2PSK数字调制系统
2PSK与2DPSK系统性能分析

2PSK与2DPSK系统性能分析2PSK和2DPSK都是数字调制技术中的一种调制方式。
它们分别是二进制相移键控(2-phase shift keying,2PSK)和二进制差分相移键控(2-differential phase shift keying,2DPSK)。
2PSK是一种基本的调制方式,它将每个比特映射到一个相移角度。
具体地说,1比特映射到0°的相位偏移,0比特映射到180°的相位偏移。
因此,在2PSK中,相位谱只有两个离散的相位值。
2DPSK是在2PSK的基础上引入了相邻符号的相对相位差(differential phase),而不是绝对相位值。
具体来说,在2DPSK中,1比特时,相对相位差为0°,0比特时,相对相位差为180°。
因此,2DPSK相位谱仍然只有两个离散的相位差。
两种调制方式的性能分析主要集中在误码率(bit error rate, BER)和功率效率上。
首先从误码率角度考虑,2PSK和2DPSK的误码率性能较为接近,都可以通过调制解调器的性能指标进行测量和分析。
2PSK的误码率与信噪比(signal-to-noise ratio, SNR)有关。
通常误码率与SNR之间存在一个近似线性的关系,即误码率与SNR的负幂函数呈指数关系。
而2DPSK由于相对相位差的引入,在非理想时钟同步条件下的误码率性能相对较好。
它相对于2PSK能够提供更好的抗多径传播和同步偏差的能力,从而降低误码率。
其次从功率效率角度考虑,2PSK和2DPSK相对于传统的振幅调制技术来说,都具有更高的功率效率。
因为它们只使用两个离散的相位值来表示信息,相位是连续的,而振幅值是固定的。
相对于振幅调制技术,二进制相位调制技术能够更有效地利用信道带宽,提高信息传输速率。
而2DPSK相对于2PSK来说,实际上是在相邻符号间引入了相对相位差,进一步提高了功率效率。
总的来说,2PSK和2DPSK是两种在数字通信中常用的调制方式。
2PSK数字信号的调制与解调-分享版

信息对抗大作业一、实验目的。
使用 MATLAB构成一个加性高斯白噪声情况下的2psk 调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。
二、实验原理。
数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
图 1相应的信号波形的示例101数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于" 同相 " 状态;如果其中一个开始得迟了一点,就可能不相同了。
如果一个达到正最大值时,另一个达到负最大值,则称为" 反相 " 。
一般把信号振荡一次(一周)作为360 度。
如果一个波比另一个波相差半个周期,我们说两个波的相位差180 度,也就是反相。
当传输数字信号时, "1" 码控制发 0 度相位, "0" 码控制发 180 度相位。
载波的初始相位就有了移动,也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK 中,通常用初始相位0 和π分别表示二进制“1”和“ 0”。
因此, 2PSK信号的时域表达式为(t)=Acos t+)其中,表示第 n 个符号的绝对相位:=因此,上式可以改写为图 22PSK信号波形解调原理2PSK信号的解调方法是相干解调法。
2ask和2psk的谱零点带宽

2ask和2psk的谱零点带宽1. 概述在数字通信领域,调制方式对信号的传输性能有着重要的影响。
在数字调制中,2ask和2psk是常见的调制方式,它们分别代表着双极性振幅移键和双极性相位移键。
在进行数字信号调制时,谱零点带宽是一个重要的参数,它影响着信号的传输效率和频率利用率。
本文将对2ask和2psk的谱零点带宽进行较为详细的介绍和分析。
2. 2ask的谱零点带宽2ask是一种双极性振幅移键调制方式,它将数字信号转换成两种不同的振幅水平。
在进行2ask调制时,信号的频谱分析会显示出两个零点,分别对应于两种不同的振幅水平。
这样的调制方式决定了2ask的谱零点带宽较宽,因为信号频谱中包含了两个独立的振幅成分。
