3GPP协议中文版-003

合集下载

标准协议之3GPP标准协议

标准协议之3GPP标准协议

标准协议之3GPP标准协议引言第三代移动通信(3G)技术的发展,为高速数据通信提供了基础支撑,3G通信技术的标准化是实现互联网与移动通信的深度融合的关键。

为此,诸多组织纷纷开展研究,提出了各自的3G通信标准协议,3GPP标准协议就是其中最具代表性的一种。

本文将对3GPP标准协议进行详细介绍。

一、3GPP标准协议的概述3GPP(3rd Generation Partnership Project),即第三代移动通信合作伙伴计划,是一个负责第三代移动通信标准制定的国际标准化组织。

它成立于1998年,由欧洲电信标准化组织(ETSI)、日本电信技术委员会(ARIB)和中国电信技术标准化委员会(CCSA)三个组织联合发起,后增加了韩国电信技术委员会(TTC)和美国电子工程师学会(IEEE)等组织参与。

目前,该组织已经成为了全球3G移动通信标准的主要制定组织之一。

3GPP标准协议是3GPP制定的通信标准协议。

它包含了无线接入技术、网络及服务层技术等方面的规范和标准。

目前,3GPP已经发展到了第16个版本(所谓的Release 16),在这些版本中,3GPP不断更新、完善和调整标准协议,以满足不断增长的通信技术需求。

二、3GPP标准协议的技术特点1. 广泛适用性3GPP标准协议是基于全球3G技术制定的,因此在全球范围内得到了广泛的应用。

目前,3GPP标准协议已成为全球最主要的移动通信技术标准之一。

2. 支持多种业务3GPP标准协议支持语音、短信、多媒体消息、互联网接入、视频通信等多种业务,能够满足用户的多样化需求。

3. 高速数据通信3GPP标准协议支持多种高速数据通信技术,如CDMA2000、HSPA、LTE等,可以提供更加快捷、高速的数据传输服务。

近年来,随着5G技术的逐渐普及,3GPP标准协议也在不断升级,以适应新时期的通信技术需求。

4. 具备可扩展性3GPP标准协议支持多种可扩展的技术和功能,这使得移动通信网络能够根据用户需求的增加而进行扩展和升级。

3GPP技术标准中文版

3GPP技术标准中文版
Iur:两个RNC之间的逻辑接口。同时逻辑上代表一个在RNC之间的点对点链路,它的物理实现并不需要一个点 对点的链路。
Logical Model:Logical Model 使用代表网络元素,网络元素的集合,元素之间的拓扑关系,连接(终端节点), 传输实体(例如连接)等的信息对象来定义一个网络或者网络元素的抽象视图。 在Logical Model中定义的信息对象被连接管理功能使用。通过这种方法,我们就可以拥有一个独立于物理层实 现的管理功能。
Radio Link Set:再DL中有一个Transmit Power Control(TPC) 的公共初始化命令的一个或者更多的Raido Links。
Uu:在UTRAN和User Equipment之间的无线接口。
RAB sub-flows:Radio Access Bearer 可以由UTRAN通过几个sub-flows实现。这些sub-flows对应于NAS服 务数据流,这些数据流具有在预定义在RAB之内,例如,不同的可靠性级别的QoS特性。
3GPP TS 25.401 V3.10.0 (2002-06) 15-18 马进 xma
2003xm@
3GPP TS 25.401 V3.10.0 (2002-06) 15-18
bluesnowing bluesnowing@
3GPP TS 25.401 V3.10.0 (2002-06) 21-24
Radio Network Subsystem Application Part:在Iur接口上的无线网络信令。
RRC Connection:分别在UE和UTRAN上的RRC对等实体之间的点对点双向连接。一个UE或者没有RRC连接, 或者有一个RRC连接。
发布者 3G 研究和中文化团队

3GPP协议中文版-003

3GPP协议中文版-003

精选文档目次前言 (II)1 范围 (2)2 引用标准 (2)3 名语和缩略语 (2)4 提供给高层的业务 (4)4.1传输信道 (4)4.1.1 专用传输信道 (4)4.1.2 公共传输信道 (4)4.2 指示符 (5)5 物理信道和物理信号 (5)5.1 物理信号 (5)5.2 上行物理信道 (5)5.2.1 专用上行物理信道 (5)5.2.2 公共上行物理信道 (8)5.3 下行物理信道 (12)5.3.1 下行发射分集 (12)5.3.2 专用下行物理信道 (13)5.3.3 公共下行物理信道 (21)6 物理信道的映射和关联 (33)6.1传输信道到物理信道的映射 (33)6.2 物理信道和物理信号的关联 (34)7 物理信道之间的时序关系 (34)7.1 概述 (34)7.2 PICH/S-CCPCH定时关系 (35)7.3 PRACH/AICH定时关系 (36)7.4 PCPCH/AICH定时关系 (37)7.5 DPCH/PDSCH定时关系 (38)7.6 DPCCH/DPDCH定时关系 (38)7.6.1 上行链路 (38)7.6.2 下行链路 (38)7.6.3 在UE的上行/下行定时 (38)精选文档前言本通信标准参考性技术文件主要用于IMT-DS FDD(WCDMA)系统的无线接口的物理层部分,它主要介绍了物理信道的特性以及传输信道到物理信道的映射。

本文基于3GPP制订的Release-99(2000年9月份版本)技术规范,具体对应于TS 25.211 V3.4.0。

本参考性技术文件由信息产业部电信研究院提出。

本参考性技术文件由信息产业部电信研究院归口。

本参考性技术文件起草单位:信息产业部电信传输研究所本参考性技术文件主要起草人:徐京皓,徐菲,吴伟,张翔本参考性技术文件2001年1月首次发布。

本参考性技术文件委托无线通信标准研究组负责解释。

通信标准参考性技术文件IMT-DS FDD(WCDMA)系统无线接口物理层技术规范:物理信道和传输信道到物理信道的映射IMT-DS FDD(WCDMA) System Radio Interface Physical Layer Technical Specification: Physical channels and mapping of transport channels onto physical channels (FDD)1 范围本通信标准参考性技术文件介绍了IMT-DS FDD(WCDMA)系统的物理信道的特性和传输信道到物理信道的映射。

