x a =⇒=', 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.综上可知:若0a ≤,()f x 在()0,+∞上单调递增; 若0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)()()2ln 1ln 11x x a x x f x x x ---=++, 令()()2ln 1g x x x a x =--,()1x ≥,()ln 12g x x ax +'=-, 令()()ln 12h x g x x ax ==+-',()12ax h x x -'=, ①若0a ≤,()0h x '>,()g x '在[)1,+∞上单调递增,()()1120g x g a ≥=-'>', ∴()g x 在[)1,+∞上单调递增,()()10g x g ∴≥=, 从而()ln 01x f x x -≥+不符合题意; ②若102a <<,当11,2x a ⎛⎫∈ ⎪⎝⎭,()0h x '>,∴()g x '在11,2a ⎛⎫ ⎪⎝⎭上单调递增, 从而()()1120g x g a ≥=-'>', ∴()g x 在[)1,+∞上单调递增,()()10g x g ∴≥=, 从而()ln 01x f x x -≥+不符合题意; ③若12a ≥,()0h x '≤在[)1,+∞上恒成立, ∴()g x '在[)1,+∞上单调递减,()()1120g x g a ≤=-'≤', ∴()g x 在[)1,+∞上单调递减,()()10g x g ∴≤=,()ln 01x f x x -≤+, 综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.。