3. 2psk的谱零点带宽与2ask不同,2psk是一种双极性相位移键调制方式,它将数字信号转换成两种不同的相位状态。
在进行2psk调制时,信号的频谱分析会显示出一个零点,对应于两种不同相位状态之间的切换点。
2psk的谱零点带宽相对较窄,因为信号频谱中只包含了一个相位成分。
4. 2ask和2psk的谱零点带宽对比通过上述对2ask和2psk的谱零点带宽的分析,可以得出如下结论:- 2ask的谱零点带宽较宽,频谱中包含了两个独立的振幅成分,频率利用率较低。
- 2psk的谱零点带宽相对较窄,频谱中只包含了一个相位成分,频率利用率较高。
从谱零点带宽的角度来看,2ask在频率利用率上不如2psk,但在抗噪能力和复杂度方面表现较好。
谱零点带宽的不同也决定了在实际应用中,对于不同的通信场景和要求,选择合适的调制方式至关重要。
5. 结语本文对2ask和2psk的谱零点带宽进行了较为详细的介绍和分析,通过对比可以得出它们在谱零点带宽方面的不同特点。
在实际应用中,需要根据具体的通信场景和要求,权衡选择适合的调制方式,以达到较好的传输性能和效率。
希望本文对读者们有所启发,并能够加深对于数字信号调制的理解。
6. 2ask和2psk的应用场景除了谱零点带宽的不同外,2ask和2psk还在实际应用中有着不同的优势和劣势,适用于不同的通信场景。
2PSK信号的解调电路设计

2PSK信号的解调电路设计2PSK(二进制相移键控)信号是一种基本的数字调制方式,它将数字信息转化为两个不同相位的正弦波信号。
解调电路是将接收到的2PSK信号转换回数字信息的关键部件。
设计一个2PSK信号的解调电路可以分为以下几个步骤:1.基带滤波器设计:接收到的2PSK信号可能经过了传输过程中的失真和噪声干扰,因此首先需要对信号进行滤波以去除高频噪声和失真。
基带滤波器通常使用低通滤波器来实现。
滤波器的设计需考虑到信号的带宽、失真和抗干扰能力等因素。
2.时钟恢复电路设计:2PSK信号中存在着相位差,因此需要在解调电路中设置时钟恢复电路,以便正确恢复接收到的信号的时钟信息。
时钟恢复电路通常采用锁相环(PLL)或相关器等技术实现。
时钟恢复电路对于解调过程中相位解调的准确性至关重要。
3.相位解调电路设计:相位解调是解调电路中最关键的部分。
相位解调的目标是从接收到的信号中恢复出数字信息。
二进制相移键控调制中使用了两个不同相位的载波信号来表示不同的数字,因此相位解调需要能够区分这两个相位并恢复出原始的数字信息。
相位解调电路通常采用鉴别器或位相锁定环等技术实现。
4.采样电路设计:在解调过程中,需要对解调后的信号进行采样,以恢复出原始的数字信息。
采样电路通常使用模拟-数字转换器(ADC)实现,将模拟信号转换为数字信号。
总结起来,设计2PSK信号的解调电路需要考虑基带滤波器、时钟恢复电路、相位解调电路和采样电路等几个关键部件。
每个部件的设计需要根据具体需求和技术限制进行综合考虑,以实现准确、稳定地将接收到的2PSK信号转换为数字信息的功能。
2psk调制解调的原理

2psk调制解调的原理2PSK调制(2-Phase Shift Keying)是一种基本的数字调制方式。
它通过改变载波的相位来传输数字信号,每个数字比特对应两个不同的相位。
以下将详细解析2PSK调制的原理。
2PSK调制主要涉及到两个过程:调制和解调。
调制过程:1. 文字编码:将要传输的信息进行数字编码,例如使用二进制编码方式,将每个数字比特用0和1代表。
2. 符号分配:每个数字比特对应一个相位,通常选择相位0和相位π来表示0和1。
3. 载波生成:产生一个恒定频率和幅度的正弦波,这个波被称为载波信号。
4. 相位调制:根据编码的数字比特,将相应的相位信息融入到载波信号中。
比如,相位0可以对应载波信号的相位不变,而相位π可以对应载波信号的相位反转。
5. 调制信号生成:得到相位调制后的信号,该信号即为调制信号。
解调过程:1. 接收信号采样:接收到经过信道传输的调制信号,并对信号进行采样。
2. 相位判决:根据接收到的信号的相位信息,进行相位判决以确定每个数字比特的数值。
例如,如果接收到的信号相位为0,则判定为0;如果接收到的信号相位为π,则判定为1。
3. 数字解码:将解调的数字比特翻译回原始的信息字符。
2PSK调制的优点:1. 简单性:2PSK调制的实现比较简单,仅需要改变相位即可。