3gpp协议

3gpp协议

3GPP协议1. 引言3GPP(第三代合作伙伴计划)是一个跨国合作组织,致力于制定和发展无线通信标准和技术。

3GPP协议是由该组织制定的一系列标准和规范,用于支持全球范围内的移动通信网络。

本文档将介绍一些常见的3GPP协议,包括LTE和5G等。

2. LTE协议LTE(Long-Term Evolution)是一种4G移动通信技术,它是3GPP协议中的一部分。

LTE协议定义了整个网络架构和通信协议层,包括物理层、数据链路层、网络层和应用层等。

•物理层:LTE物理层定义了信道、调制解调、传输和编码等。

它使用了OFDM(正交频分多路复用)和MIMO(多输入多输出)等技术,以提供高速数据传输和更好的信号质量。

•数据链路层:LTE数据链路层负责广播和多址接入,以及无线资源的调度和管理。

它使用了一种称为LTE无线接入接口的协议,用于无线资源的分配和调度。

•网络层:LTE网络层包括用户面和控制面,它负责用户数据的路由和传输,以及控制消息的传递。

LTE网络层使用IP协议进行数据传输,并提供QoS(服务质量)管理、移动性管理和安全性等功能。

•应用层:LTE应用层提供基于IP的应用服务,如VoIP(语音通信)、视频流媒体和互联网访问等。

3. 5G协议5G是下一代移动通信技术,也是3GPP协议的一部分。

5G协议在LTE的基础上进行了扩展和改进,以提供更高的数据传输速度、更低的延迟和更好的网络容量。

•物理层:5G物理层采用了新的技术,如更高的频率、更宽的频带和更高的MIMO级别等。

它可以支持更高的数据传输速率和更低的延迟。

•数据链路层:5G数据链路层引入了新的帧结构和调度算法,以提高网络的容量和效率。

它还支持更复杂的调度和编码技术,以适应不同的应用需求。

•网络层:5G网络层引入了网络切片(Network Slicing)的概念,以支持不同种类的应用和服务。

它还支持更灵活的移动性管理和安全性机制。

•应用层:5G应用层将继续提供基于IP的应用服务,并支持更高质量的多媒体传输和更低的延迟。

3GPP技术标准中文版

3GPP技术标准中文版

3GPP TS 25.401 V3.10.0 (2002-06) 翻译小组成员翻译的部分姓名俱乐部ID 电子邮件3GPP TS 25.401 V3.10.0 (2002-06) 5-9 孙扬 phaeton yang_sun_80@3GPP TS 25.401 V3.10.0 (2002-06) 9-11 赵建青 happyqq zjqqcc@3GPP TS 25.401 V3.10.0 (2002-06) 11-14 周翔babytunny babytunny@3GPP TS 25.401 V3.10.0 (2002-06) 15-18 马进xma 2003xm@3GPP TS 25.401 V3.10.0 (2002-06) 15-18 bluesnowing bluesnowing@3GPP TS 25.401 V3.10.0 (2002-06) 21-24 tonyhunter tonyhunter@3GPP TS 25.401 V3.10.0 (2002-06) 26-28,37 maggie maggiemail88@3GPP TS 25.401 V3.10.0 (2002-06) 29-32 caisongjin caisongjin@3GPP TS 25.401 V3.10.0 (2002-06) 33-36 陈华安 ny2k3d4c c_huaan@关于“移动通信俱乐部3G本土化研究组”移动通信俱乐部3G本土化研究组3G Research&Localization Group of Mobile Club,简称3G RLG.MC由移动通信俱乐部()发起成立的。

3G RLG.MC致力于3G的本土化研究工作,工作方式是开放式的,非盈利目的的。

任何个人、组织均可参与3G RLG.MC。

3G RLG.MC最高纲领:成为中国最大的3G 研究社区和中文化团队,推进中国3G通信事业健康发展。

3GPP

3GPP
但由于3GPP2在标准的一致性和开放性方面较3GPP弱,所以运营商和制造商对CDMA2000整个系统的版本的选 择,也并不完全一致,给设备之间的互通和不同络之间的漫游带来一些困难。
3GPP2从2000年开始研究cdma2000-1X的增强型技术1X/EV。2000年9月3GPP2完成了可支持峰值速率为 2.4Mbps的cdma2000-1X的增强型技术1X/EV-DO(Data Only)的标准化。进而研究了支持5Mbps以上速率的 1X/EV-DV(Data and Voice)标准。
感谢观看
3GPP2 Release
C是面向全IP的标准,与3GPP类似,3GPP2由于主要精力在完善现有的版本,Release C的进展缓慢。
3G peer protocol
是基于3G移动通信络上的一种创建、传输、回放多媒体的标准。这种标准是基于MPEG-4编码技术的。
与5G
作为目前全球最大最重要的国际通信标准组织,3GPP在5G技术标准的制定及5G商业化的推进过程中功不可没。
3GPP
第三代合作伙伴ቤተ መጻሕፍቲ ባይዱ划
01 简介
03 与5G
目录
02 标准版本
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)的目标是实现由2G络到3G络的平滑 过渡,保证未来技术的后向兼容性,支持轻松建及系统间的漫游和兼容性。其职能: 3GPP主要是制订以GSM核心 为基础,UTRA(FDD为W-CDMA技术,TDD为TD-SCDMA技术)为无线接口的第三代技术的规范。
R4无线络技术规范中没有络结构的改变,而是增加了一些接口协议的增强功能和特性,主要包括:低码片速 率TDD,UTRA FDD直放站,Node B同步,对Iub和Iur上的AAL2连接的QoS优化,Iu上无线接入承载(RAB)的QoS 协商,Iur和Iub的无线资源管理(RRM)的优化,增强的RAB支持,Iub、Iur和Iu上传输承载的修改过程, WCDMA1800/1900以及软切换中DSCH功率控制的改进。

