实验6-离散时间系统的z域分析
第6章离散时间体统z域分析ppt课件

a n
a
n
令 f (n) an x(n) ,则它的Z变换
F(z)
f (n)zn
a n x(n) z n
n
n
所以 an x(n) X ( z )
a
《信号与线性系统》
第6章 离散时间体统z域分析
6.2.5 z域微分特性
若x(n)←——→X(z),收敛域为R,则nx(n)←→
z
dX (z) dz
《信号与线性系统》
第6章 离散时间体统z域分析
u(n) U(z)
1 1 z1
,
z
1
u(n 1)
z1U (z)
z 1 1 z1 ,
z
1
(n)
u(n)
u(n
1)
1 1 z1
z 1 1 z1
1
《信号与线性系统》
第6章 离散时间体统z域分析
6.2.2 移序特性
若 x(n)←——→X(z) 的 收 敛 域 为 A , 则 x(n-n0)←—— →z-n0 X(z)的收敛域也为A,但在零点和无穷远点可能 发生变化。
z re j eT e jT
(6―11)
《信号与线性系统》
第6章 离散时间体统z域分析
6.2 Z变换的性质
6.2.1 线性特性 设x1(n)X1(z)其收敛域为A,x2(n)X2(z),其收敛域为
B , 则 有 ax1(n)+bx2(n)aX1(z)+bX2(z) 其 收 敛 域 为 A∩B (这里a,b为常数)。这一关系显然是和拉普拉斯变换 的同一特性相对应,为了避免不必要的重复,它的证 明从略。
(3)n1>0,n2>0时,有
n2
X (z) x(n)zn
第6章离散时间信号与系统的z域分析

6.4.2 LTI离散时间系统零状态响应的 zT分析法 p188
若已知LTI离散时间系统的单位冲激序列响应
h[n]和输入信号f[n] 。计算
h[n]H(z),| z|:(ah,bh) f[n]F(z),| z|:(af,bf ) y[z]F(z)H(z),| z|:公共部分
则:yf [n]Z1[Y(z),]| z|:公共部分 当因果信号通过散 因LT果系 I 离统时, 由于公共收敛域在 一, 定因 存此可 不再讨再讨论收敛
区外极点是反因果分量 的贡献。
收敛边界a
pk
,b
max
pk'
。
min
j Im[ z ]
0a
b
Re[ z ]
图6-1 (a)
2、因果序列的ZT的收敛域是Z平面上某园的
园外部分 z:(a,) ,全部极点为区内极点 pk
,收敛边界 a pk max
如图6-1(b)所示。
j Im[ z ]
0a
Re[ z ]
若f: [n]F(z),z:(a,)
则n: [fn]zF/(z),z:(a,)
证明:
F ( z ) f [ k ] z k , | z |: ( a . ) k0
上式两端对 z求导,得:
F ' ( z ) f [ n ]( n ) z n 1 n0
z 1 nf [ n ] z n n0
M
bM (z i )
则
H(z)
i1 N
(z pj )
j1
j Im[z]
1
0
1
Re[ z]
图6-5 H(z)极点分布与h[k]的关系
2.离散时间系统的因果性 3.因果LTI离散时间系统的稳定性p196
第6章 离散系统的Z域分析

6、初值定理和终值定理
例子
例6.3 求kU(k)的Z变换。 kU(k)的 变换。
F ( Z ) = ∑ kZ k = Z 1 + 2 Z 2 + 3Z 3 +
k =0 ∞
Z 1 F ( Z ) = Z 2 + 2 Z 3 + 3Z 4 + (1 Z 1 ) F ( Z ) = Z 1 + Z 2 + Z 3 + = 1 + Z 1 + Z 2 + Z 3 + 1 1 Z ∞ = 1 1 1 Z
§6.2 Z变换的性质 Z变换的性质
1、线性特性
f1(k)←→F1(Z), f2(k)←→F2(Z) )←→F )←→F )+bf )←→aF 则af1(k)+bf2(k)←→aF1(Z)+ bF2(Z)
2、尺度变换
f(k)←→F(Z) )←→F )←→F Z/a) 则akf(k)←→F(Z/a)
5、F(z)微分特性 F(z)微分特性
f(k)←→F(Z) )←→F d d kf(k)←→-Z──F(Z), kf(k)←→(-Z─)nF(Z) kf( )←→- ──F kf( )←→(- dZ dZ 若f(k)为因果序列,即k<0时f(k)=0,则 为因果序列, <0时 )=0, f(0)=lim F(Z) Z→∞ (Z及lim f(k)=lim (Z-1)F(Z)
3、移序性质
f(k)←→F(Z) )←→F f(k+1)←→Z[F(Z)-f(0)] +1)←→Z n-1 f(k+n)←→ZnF(Z)-Zn∑f(k)Z-k )←→Z
k=0
4、卷积定理
数字信号处理实验离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。
2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。
3、掌握利用MATLAB 进行z 反变换的计算方法。
二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。
∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。
其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。
由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。
因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。
∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。
3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。
第6章 离散时间系统的z域分析