2. 抗噪声性能:2PSK调制的抗噪声性能较好,因为每个数字比特对应的相位差异明显,相位误差引起的误码率较低。
2PSK调制的局限:1. 带宽效率:2PSK调制一次只能传输一个比特,相比其他复杂调制方式,其带宽利用率较低。
2. 灵活性:2PSK调制只能传输二进制信号,不能传输多元信号。
总结:2PSK调制通过改变载波的相位来传输数字信号。
在调制过程中,信号经过文字编码、符号分配、载波生成和相位调制等步骤。
在解调过程中,信号经过接收信号采样、相位判决和数字解码等步骤。
2PSK调制简单易实现,抗噪声性能好,但带宽利用率相对较低,适用于二进制信号的传输。
2psk和2dpsk的频带利用率

2PSK和2DPSK是两种常见的调制方式,它们在数字通信系统中被广泛应用。
在研究它们的频带利用率时,需要考虑它们的调制方法、信号特性以及频谱利用情况等因素。
1. 调制方式2PSK和2DPSK分别代表二进制相移键控和二进制差分相移键控,它们都属于相移键控调制的一种形式。
2PSK是一种直接对载波进行相位调制的调制方式,它能够传输两个不同的相位信息。
而2DPSK则是在相邻符号之间计算相位差异,通过相对相位信息进行传输。
两种调制方式在信号处理和解调方法上略有不同。
2. 信号特性在调制方式上的不同导致了2PSK和2DPSK在信号特性上的差异。
2PSK在传输过程中对相位变化敏感,而2DPSK对相位差异的敏感程度更高。
在噪声干扰等环境中,2DPSK通常具有更好的性能,能够更好地适应信道的变化。
3. 频谱利用情况对于频带利用率的考量,需要综合考虑信号调制方式和频谱利用情况。
常规情况下,2DPSK能够比2PSK更好地利用频谱资源。
因为使用差分编码调制的方式,相对于直接对载波进行相位调制,它能够更有效地利用频谱资源,提高频谱利用效率。
对于数字通信系统而言,频带利用率是一个十分重要的指标。
在资源有限的情况下,如何更有效地利用频谱资源成为了重要的研究方向。
以2PSK和2DPSK为例,它们代表了不同的调制方式,在频带利用率方面也存在差异。
因此在实际的应用中,需要根据具体的通信场景和要求选择合适的调制方式,以最大程度地提高频带利用效率。
2PSK和2DPSK都是常见的调制方式,它们在频带利用率方面有着不同的表现。
在实际应用中,需要根据具体的通信需求选择合适的调制方式,以达到最佳的效果。
希望本文的介绍能够对读者有所启发,对相关领域的专业人士能够有所帮助。
在数字通信系统中,频带利用率是指单位带宽内能够传输的信息量。
不同的调制技术对频带利用率会产生不同的影响。
本文将进一步探讨2PSK和2DPSK的频带利用率,并对比它们在实际应用中的优劣势。
bpsk调制原理

bpsk调制原理bpsk调制原理与模拟通信系统相比,数字调制和解调同样是通过某种方式,将基带信号的频谱由一个频率位置搬移到另一个频率位置上去。
不同的是,数字调制的基带信号不是模拟信号而是数字信号。
在大多数情况下,数字调制是利用数字信号的离散值去键控载波。
对载波的幅度、频率或相位进行键控,便可获得ASK、FSK、PSK等。
这三种数字调制方式在抗干扰噪声能力和信号频谱利用率等方面,以相干PSK的性能最好,目前已在中、高速传输数据时得到广泛应用。
2PSK系统的调制部分框图如下图所示2PSK/BPSK调制部分框图1、M序列发生器实际的数字基带信号是随机的,为了实验和测试方便,一般都是用M序列发生器产生一个伪随机序列来充当数字基带信号源。
按照本原多项式f(x)=X5+X3+1组成的五级线性移位寄存器,就可得到31位码长的M序列。
码元定时与载波的关系可以是同步的,以便清晰观察码元变化时对应调制载波的相应变化;也可以是异步的,因为实际的系统都是异步的,码元速率约为1Mbt/s。
2、相对移相和绝对移相移相键控分为绝对移相和相对移相两种。
以未调载波的相位作为基准的相位调制叫作绝对移相。
以二进制调相为例,取码元为“1”时,调制后载波与未调载波同相;取码元为“0”时,调制后载波与未调载波反相;“1”和“0”时调制后载波相位差1800。
绝对移相的波形如下图所示。
绝对移相的波形示意图在同步解调的PSK系统中,由于收端载波恢复存在相位含糊的问题,即恢复的载波可能与未调载波同相,也可能反相,以至使解调后的信码出现“0”、“1”倒置,发送为“1”码,解调后得到“0”码;发送为“0”码,解调后得到“1”码。