3gpp协议

3gpp协议

3GPP TR 36.942 V9.0.1(2010-04)Technical Report3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Frequency (RF) system scenarios(Release 9)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM ) and may be further elaborated for the purposes of 3GPP.The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsLTE, Radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2010, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of i ts Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationContentsForeword (6)1Scope (7)2References (7)3Definitions, symbols and abbreviations (8)3.1Definitions (8)3.2Symbols (8)3.3Abbreviations (8)4General assumptions (9)4.1Interference scenarios (10)4.2Antenna Models (10)4.2.1BS antennas (10)4.2.1.1BS antenna radiation pattern (11)4.2.1.2BS antenna heights and antenna gains for macro cells (11)4.2.2UE antennas (12)4.2.3MIMO antenna Characteristics (12)4.3Cell definitions (12)4.4Cell layouts (12)4.4.1Single operator cell layouts (12)4.4.1.1Macro cellular deployment (12)4.4.2Multi operator / Multi layer cell layouts (12)4.4.2.1Uncoordinated macro cellular deployment (13)4.4.2.2Coordinated macro cellular deployment (13)4.5Propagation conditions and channel models (14)4.5.1Received signal (14)4.5.2Macro cell propagation model – Urban Area (14)4.5.3Macro cell propagation model – Rural Area (15)4.6Base-station model (15)4.7UE model (17)4.8RRM models (18)4.8.1Measurement models (18)4.8.2Modelling of the functions (18)4.9Link level simulation assumptions (18)4.10System simulation assumptions (18)4.10.1System loading (18)5Methodology description (18)5.1Methodology for co-existence simulations (18)5.1.1Simulation assumptions for co-existence simulations (18)5.1.1.1Scheduler (18)5.1.1.2Simulated services (19)5.1.1.3ACIR value and granularity (19)5.1.1.4.1Uplink Asymmetrical Bandwidths ACIR (Aggressor with larger bandwidth) (19)5.1.1.4.2Uplink Asymmetrical Bandwidths ACIR (Aggressor with smaller bandwidth) (22)5.1.1.4Frequency re-use and interference mitigation schemes for E-UTRA (22)5.1.1.5CQI estimation (23)5.1.1.6Power control modelling for E-UTRA and 3.84 Mcps TDD UTRA (23)5.1.1.7SIR target requirements for simulated services (23)5.1.1.8Number of required snapshots (23)5.1.1.9Simulation output (23)5.1.2Simulation description (24)5.1.2.1Downlink E-UTRA interferer UTRA victim (24)5.1.2.2Downlink E-UTRA interferer E-UTRA victim (24)5.1.1.1Uplink E-UTRA interferer UTRA victim (24)5.1.2.4Uplink E-UTRA interferer E-UTRA victim (25)6System scenarios (25)6.1Co-existence scenarios (26)7Results (26)7.1Radio reception and transmission (26)7.1.1FDD coexistence simulation results (26)7.1.1.1ACIR downlink 5MHz E-UTRA interferer – UTRA victim (26)7.1.1.2ACIR downlink 10MHz E-UTRA interferer – 10MHz E-UTRA victim (27)7.1.1.3ACIR uplink 5MHz E-UTRA interferer – UTRA victim (29)7.1.1.4ACIR uplink 10MHz E-UTRA interferer – 10MHz E-UTRA victim (31)7.1.2TDD coexistence simulation results (34)7.1.2.1ACIR downlink 5MHz E-UTRA interferer – UTRA 3.84 Mcps TDD victim (34)7.1.2.2ACIR downlink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (36)7.1.2.3ACIR downlink 1.6 MHz E-UTRA interferer – UTRA 1.28 Mcps TDD victim (38)7.1.2.4ACIR uplink 5MHz E-UTRA interferer – UTRA 3.84 Mcps TDD victim (41)7.1.2.5ACIR uplink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (43)7.1.2.6ACIR uplink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (LCR frame structurebased) (45)7.1.2.7ACIR downlink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (LCR framestructure based) (46)7.1.3Additional coexistence simulation results (48)7.1.3.1ACIR downlink E-UTRA interferer – GSM victim (48)7.1.3.2ACIR uplink E-UTRA interferer – GSM victim (50)7.1.3.3Asymmetric coexistence 20 MHz and 5 MHz E-UTRA (51)7.1.3.4Impact of cell range and simulation frequency on ACIR (53)7.1.3.5Uplink Asymmetric coexistence TDD E-UTRA to TDD E-UTRA (54)7.1.4Base station blocking simulation results (56)7.2RRM (58)8Rationales for co-existence requirements (58)8.1BS and UE ACLR (58)8.1.1Requirements for E-UTRA – UTRA co-existence (58)8.1.2Requirements for E-UTRA – E-UTRA co-existence (59)9Deployment aspects (59)9.1UE power distribution (59)9.1.1Simulation results (60)10Multi-carrier BS requirements (62)10.1Unwanted emission requirements for multi-carrier BS (62)10.1.1General (62)10.1.2Multi-carrier BS of different E-UTRA channel bandwidths (63)10.1.3Multi-carrier BS of E-UTRA and UTRA (63)10.2Receiver requirements for multi-carrier BS (64)10.2.1General (64)10.2.2Test principles for a multi-carrier BS of equal or different E-UTRA channel bandwidths (65)11Rationale for unwanted emission specifications (65)11.1Out of band Emissions (65)11.1.1Operating band unwanted emission requirements for E-UTRA BS (spectrum emission mask) (65)11.1.2ACLR requirements for E-UTRA BS (67)11.2Spurious emissions (69)11.2.1BS Spurious emissions (69)11.2.2General spurious emissions requirements for E-UTRA BS (69)11.2.3Specification of BS Spurious emissions outside the operating band (70)11.2.4Additional spurious emissions requirements (71)Annex A (informative): Link Level Performance Model (71)A.1Description (71)A.2Modelling of Link Adaptation (73)A.3UTRA 3.84 Mcps TDD HSDPA Link Level Performance (75)A.4Link Level Performance for E-UTRA TDD (LCR TDD frame structure based) (76)Annex B (informative): Smart Antenna Model for UTRA 1.28 Mcps TDD (79)B.1Description (79)Annex C (informative): Change history (83)ForewordThis Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:Version x.y.zwhere:x the first digit:1 presented to TSG for information;2 presented to TSG for approval;3 or greater indicates TSG approved document under change control.y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.z the third digit is incremented when editorial only changes have been incorporated in the document.1 ScopeDuring the E-UTRA standards development, the physical layer parameters will be decided using system scenarios, together with implementation issues, reflecting the environments that E-UTRA will be designed to operate in.2 ReferencesThe following documents contain provisions which, through reference in this text, constitute provisions of the present document.•References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.•For a specific reference, subsequent revisions do not apply.•For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (includinga GSM document), a non-specific reference implicitly refers to the latest version of that document in the sameRelease as the present document.