1 | z | 1 2 | z | 2
例 求序列f (k ) cosh (2k ) (k )的z变换。
1 2k 由于 cosh ( k ) (e e 2 k ) 2 2 在单边指数序列a k ( k )的z变换中令a e 2 , 可得 z e (k ) , | z || e 2 | z e2 根据z变换的线性性质可得
f (k )
3
f ( k ) ( k ) 3
2
2
1
1 o 1 2
f ( k 1) 3 2
k
1 o 1 2
f ( k 1) ( k ) 3 2
1
k
1
1 o 1 2
f ( k 1)
k
1 o 1 2
f ( k 1) ( k )
3
k
3
2 1
1 o 1 2
k
1 o 1 2
k
(1)双边Z变换的移位 若 f (k ) F ( z )
k 0
该式称为单边Z变换。
将f ( k )的Z变换简记为Z [ f ( k )] ,象函数F ( z )的逆z变换 简记为Z
1
[ F ( z )] f ( k )与F ( z )两者间的关系简记为 ,
f (k ) F ( z )
在拉普拉斯变换分析中重点讨论了单边拉普拉斯 变换,这是由于在连续时间系统中,非因果信号 的应用较少。 对于离散系统,非因果信号也有一定的应用范围, 因此对单、双边z变换都进行讨论。
a
b
O
Re(z )
6.1.3 常见序列的Z变换
(k )
1
O
k
(k ) 1
第六章离散时间信号与系统的z域分析

例6.1 求双边序列 f k a
k
a 1
的Z变换,并确定它的收敛域。
解:双边指数序列可写为右边序列和左边序列之和,即 a k a k k a k k 1
右边序列
a k k 的Z变换 Fa z
k
z Fa z , z a za
以后我们的讨论将限于单边z变换,记做F ( z ) Z f (k )
k 0
2、s平面和z平面间的对应关系 z e sT e ( j )T eT e jT z e j z eT
Im[ z ] j
s平面 z平面 Re[z ]
T
二、z变换的收敛域 z变换是z的幂级数,F ( z ) z变换存在的充要条件是
Z [ f (k-m) (k m)] z m F ( z ) Z [ f (k m) ( k m)] z m F ( z )
例如:
Z [ f ( k 1) ( k )] zF ( z ) zf (0) Z [ f ( k 2) ( k )] z 2 F ( z ) z 2 f (0) zf (1)
则左移后 f (k m) (k ) z m [ F ( z ) f (k ) z k ]
k 0 m 1
右移后 f (k m) (k ) z [ F ( z )
m
k m
1
f (k ) z k ]
(3) 若f (k )是因果序列,其单边 变换为 f ( k ) (k ) F ( z ) z Z [ f (k-m) (k )] z m F ( z ) m 1 常用 Z [ f (k m) (k )] z m F ( z ) z m f (k ) z k k 0
第六章 离散系统的z域分析