这是我们所不希望的,为了克服这种现象,人们提出了相对移相方式。
相对移相的调制规律是:每一个码元的载波相位不是以固定的未调载波相位作基准的,而是以相邻的前一个码元的载波相位来确定其相位的取值。
例如,当某一码元取“1”时,它的载波相位与前一码元的载波同相;码元取“0”时,它的载波相位与前一码元的载波反相。
2PSK与2DPSK系统性能分析要点

2PSK与2DPSK系统性能分析1. 课程设计目的1.掌握2PSK 2DPSK勺调制与解调原理;2.掌握仿真软件matlab的使用方法;3.完成对2PSK 2DPSK勺调制与解调仿真电路设计,并对仿真结果进行分析。
2. 课程设计要求1•了解2PSK系统包括几部分,及每部分的功能特性。
2•了解2DPSK系统包括几部分,及每部分的功能特性。
3•就其调制部分,利用分立元件搭建电路。
4•掌握理论联系实践的方法。
3. 相关知识3. 1 matlab软件的应用MATLAB是矩阵实验室(Matrix Laboratory )之意。
除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLA的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLA来解算问题要比用C,FORTRA等语言完相同的事情简捷得多•MATLA软件具有以下特点:1)语言简洁紧凑,使用方便灵活,库函数极其丰富;2)运算符丰富;3)MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。
4)程序限制不严格,程序设计自由度大。
例如,在MATLA里,用户无需对矩阵预定义就可使用。
5)程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。
6)MATLA的图形功能强大。
在FORTRA N C语言里,绘图都很不容易,但在MATLAB 里,数据的可视化非常简单。
MATLA还具有较强的编辑图形界面的能力。
7)MATLAB勺缺点是,它和其他高级程序相比,程序的执行速度较慢。
由于MATLAB 的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
8)功能强大的工具箱是MATLAB勺另一特色。
MATLAB包含两个部分:核心部分和各种可选的工具箱。
核心部分中有数百个核心内部函数。
其工具箱又分为两类:功能性工具箱和学科性工具箱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二○一三~二○一四学年第二学期电子信息工程系课程设计计划书班级:电信2011级3班*名:**学号:************课程名称:2PSK数字调制系统学时学分:1学分指导教师:***二○一四年六月二十四日1、课程设计目的:通过课程设计,巩固对课堂上基本理论知识的理解,加强理论联系实际,增强动手能力和通信系统仿真的技能。
2、课程设计内容及要求:1)设计任务:设计一种数字调制系统(2FSK, 2PSk, 2ASK,2DPSK)2)设计基本要求:(1)设计出规定的数字通信系统的结构,包括信源,调制,发送滤波器模块,信道,接受滤波器模块以及信宿;(2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等);(3)观察仿真结果并进行波形分析(眼图,);(4)分析影响系统性能的因素。
3)实施要求具体要求如下:使用Matlab/Simulink进行仿真a) 完成2ASK、2FSK 、2PSk或 2DPSK中任何一种调制和解调系统。
传输信道模型选用下面三种之一:AWGN Channel、Rayleigh fading propagation channel 和 Binary Symmetric Channel Channel;b) 分析已调信号的功率谱密度;c) 分析信道噪声对误码率的影响。
3.1 2PSK 的基本原理相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK 中,通常用初始相位为0和π表示二进制的“1”和“0”。