[1] 3GPP TR 25.896, “Feasibility Study for Enhanced Uplink for UTRA FDD”[2] 3GPP TR 25.816, “UMTS 900 MHz Work Item Technical Report”[3] 3GPP TR 25.942, “Radio Frequency (RF) system scenarios”[4] 3GPP TR 25.814, “Physical Layer Aspects for Evolved UTRA”[5] 3GPP TR 30.03, “Selection procedures for the choice of radio transmission technologies of theUMTS”[6] R4-051146, “Some operators’ requirements for prioritization of performance requirements work inRAN WG4”, RAN4#37[7] 3GPP TR 25.951, “FDD Base Station (BS) classification”[8] 3GPP TR 25.895, ”Analysis of higher chip rates for UTRA TDD evolution.”[9] R4-070235, “Analysis of co-existence simulation results”, RAN4#42[10] R4-070084, “Coexistence Simulation Results for 5MHz E-UTRA -> UTRA FDD Uplink withRevised Simulation Assumptions”, RAN4#42[11] R4-070034, “Additional simulation results on 5 MHz LTE to WCDMA FDD UL co-existencestudies”, RAN4#42[12] R4-070262, “Simulation results on 5 MHz LTE to WCDMA FDD UL co-existence studies withrevised simulation assumptions”, RAN4#42[13] R4-070263, “Proposal on LTE ACLR requirements for UE”, RAN4#42[14] R4-061288, “Downlink LTE 900 (Rural Macro) with Downlink GSM900 (Rural Macro) Co-existence Simulation Results”, RAN4#41[15] R4-070391, “LTE 900 - GSM 900 Downlink Coexistence”, RAN4#42bis[16] R4-061304, “LTE 900 - GSM 900 Uplink Simulation Results”, RAN4#41[17] R4-070390, “LTE 900 - GSM 900 Uplink Simulation Results”, RAN4#42bis[18] R4-070392 “LTE-LTE Coexistence with asymmetrical bandwidth”, RAN4#42bis[19] 3GPP TS 36.104, ”Base Station (BS) radio transmission and reception”[20] 3GPP TS 25.104, ”Base Station (BS) radio transmission and reception (FDD)”[21] 3GPP TS 36.141, ”Base Station (BS) conformance testing”[22] Recommendation ITU-R SM.329-10, “Unwanted emissions in the spurious domain”[23] “International Telecommunications Union Radio Regulations”, Edition 2004, Volume 1 – Articles,ITU, December 2004.[24] “Adjacent Band Compatibility between UMTS and Other Services in the 2 GHz Band”, ERCReport 65, Menton, May 1999, revised in Helsinki, November 1999.[25] “Title 47 of the Code of Federal Regulations (CFR)”, Federal Communications Commission.[26] R4-070337, "Impact of second adjacent channel ACLR/ACS on ACIR" (Nokia SiemensNetworks).[27] R4-070430, "UE ACS and BS ACLRs" (Fujitsu ).[28] R4-070264, "Proposal on LTE ACLR requirements for Node B" (NTT DoCoMo).[29] Recommendation ITU-R M.1580-1, “Generic unwanted emission characteristics of base stationsusing the terrestrial radio interfaces of IMT-2000”.[30] Report ITU-R M.2039, “Characteristics of terrestrial IMT-2000 systems for frequencysharing/interference analyses”.[31] E TSI EN 301 908-3 V2.2.1 (2003-10), “Electromagnetic compatibility and Radio spectrumMatters (ERM); Base Stations (BS), Repeaters and User Equipment (UE) for IMT-2000 Third-Generation cellular networks; Part 3: Harmonized EN for IMT-2000, CDMA Direct Spread(UTRA FDD) (BS) covering essential requirements of article 3.2 of the R&TTE Directive”.3 Definitions, symbols and abbreviations3.1 Definitions3.2 Symbols3.3 AbbreviationsFor the purposes of the present document, the following abbreviations apply:ACIR Adjacent Channel Interference RatioACLR Adjacent Channel Leakage power RatioACS Adjacent Channel SelectivityAMC Adaptive Modulation and CodingAWGN Additive White Gaussian NoiseBS Base StationCDF Cumulative Distribution FunctionDL DownlinkFDD Frequency Division DuplexMC Monte-CarloMCL Minimum Coupling LossMCS Modulation and Coding SchemePC Power ControlPSD Power Spectral DensityRX ReceiverTDD Time Division DuplexTX TransmitterUE User EquipmentUL Uplink4 General assumptionsThe present document discusses system scenarios for E-UTRA operation primarily with respect to the radio transmission and reception including the RRM aspects. To develop the E-UTRA standard, all the relevant scenarios need to be considered for the various aspects of operation and the most critical cases identified. The process may then be iterated to arrive at final parameters that meet both service and implementation requirements.The E-UTRA system is intended to be operated in the same frequency bands specified for UTRA. In order to limit the number of frequency bands to be simulated in the various simulation scenarios a mapping of frequency bands to two simulation frequencies (900 MHz and 2000 MHz) is applied. When using the macro cell propagation model ofTR25.942 [3], the frequency contributes to the path loss by 21*log10(f). The maximum path loss difference between the lowest/highest frequencies per E-UTRA frequency band and corresponding simulation frequency is shown in tables 4.1 and 4.2.Table 4.1: Simulation frequencies for FDD mode E-UTRA frequency bandsTable 4.2: Simulation frequencies for TDD mode E-UTRA frequency bandsIt can be observed that the difference of path loss between simulation frequency and operating frequency (except bands 7, 11 and 38) is in the worst case less than 0.8 dB for the downlink and less the 1,5 dB for the uplink. Hence the mapping of operating frequency to simulation frequency will provide valid results.The validity of simulations performed at 2 GHz for the 2.6 GHz bands 7 and 38 was already analyzed in TR 25.810. Considering the expected higher antenna gain in the 2.6 GHz band the difference in path loss is in the order of 1 dB what is comparable to the other frequency bands.4.1 Interference scenariosThis chapter should cover how the interference scenarios could occur e.g. BS-BS, UE-BS etc.4.2 Antenna ModelsThis chapter contains the various antenna models for BS and UE4.2.1 BS antennas4.2.1.1 BS antenna radiation patternThe BS antenna radiation pattern to be used for each sector in 3-sector cell sites is plotted in Figure 4.1. The pattern is identical to those defined in [1], [2] and [4]:()23min 12, where 180180m dB A A θθθθ⎡⎤⎛⎫⎢⎥=--≤≤ ⎪⎢⎥⎝⎭⎣⎦,dB 3θ is the 3dB beam width which corresponds to 65 degrees, and dB A m 20= is the maximum attenuationFigure 4.1: Antenna Pattern for 3-Sector Cells4.2.1.2 BS antenna heights and antenna gains for macro cellsAntenna heights and gains for macro cells are given in table 4.3.Table 4.3: Antenna height and gain for Macro Cells4.2.2 UE antennasFor UE antennas, a omni-directional radiation pattern with antenna gain 0dBi is assumed [2], [3], [4].4.2.3 MIMO antenna Characteristicsxxxx4.3 Cell definitionsThis chapter contain the cell properties