第1-12页 12页
z > 1
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
二、移位特性
双边z 双边z变换
若: f (k) ←→F (z) , α<z<β,且有整数 β 且有整数m>0, , 则: f(k±m) ←→ z±mF(z), α<z<β ± , β
2 2
z > a
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
四、卷积定理
若: f1 (k) ←→F1(z) , α1<z<β1 β f2 (k) ←→F2(z) , α2<z<β2 β 则: f1(k) * f2(k) ←→ F1(z)F2(z), , 例 收敛域至少为 相交部分 求单边序列 (k+1)akε(k)的z变换,(0<a<1)。 的 变换, 。 变换
三、z域尺度变换(序列乘ak) 域尺度变换(序列乘a
若: f (k) ←→F (z) , α<z<β,且对整数m>0, β 且对整数 , 则: ak f(k) ←→ F(z/a), αa<z<βa , β 变换。 例:求指数衰减正弦序列 aksin(βk)ε(k) 的z变换。 β 解:
6.1 z 变 换
b k , k < 0 f 2 (k ) = b k ε (−k − 1) = 0, k ≥ 0
解: 反因果序列的 变换为: 反因果序列的z变换为 变换为:
实验6-离散时间系统的z域分析

一,实验目的理解关于z变换及其反变换的定义和MATLAB实现,理解系统零极点分布与系统特性的关系。
二,实验原理1.z变换z变换调用函数Z=ztrans(F)z反变换调用函数F=ilaplace(Z)2.离散时间系统的系统函数3.离散时间系统的零极点分析可以通过调用函数zplane:zplane(b,a):b、a为系统函数的分子、分母多项式的系数向量。
zplane(z,p):z、p为零极点序列。
三,实验内容(1)已知因果离散时间能系统的系统函数分别为:①②试采用MATLAB画出其零极点分布图,求解系统的冲击响应h(n)和频率响应H(),并判断系统是否稳定。
①MATLAB程序如下:b=[1 2 1]a=[1 -0.5 -0.005 0.3]subplot(131)zplane(b,a)subplot(132)impz(b,a,0:10)subplot(133)[H,w]=freqz(b,a)plot(w/pi,H)程序执行结果如下:由程序执行结果,当t趋于无穷,响应趋于0,所以该系统是稳定系统。
②MATLAB程序如下:b=[1]a=[1 -1.2*2^(1/2) 1.44]subplot(131)zplane(b,a)subplot(132)impz(b,a,0:10)subplot(133)[H,w]=freqz(b,a)plot(w/pi,H)程序执行结果如下:由程序执行结果,t趋于无穷,系统响应发散,故该系统是不稳定系统。
(2)已知离散时间系统系统函数的零点z和极点p分别为:试用MATLAB绘制下述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。
①z=0,p=0.25MATLAB程序如下:b=[1 0]a=[1 -0.25]sys=tf(b,a)subplot(211)zplane(b,a)subplot(212)impz(b,a)程序执行结果如下:②z=0,p=1 MATLAB程序如下: b=[1 0]a=[1 -1]sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:③z=0,p=-1.25 MATLAB程序如下: b=[1 0]a=[1 1.25]sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:④z=0,p1=0.8,p2=MATLAB程序如下:b=[1 0]a=[1 -1.6*cos(pi/6) 0.64] sys=tf(b,a)subplot(211)zplane(b,a)subplot(212)impz(b,a)程序执行结果如下:⑤z=0,p1=,MATLAB程序如下:b=[1 0]a=[1 -cos(pi/4) 1] sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)impz(b,a)程序执行结果如下:⑥z=0,p1=1.2,p2=1.2MATLAB程序如下:z=0p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)] subplot(211)zplane(z,p)subplot(212)b=[1 0]a=[1 -2.4*cos(3*pi/4) 1.44]impz(b,a,0:30)程序执行结果如下:答:由执行结果知,当极点p在单位圆内时,系统响应收敛,该系统为稳定系统;当极点p 在单位圆上时,系统响应保持不变;当极点p在单位圆外时,系统响应发散,该系统为非稳定系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,实验目的
理解关于z变换及其反变换的定义和MATLAB实现,理解系统零极点分布与系统特性的关系。
二,实验原理
1.z变换
z变换调用函数Z=ztrans(F)
z反变换调用函数F=ilaplace(Z)
2.离散时间系统的系统函数