因此2PSK 的信号的时域表达式为:e2psk (t)=Acos(ωc t+φn )(3.1)其中,φn 表示第n 个符号的绝对相位:0 发送“0”时φn =(3.2)π 发送“1”时因此,上式可改写为Acos ωc t 概率为P(3.3)图 3.1 2PSK 信号的时间波形由于表示信号的两种码元的波形相同,记性相反,鼓2PSK 信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波相乘,即e2psk (t)=s(t)cos ωc t(3.4) 其中s(t)= ∑a n g(t-nT s ) (3.5)e2psk (t)=这里,g(t)是脉宽为Ts的单个矩形脉冲,而an得统计特性为1 概率为P=an(3.6)-1 概率为1-P即发送二进制符号“0”时(an取+1),e2psk(t)取0相位;发送二进制符号“1”时(an取-1),e2psk(t)取π相位。
3.2 2PSK的实现数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。
如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。
一般把信号振荡一次(一周)作为360度。
如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。
当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。
载波的初始相位就有了移动,也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
二进制移相键控信号的调制原理图如图 2.2 所示. 其中图(a)是采用模拟调制的方法产生2PSK信号,图(b)是采用数字键控的方法产生2PSK信号。
(a) (b)图 3.22PSK信号的调制原理图2PSK信号的解调通常都是采用相干解调, 解调器原理图如图 2.3 所示.在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波。
2PSK信号相干解调各点时间波形如图 2.4 所示,当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错。
图 3.32PSK信号的解调原理图图 3.42PSK信号相干解调各点时间波形图2-4是2PSK解调器在无噪声情况下能对2PSK信号的正确解调。
(a)是收到的2PSK信号;(b)是本地载波提取电路提取的同频同相载波信号;(c)是接收的2PSK信号与本地载波相乘得到的波形示意图,此波形经过低通滤波器滤波后得到低通信号;(d)是取样判决器在位定时信号;(e)是对(d)波形取样,再与门限进行比较,做出相应的判决得到恢复的信号;需要注意的是判决规则应与调制规则一致。
3.3 误码率分析在实际通信系统中往往存在噪声,噪声会对判决值产生影响,即会产生误码率,一般假设信道的噪声为高斯白噪声,下面讨论2PSK 解调器在高斯白噪声干扰下的误码率:(1)发端发‘1’时收到的2PSK 信号为()2cos 2PSK c S t a f tπ=- (3.7)带通滤波器的输出时信号加窄带噪声:()()()()cos2[]cos2sin 2c i I c Q c a f t n t a n t f t n t f tπππ-+=-+-(3.8)上式与本地载波相乘后:()()()()2cos2[]cos 2sin2cos2c i I c Q c c a f t n t a n t f t n t f t f tππππ-+=-+-()()()111[][]cos 4sin 4222I I c Q c a n t a n t f t n t f t ππ=-++-+-(3.9)经低通滤波后:()()I x t a n t =-+ (3.10)所以x(t)的取样判决值的概率密度函数为:()()22211nx a f x +-σ= (3.11)(2)发端发‘0’时,收到的2PSK 信号:()2cos2PSK c S t a f tπ= (3.12)带通滤波器的输出时信号加窄带噪声:()()()()cos 2[]cos 2sin 2c i I c Q c a f t n t a n t f t n t f