e.g. cell range, cell type (omni, sector), MIMO cell definitions etc.4.4 Cell layoutsThis chapter contains different cell layouts in form of e.g. single operator, multi-operator and multi layer cell layouts(e.g. macro-micro etc).4.4.1 Single operator cell layouts4.4.1.1 Macro cellular deploymentBase stations with 3 sectors per site are placed on a hexagonal grid with distance of 3*R, where R is the cell radius (see Figure 4.2), with wrap around. The number of sites shall be equal to or higher than 19. [2] [4].Figure 4.2: Single operator cell layout4.4.2 Multi operator / Multi layer cell layouts4.4.2.1 Uncoordinated macro cellular deploymentFor uncoordinated network simulations, identical cell layouts for each network shall be applied, with worst case shift between sites. Second network’s sites are located at the first network’s cell edge, as shown in Figure 4.3 [2].Figure 4.3: Multi operator cell layout - uncoordinated operation4.4.2.2 Coordinated macro cellular deploymentFor coordinated network simulations, co-location of sites is assumed; hence identical cell layouts for each network shall be applied [2].Figure 4.4: Multi operator cell layout - coordinated operation4.5 Propagation conditions and channel modelsThis chapter contains the definition of channel models, propagation conditions for various environments e.g. urban, suburban etc.For each environment a propagation model is used to evaluate the propagation pathloss due to the distance. Propagation models are adopted from [3] and [4] and presented in the following clauses.4.5.1 Received signalAn important parameter to be defined is the minimum coupling loss (MCL). MCL is the parameter describing the minimum loss in signal between BS and UE or UE and UE in the worst case and is defined as the minimum distance loss including antenna gains measured between antenna connectors. MCL values are adopted from [3] and [7] as follows:Table 4.4: Minimum Coupling LossesWith the above definition, the received power in downlink and uplink can be expressed as [3]: RX_PWR = TX_PWR – Max (pathloss – G_TX – G_RX, MCL) where:RX_PWR is the received signal power TX_PWR is the transmitted signal power G_TX is the transmitter antenna gain G_RX is the receiver antenna gain4.5.2 Macro cell propagation model – Urban AreaMacro cell propagation model for urban area is applicable for scenarios in urban and suburban areas outside the high rise core where the buildings are of nearly uniform height [3]:80dB (f)log 21(Dhb)log 18(R)log Dhb)104(140L 1010103+⋅+⋅-⋅⋅⋅-⋅=-where:R is the base station-UE separation in kilometres f is the carrier frequency in MHzDhb is the base station antenna height in metres, measured from the average rooftop levelConsidering a carrier frequency of 900MHz and a base station antenna height of 15 metres above average rooftop level, the propagation model is given by the following formula [4]:(R)37,6log 120,9L 10+=where:R is the base station-UE separation in kilometresConsidering a carrier frequency of 2000MHz and a base station antenna height of 15 metres above average rooftop level, the propagation model is given by the following formula:(R)37,6log 128,1L 10+=where:R is the base station-UE separation in kilometresAfter L is calculated, log-normally distributed shadowing (LogF) with standard deviation of 10dB should be added [2], [3]. A Shadowing correlation factor of 0.5 for the shadowing between sites (regardless aggressing or victim system) and of 1 between sectors of the same site shall be used The pathloss is given by the following formula:LogF L acro Pathloss_m +=NOTE 1: L shall in no circumstances be less than free space loss. This model is valid for NLOS case only anddescribes worse case propagation NOTE 2: The pathloss model is valid for a range of Dhb from 0 to 50 metres.NOTE 3: This model is designed mainly for distance from few hundred meters to kilometres. This model is notvery accurate for short distances. NOTE 4: The mean building height is equal to the sum of mobile antenna height (1,5m) and 10,5m Δh m = [5]. NOTE 5: Some downlink simulations in this TR were performed without shadowing correlation, however it wasreported this has a negligible impact on the simulation results.4.5.3 Macro cell propagation model – Rural AreaFor rural area, the Hata model was used in the work item UMTS900[2], this model can be reused:L (R)= 69.55 +26.16log 10(f)–13.82log 10(Hb)+[44.9-6.55log 10(Hb)]log(R) – 4.78(Log 10 (f))2+18.33 log 10 (f) -40.94 where:R is the base station-UE separation in kilometres f is the carrier frequency in MHzHb is the base station antenna height above ground in metresConsidering a carrier frequency of 900MHz and a base station antenna height of 45 meters above ground the propagation model is given by the following formula:(R)34,1log 5,95L 10+=where:R is the base station-UE separation in kilometresAfter L is calculated, log-normally distributed shadowing (LogF) with standard deviation of 10dB should be added [2], [3]. A Shadowing correlation factor of 0.5 for the shadowing between sites (regardless aggressing or victim system) and of 1 between sectors of the same site shall be used. The pathloss is given by the following formula:LogF L acro Pathloss_m +=NOTE 1: L shall in no circumstances be less than free space loss. This model is valid for NLOS case only anddescribes worse case propagation NOTE 2: This model is designed mainly for distance from few hundred meters to kilometres. This model is notvery accurate for short distances.4.6 Base-station modelThis chapter covers the fundamental BS properties e.g. output power, dynamic range, noise floor etc.Reference UTRA FDD base station parameters are given in Table 4.5.Table 4.5: UTRA FDD reference base station parameters(wcdma)Reference base station parameters for UTRA 1.28Mcps TDD are given in Table 4.5a.Table 4.5a: Reference base station for UTRA 1.28Mcps TDD(td-scdma)Reference UTRA 3.84 Mcps TDD base station parameters are given in Table 4.5b.Table 4.5b: Reference base station for UTRA 3.84Mcps TDD(td-cdma)Reference E-UTRA FDD and E-UTRA TDD base station parameters are given in Table 4.6.Table 4.6: E-UTRA FDD and E-UTRA TDD reference base station parametersReference base station parameters for E-UTRA TDD (LCR TDD frame structure based) are given in Table 4.6a.Table 4.6a: Reference base station for E-UTRA TDD (LCR TDD frame structure based)(td-lte)4.7 UE modelThis chapter covers the fundamental UE properties e.g. output power, dynamic range, noise