3.离散时间系统的零极点分析
可以通过调用函数zplane:
zplane(b,a):b、a为系统函数的分子、分母多项式的系数向量。
zplane(z,p):z、p为零极点序列。
三,实验内容
(1)已知因果离散时间能系统的系统函数分别为:
①H z=z 2+2z+1
z−0.5z−0.005z+0.3
②H z=z 2+2z+1
3z+3z−z+3z−1
试采用MATLAB画出其零极点分布图,求解系统的冲击响应h(n)和频率响应H(e jΩ),并判断系统是否稳定。
①H z=z 2+2z+1
z3−0.5z2−0.005z+0.3 MATLAB程序如下:
b=[1 2 1]
a=[1 -0.5 -0.005 0.3] subplot(131)
zplane(b,a)
subplot(132)
impz(b,a,0:10)
subplot(133)
[H,w]=freqz(b,a)
plot(w/pi,H)
程序执行结果如下:
由程序执行结果,当t趋于无穷,响应趋于0,所以该系统是稳定系统。
②H z=z 2+2z+1
3z4+3z3−z3+3z−1 MATLAB程序如下:
b=[1]
a=[1 -1.2*2^(1/2) 1.44] subplot(131)
zplane(b,a)
subplot(132)
impz(b,a,0:10)
subplot(133)
[H,w]=freqz(b,a)
plot(w/pi,H)
程序执行结果如下:
由程序执行结果,t趋于无穷,系统响应发散,故该系统是不稳定系统。
(2)已知离散时间系统系统函数的零点z和极点p分别为:
试用MATLAB绘制下述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。
①z=0,p=0.25
MATLAB程序如下:
b=[1 0]
a=[1 -0.25]
sys=tf(b,a)
subplot(211)
zplane(b,a)
subplot(212)
impz(b,a)
程序执行结果如下:
②z=0,p=1 MATLAB程序如下: b=[1 0]
a=[1 -1]
sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)
impz(b,a)
程序执行结果如下:
③z=0,p=-1.25 MATLAB程序如下: b=[1 0]
a=[1 1.25]
sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)
impz(b,a)
程序执行结果如下:
④z=0,p1=0.8e j π
6,p2=0.8e
−jπ
6
MATLAB程序如下:
b=[1 0]
a=[1-1.6*cos(pi/6)0.64] sys=tf(b,a)
subplot(211)
zplane(b,a)
subplot(212)
impz(b,a)
程序执行结果如下:
⑤z=0,p1=e j π
,e−j
π
MATLAB程序如下:
b=[1 0]
a=[1 -cos(pi/4) 1] sys=tf(b,a) subplot(211) zplane(b,a) subplot(212)
impz(b,a)
程序执行结果如下:
⑥z=0,p1=1.2e j 3π
,p2=1.2e−j
3π
MATLAB程序如下:
z=0
p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)] subplot(211)
zplane(z,p)
subplot(212)
b=[1 0]
a=[1 -2.4*cos(3*pi/4) 1.44]
impz(b,a,0:30)
程序执行结果如下:
答:由执行结果知,当极点p 在单位圆内时,系统响应收敛,该系统为稳定系统;当极点p 在单位圆上时,系统响应保持不变;当极点p 在单位圆外时,系统响应发散,该系统为非稳定系统。
(3)已知离散时间系统的系统函数分别为:
①H z =
z (z +2)(z−0.8e j π6)(z−0.8e −j π6) ②H z =z (z−2)
(z−0.8e j π6)(z−0.8e −j π6) 上述两个系统具有相同的极点,只是零点不同,试用MATLAB 分别绘制上述两个系统的零极点分布图及相应单位抽样响应的时域波形,观察并分析系统函数零点位置对单位抽样响应时域特性的影响。
①H z =z (z +2)(z−0.8e j π6)(z−0.8e −j π6)
MATLAB 程序如下:
b=[1 2 0]
a=[1 -0.8*3^(1/2) 0.64]
subplot(121)
zplane(b,a)
subplot(122) impz(b,a,0:20)
程序执行结果如下:
②H z =z (z−2)
(z−0.8e j π6)(z−0.8e −j π6)
MATLAB 程序如下: b=[1 -2 0]
a=[1 -0.8*3^(1/2) 0.64] subplot(121)
zplane(b,a)
subplot(122)
impz(b,a,0:20) 程序执行结果如下:
答:由题目可知,极点相同,所以,响应的波形都是收敛的;且两个系统的零点正好为相反数,其波形在形状上是上下相反的。
因此,零点不影响系统响应函数波形的收敛情况,只影响其波形的起伏状况。
四,心得体会
在最后一次实验中,MATLAB使我巩固了对系统零极点部分知识的掌握和理解。