tπππ+=+- (3.13)上式与本地载波相乘后:()()()()2cos2[]cos 2sin 2cos2c i I c Q c c a f t n t a n t f t n t f t f tππππ+=+-()()()111[][]cos 4sin 4222I I c Q c a n t a n t f t n t f t ππ=+++- (3.14)经低通滤波后:()()I x t a n t =+ (3.15)所以x(t)的取样判决值的概率密度函数为:()()222112nx a nf x e π--σ=σ (3.16)综上所述可画出概率密度函数曲线:图3.5 取样值概率密度函数示意图当P(0)=P(1)时,最佳门限应选在两条曲线的交点处。
即从图可看出最佳判决门效应为0.所以发‘1’错判‘0’概率为:()()()100/110/12xP f x d P erfc r ∞==⎰(3.17)发‘0’错判‘1’的概率等于发‘1’错判‘0’概率()()11/00/12P P erfc ==(3.18)根据图2-5及上式可得2PSK 相干解调器的误码率公式为()()11[01]22e P erfcP P erfc=+=(3.19)式中22/2n a r =σ(3.20)4.1 模型建立2PSK 调制与解调及误码分析的总体仿真模型:图4.1 2PSK调制与解调及误码分析的总体仿真模型4.2 参数设置正相载波(Sine Wave Function2)参数设置:图4.2 正相载波参数设置正相载波:4HZ,幅度+2设置依据:载波频率本来应该很高,但是为了波形观察方便,故频率设为4HZ。
反相载波(Sine Wave Function1)参数设置:图4.3 反相载波参数设置反相正弦波:4HZ,幅度-2设置依据:载波频率本来应该很高,但是为了波形观察方便,故频率设为4HZ;又要求与载波反相,故幅度设为-2。
伯努利二进制随机序列产生器(Bernoulli Binary Generator)参数设置:图4.4 伯努利二进制随机序列产生器参数设置伯努利二进制随机数产生器:幅度为2,周期为3,占0比为1/2。
码型变化器(Unipolar to Bipolar Converter)参数设置:图4.5 码型变化器参数设置极性为“Positive”设置依据:采用0变1不变调制。
多路选择器(Switch)参数设置:图4.6 多路选择器参数设置设置依据:当二进制序列大于0时,输出第一路信号;当二进制序列小于0时,输出第二路信号。
带通滤波器(Digital Filter Design)参数设置:图4.7 带通滤波器参数设置带通滤波器参数:带通范围为2~7HZ设置依据:载波频率为4HZ,而基带号带宽为1HZ,考滤到滤波器的边沿缓降,故设置为2~7HZ。
低通滤波器(Digital Filter Design1)参数设置:图4.8 低通滤波器参数设置低通滤波器参数:截止频率为1HZ设置依据:二进制序列的带宽为1HZ,故取1HZ。
取样判决器(Sign)参数设置:图4.9 取样判决器参数设置取样判决器设置:门限值取为0.5,取样时间为1设置依据:当大于0.5时输出1,当小于0.5时输出0,能达到在0变1不变的取样规则下正确解码的目的。
4.3 仿真波形调制波形:图4.10 调制波形图中第一个图为正相载波的波形,第二个图为随机产生的二进制序列,第三个图为通过码型变换器后的波形,最后一个图为调制后的2PSK信号。
解调波形:图4.11 解调波形图中第一个图为收到的2PSK波形,第二个图为与同频同向载波相乘后的波形,第三个图为通过带通滤波器后的波形,第四个图为通过低通滤波器后的波形,最后一个图为解调后的二进制序列。
4.4 不同信噪比的误码率1) 信噪比设为10:此时误码率为:解调后的波形:图4.12 解调波形1 2)信噪比设为30时:此时误码率为:解调后的波形:图4.13 解调波形2 3)信噪比设为50时:此时误码率为:解调后的波形:图4.14 解调波形3从仿真中可以看出,在2PSK调制系统中由于存在信道干扰和码间串扰,会影响调制系统的性能,即存在一定的误码率,误码率与信噪比相关,当信噪比提高时,误码率下降。
5、心得体会在同学的帮助和上网查资料下我顺利的完成了本次课程设计,在课程设计中,使用MATLAB下的simulink功能对2PSK进行建模仿真与分析。