floor etc. Reference UTRA FDD parameters are given in Table 4.7.Table 4.7: UTRA FDD reference UE parametersfor simulation alignment purpose, a Noise Figure of 9 dB will be used.Reference UTRA 1.28 Mcps TDD parameters are given in Table 4.7aTable 4.7a: Reference UE for UTRA 1.28 Mcps TDDReference UTRA 3.84 Mcps TDD UE parameters are given in Table 4.7b.Table 4.7b: UTRA 3.84 Mcps TDD reference UE parametersfor simulation alignment purpose, a Noise Figure of 9 dB will be used.Reference E-UTRA FDD and E-UTRA TDD UE parameters are given in Table 4.8.Table 4.8: E-UTRA FDD and E-UTRA TDD reference UE parametersHowever, for simulation alignment purpose, a Noise Figure of 9 dB will be used. Reference E-UTRA TDD UE (LCR TDD frame structure based) parameters are given in Table 4.8a.Table 4.8a: Reference UE for EUTRA TDD (LCR TDD frame structure based)4.8 RRM modelsThis chapter contains models that are necessary to study the RRM aspects e.g.4.8.1 Measurement modelsxxxx4.8.2 Modelling of the functionsxxxx4.9 Link level simulation assumptionsThis chapter covers Layer 1 aspects and assumptions (e.g. number of HARQ retransmissions) etc.4.10 System simulation assumptionsThis chapter contains system simulation assumptions e.g. Eb/No values for different services, activity factor for voice, power control steps, performance measures (system throughput, grade of service), confidence interval etc.4.10.1 System loadingxxxx5 Methodology descriptionThis chapter describes the methods used for various study items e.g. deterministic analysis for BS-BS interference, Monte-Carlo simulations and dynamic type of simulations for RRM.5.1 Methodology for co-existence simulationsSimulations to investigate the mutual interference impact of E-UTRA, UTRA and GERAN are based on snapshots were users are randomly placed in a predefined deployment scenario (Monte-Carlo approach). Assumptions or E-UTRA in this chapter are based on the physical layer (OFDMA DL and SC-FDMA UL) as described in the E-UTRA study item report [4]. It must be noted that actual E-UTRA physical layer specification of frequency resource block is different regarding number ofsub-carriers per resource block (12 instead of 25 specified in [4]) and regarding the size of a resource block (180 kHz instead of 375 kHz in [4]). However, this has no impact on the results and conclusions of the present document.5.1.1 Simulation assumptions for co-existence simulations5.1.1.1 SchedulerFor initial E-UTRA coexistence simulations Round Robin scheduler shall be used.5.1.1.2 Simulated servicesWhen using Round Robin scheduler, full buffer traffic shall be simulated. For E-UTRA downlink, one frequency resource block for one user shall be used. The E-UTRA system shall be maximum loaded, i.e. 24 frequency resource blocks in 10 MHz bandwidth and 12 frequency resource blocks in 5 MHz bandwidth respectively. For E-UTRA uplink, the number of allocated frequency resource blocks for one user is 4 for 5 MHz bandwidth and 8 for 10 MHz bandwidth respectively.For the 5 MHz TDD UTRA victim using 3.84 Mcps TDD, Enhanced Uplink providing data service shall be used where 1 UE shall occupy 1 Resource Unit (code x timeslot). Here the number of UE per timeslot is set to 3 UEs/timeslot.Other services, e.g. constant bit rate services are FFS.5.1.1.3 ACIR value and granularityFor downlink a common ACIR for all frequency resource blocks to calculate inter-system shall be used. Frequency resource block specific ACIR is FFS.For uplink it is assumed that the ACIR is dominated by the UE ACLR. The ACLR model is described in table 5.1 and table 5.2Table 5.1: ACLR model for 5MHz E-UTRA interferer and UTRAvictim, 4 RBs per UETable 5.2: ACLR model for E-UTRA interferer and 10MHz E-UTRA victimNote: This ACLR models are agreed for the purpose of co-existence simulations. ACLR/ACS requirements need to be discussedseparately.5.1.1.4.1 Uplink Asymmetrical Bandwidths ACIR (Aggressor withlarger bandwidth)Since the uplink ACLR of the aggressor is measured in the aggressor’s bandwidth, for uplink asymmetrical bandwidth coexistence, a victim UE with a smaller bandwidth than that of the aggressor will receive a fraction of the interference power caused by the aggressor’s ACLR. For two victim UEs falling within the 1st ACLR of the aggressor, the victim UE closer in frequency to the aggressor will experience higher interference than one that is further away in frequency. The difference in interference depends on the power spectral density (PSD) within the aggressor’s 1st ACLR bandwidth. For simplicity, it is assumed that the PSD is flat across the aggressor’s ACLR bandwidth. Hence, the ACLR can be relaxed (or increased) by the factor, F ACLR:F ACLR = 10 × LOG10(B Aggressor/B Victim)Where, B Aggressor and B Victim are the E-UTRA aggressor and victim bandwidths respectively.20 MHz E-UTRA 5 MHz E-UTRAFigure 5.1: 20 MHz E-UTRA UE aggressor to 5 MHz E-UTRA UEvictims20 MHz E-UTRA 10 MHz E-UTRAFigure 5.2: 20 MHz E-UTRA UE aggressor to 10 MHz E-UTRAUE victimsIn Table 5.2, the aggressor UE that is non adjacent to the victim UE, the victim UE will experience an interference due to an ACLR of 43 + X –F ACLR. For the case where the aggressor UE is adjacent to the victim UEs, consider the scenarios in Figure 5.1, 5.2 and 5.3, where a 20 MHz E-UTRA aggressor is adjacent to 3 victim UEs of 5 MHz, 10 MHz and 15 MHz E-UTRA systems respectively.In Figure 5.1, all the UEs in the 5 MHz E-UTRA system will be affected by an ACLR of 30 + X - F ACLR. For the 10 MHz E-UTRA victims in Figure 5.2, two UEs will be affected by an ACLR of 30 + X - F ACLR whilst 1 UE will be affected by a less severe ACLR of 43 + X- F ACLR . In the 15 MHz E-UTRA victim as shown in Figure 5.3, the UE next to the band edge will be affected by an ACLR of 30 + X - F ACLR whilst the UE farthest from the band edge will be affected by an ACLR of 43 + X - F ACLR. The victim UE of the 15 MHz E-UTRA occupying the centre RB (2nd from band edge) is affected by 1/3 ACLR of 30 + X - F ACLR and 2/3 ACLR of 43 + X - F ACLR. This gives an ACLR of 34 + X - F ACLR.Using a similar approach for 15 MHz, 10 MHz and 5 MHz aggressor with a victim of smaller system bandwidth, the ACLR affecting each of the 3 victim UEs can be determined. This is summarised in Table 5.2A. Here the value Y is defined for victim UE, where ACLR = Y + X - F ACLR. UE1 is the UE adjacent to the aggressor, UE2 is located at the centre and UE3 is furthest away from the aggressor.。

SA 3GPP Enabler 版本 03.00.00.00 发行说明说明书

SA 3GPP Enabler 版本 03.00.00.00 发行说明说明书

SA 3GPP Enabler ModuleRelease NotesTexas Instruments, IncorporatedContentsOverview (1)LLD Dependencies (1)Label and Version Information (1)Resolved Incident Reports (IR) (2)Known Issues/Limitations (2)Migration Information (2)New/Updated Features and Quality (2)Licensing (2)Delivery Package (2)Installation Instructions (3)Customer Documentation List (3)SA 3GPP Enabler version 03.00.00.00 OverviewThis document provides the release information for the latest Security Accelerator Sub-System (SASS) 3GPP Enabler Module. Although SASS supports 3GPP specific Ciphering and Authentication algorithms such as Kasumi F8/F9 and Snow3G F8, those algorithms are locked out in the standard SA LLD distribution. This module contains the API function to enable 3GPP related functionalities at SA sub-system that should only be used by those with ETSI licensing as described at /services/security-algorithms/cellular-algorithms.SA 3GPP module includes:∙Compiled library (Big and Little) Endian of SASS 3GPP enabler.∙Sources∙API reference guide∙Software Manifest DocumentationThis release notes is for SA 3GPP Enabler version 3.0.0.0(3_0_0_0)LLD Dependencies-NoneLabel and Version InformationTable 1 lists the software label and versions supported by this release.Table 1 Label and versions supported by this releaseResolved Incident Reports (IR)Table 2 provides information on IR resolutions incorporated into this release.Table 2 Resolved IRs for this ReleaseKnown Issues/LimitationsTable 3 Known Issue IRs for this ReleaseMigration Information∙Starting from MCSDK 3.1, SA LLD is packaged within MCSDK.∙SA3GPP installation should be with in “SA LLD” installation as recommended by the installer∙SA3GPP ARMV7 library is located under “sa/sa3gppEnabler/lib/armv7” folder.∙SA3GPP package for DSP should be loaded in the RTSC configuration file as below o var Sa3gpp = xdc.loadPackage('ti.drv.sa.sa3gppEnabler');New/Updated Features and QualityRelease 3.0.0.0∙Release supporting k2k, k2h, k2l and k2e devicesRelease 2.0.1.4∙Production release supporting Multiprocess for SA LLDRelease 2.0.0.5∙Beta ReleaseRelease 2.0.0.4∙Initial release.Release 1.0.0.0∙Initial release.LicensingPlease refer to the software Manifest document for the details.Delivery PackageThe delivery package from Texas Instruments will be delivered as follows:Installation InstructionsInstallation guidelinesThe steps to be followed for installation of the SA 3GPP Enabler release are as follows:1.Download the release executable2.Run the executable file; follow the instructions and install the SA 3GPP enabler softwareinto the corresponding SA LLD packages. For example,c:\ti\salld_keystone2_<SA3GPP_Version>/packages.Customer Documentation ListTable 4 lists the documents that are accessible through the /docs folder on the product installation CD or in the delivery package.Table 4 Product Documentation included with this Release。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目次前言 (II)1 范围 (2)2 引用标准 (2)3 名语和缩略语 (2)4 提供给高层的业务 (4)4.1传输信道 (4)4.1.1 专用传输信道 (4)4.1.2 公共传输信道 (4)4.2 指示符 (4)5 物理信道和物理信号 (5)5.1 物理信号 (5)5.2 上行物理信道 (5)5.2.1 专用上行物理信道 (5)5.2.2 公共上行物理信道 (8)5.3 下行物理信道 (12)5.3.1 下行发射分集 (12)5.3.2 专用下行物理信道 (13)5.3.3 公共下行物理信道 (19)6 物理信道的映射和关联 (30)6.1传输信道到物理信道的映射 (30)6.2 物理信道和物理信号的关联 (31)7 物理信道之间的时序关系 (31)7.1 概述 (31)7.2 PICH/S-CCPCH定时关系 (32)7.3 PRACH/AICH定时关系 (33)7.4 PCPCH/AICH定时关系 (34)7.5 DPCH/PDSCH定时关系 (34)7.6 DPCCH/DPDCH定时关系 (35)7.6.1 上行链路 (35)7.6.2 下行链路 (35)7.6.3 在UE的上行/下行定时 (35)前言本通信标准参考性技术文件主要用于IMT-DS FDD(WCDMA)系统的无线接口的物理层部分,它主要介绍了物理信道的特性以及传输信道到物理信道的映射。

本文基于 3GPP制订的Release-99(2000年9月份版本)技术规范,具体对应于TS 25.211 V3.4.0。

本参考性技术文件由信息产业部电信研究院提出。

本参考性技术文件由信息产业部电信研究院归口。

本参考性技术文件起草单位:信息产业部电信传输研究所本参考性技术文件主要起草人:徐京皓,徐菲,吴伟,张翔本参考性技术文件2001年1月首次发布。

本参考性技术文件委托无线通信标准研究组负责解释。

通信标准参考性技术文件IMT-DS FDD(WCDMA)系统无线接口物理层技术规范:物理信道和传输信道到物理信道的映射IMT-DS FDD(WCDMA) System Radio Interface Physical Layer T echnical Specification: Physical channels and mapping of transport channels ontophysical channels (FDD)1 范围本通信标准参考性技术文件介绍了IMT-DS FDD(WCDMA)系统的物理信道的特性和传输信道到物理信道的映射。

它基于 3GPP制订的Release-99(2000年9月份版本)技术规范,具体对应于TS 25.211 V3.4.0。

2 引用标准下列文件所包含的条文,通过在本文件中引用而成为本文件的条文。

本文件出版时,所示版本均为有效。

所有标准都会被修订,使用本文件的各方应探讨使用下列标准最新版本的可能性。

[1] 3G TS 25.201: "Physical layer - general description".[2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".[3] 3G TS 25.212: "Multiplexing and channel coding (FDD)".[4] 3G TS 25.213: "Spreading and modulation (FDD)".[5] 3G TS 25.214: "Physical layer procedures (FDD)".[6] 3G TS 25.215: "Physical layer - Measurements (FDD)".[7] 3G TS 25.301: "Radio Interface Protocol Architecture".[8] 3G TS 25.302: "Services Provided by the Physical Layer".[9] 3G TS 25.401: "UTRAN Overall Description".[10] 3G TS 25.133: "Requirements for Support of Radio Resource Management (FDD)".3 名语和缩略语AI Acquisition Indicator 捕获指示AICH Acquisition Indicator Channel 捕获指示信道AP Access Preamble 接入前缀AP-AICH Access Preamble Acquisition Indicator Channel 接入前缀捕获指示信道API Access Preamble Indicator 接入前缀指示BCH Broadcast Channel 广播信道CA Channel Assignment 信道指派CAI Channel Assignment Indicator 信道指派指示CCC CPCH Control Command CPCH控制命令CCPCH Common Control Physical Channel 公共控制物理信道CCTrCH Coded Composite Transport Channel 码组合传输信道CD Collision Detection 冲突检测CD/CA-ICH Collision Detection/Channel Assignment Indicator Channel 冲突检测/信道指派指示信道CDI Collision Detection Indicator 冲突检测指示CPCH Common Packet Channel 公共分组信道CPICH Common Pilot Channel 公共导频信道CSICH CPCH Status Indicator Channel CPCH状态指示信道DCH Dedicated Channel 专用信道DPCCH Dedicated Physical Control Channel 专用物理控制信道DPCH Dedicated Physical Channel 专用物理信道DPDCH Dedicated Physical Data Channel 专用物理数据信道DSCH Downlink Shared Channel 下行共享信道DSMA-CD Digital Sense Multiple Access - Collison Detection 数字监听多址接入-冲突检测DTX Discontinuous Transmission 不连续发射FACH Forward Access Channel 前向接入信道FBI Feedback Information 反馈信息FSW Frame Synchronization Word 帧同步字ICH Indicator Channel 指示信道MUI Mobile User Identifier 移动用户识别符PCH Paging Channel 寻呼信道P-CCPCH Primary Common Control Physical Channel 基本公共控制物理信道PCPCH Physical Common Packet Channel 物理公共分组信道PDSCH Physical Downlink Shared Channel 物理下行共享信道PICH Page Indicator Channel 寻呼指示信道PRACH Physical Random Access Channel 物理随机接入信道PSC Primary Synchronisation Code 主同步码RACH Random Access Channel 随机接入信道RNC Radio Network Controller 无线网络控制器S-CCPCH Secondary Common Control Physical Channel 辅助公共控制物理信道SCH Synchronisation Channel 同步信道SF Spreading Factor 扩频因子SFN System Frame Number 系统帧号SI Status Indicator 状态指示SSC Secondary Synchronisation Code 辅助同步码STTD Space Time Transmit Diversity 空时发射分集TFCI Transport Format Combination Indicator 传输格式组合指示TSTD Time Switched Transmit Diversity 时间交换发射分集TPC Transmit Power Control 发射功率控制UE User Equipment 用户设备UTRAN UMTS Terrestrial Radio Access Network UMTS地面无线接入网络4 提供给高层的业务4.1传输信道传输信道是指由层1提供给高层的服务。

传输信道的一般概念请参见[8]。

传输信道定义了在空中接口上数据传输的方式和特性。

传输信道一般分为两类:∙专用信道,使用UE的内在寻址方式;∙公共信道,如果需要寻址,必须使用明确的UE寻址方式。

4.1.1 专用传输信道仅存在一种专用传输信道,即专用信道(DCH)。

4.1.1.1 DCH-专用信道专用信道(DCH) 是一个上行或下行传输信道。

DCH在整个小区或小区内的某一部分使用波束赋形的天线进行发射。

4.1.2 公共传输信道共有六类公共传输信道:BCH, FACH, PCH, RACH, CPCH和DSCH。

4.1.2.1 BCH-广播信道广播信道(BCH)是一个下行传输信道,用于广播系统或小区特定的信息。

BCH总是在整个小区内发射,并且有一个单独的传输格式。

4.1.2.2 FACH-前向接入信道前向接入信道(FACH)是一个下行传输信道。

FACH在整个小区或小区内某一部分使用波束赋形的天线进行发射。

FACH使用慢速功控。

4.1.2.3 PCH-寻呼信道寻呼信道(PCH)是一个下行传输信道。

PCH总是在整个小区内进行发送。

PCH的发射与物理层产生的寻呼指示的发射是相随的,以支持有效的睡眠模式程序。

相关文档
最新文档