初二下册所有教案

合集下载

八年级下学期语文全册教案

八年级下学期语文全册教案

八年级下学期语文全册教案一、教学目标。

1. 知识目标。

通过本学期的语文教学,学生将掌握以下知识:词语的辨析和运用。

文言文阅读和理解。

诗词鉴赏和背诵。

作文表达能力的提高。

2. 能力目标。

提高学生的阅读理解能力和写作能力。

培养学生的文学鉴赏能力。

增强学生的语言表达能力。

3. 情感目标。

培养学生对语文的兴趣和热爱。

培养学生的审美情感和人文精神。

二、教学重点和难点。

1. 教学重点。

文言文阅读和理解。

诗词鉴赏和背诵。

作文表达能力的提高。

2. 教学难点。

文言文的理解和翻译。

诗词的鉴赏和理解。

作文的结构和表达能力。

三、教学内容。

1. 词语辨析和运用。

教师通过课文中的词语,引导学生进行辨析和运用,提高学生的词汇量和语言表达能力。

2. 文言文阅读和理解。

通过选取经典的文言文进行阅读和理解,让学生了解古代文学,培养学生的文学鉴赏能力。

3. 诗词鉴赏和背诵。

教师选取一些经典的诗词,让学生进行鉴赏和背诵,培养学生的审美情感和语言表达能力。

4. 作文表达能力的提高。

通过不同类型的作文训练,提高学生的作文表达能力,让学生掌握不同类型作文的结构和写作方法。

四、教学方法。

1. 听说读写结合。

教师通过听、说、读、写的方式进行教学,让学生全面提高语言能力。

2. 启发式教学。

教师通过启发式的教学方法,引导学生自主学习,培养学生的学习兴趣和能力。

3. 多媒体辅助教学。

教师利用多媒体手段进行教学,让学生通过图文并茂的方式更好地理解和掌握知识。

五、教学过程。

1. 词语辨析和运用。

通过课文中的词语,教师引导学生进行辨析和运用,让学生掌握词语的正确用法。

2. 文言文阅读和理解。

教师选取经典的文言文进行阅读,让学生了解古代文学,培养学生的文学鉴赏能力。

3. 诗词鉴赏和背诵。

教师选取一些经典的诗词,让学生进行鉴赏和背诵,培养学生的审美情感和语言表达能力。

4. 作文表达能力的提高。

通过不同类型的作文训练,提高学生的作文表达能力,让学生掌握不同类型作文的结构和写作方法。

初中八年级下册语文教案

初中八年级下册语文教案

初中八年级下册语文教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!初中八年级下册语文教案初中八年级下册语文教案【7篇】做教师的总归要在课前编写教案,教案是备课向课堂教学转化的关节点。

八年级下全册教案

八年级下全册教案

八年级下全册教案一、第一章:物质的组成与结构1. 教学目标(1) 让学生了解物质的组成和结构的基本概念。

(2) 使学生掌握原子、分子、离子等基本粒子的性质和相互转化。

(3) 培养学生的实验操作能力和观察能力。

2. 教学内容(1) 物质的组成与结构的基本概念。

(2) 原子、分子、离子的性质和相互转化。

(3) 常见化学键的类型和特点。

3. 教学方法(1) 采用讲授法,讲解物质的组成与结构的基本概念。

(2) 利用实验法,观察和分析原子、分子、离子的性质和相互转化。

(3) 运用讨论法,探讨常见化学键的类型和特点。

4. 教学步骤(1) 引入新课:物质的组成与结构。

(2) 讲解原子、分子、离子的性质和相互转化。

(3) 进行实验操作,观察和分析实验现象。

(5) 布置作业,巩固所学知识。

二、第二章:化学反应与化学方程式1. 教学目标(1) 让学生了解化学反应的基本概念。

(2) 使学生掌握化学方程式的书写方法和步骤。

(3) 培养学生的实验操作能力和观察能力。

2. 教学内容(1) 化学反应的基本概念。

(2) 化学方程式的书写方法和步骤。

(3) 化学反应的类型和特点。

3. 教学方法(1) 采用讲授法,讲解化学反应的基本概念。

(2) 利用实验法,观察和分析化学反应的现象。

(3) 运用讨论法,探讨化学方程式的书写方法和步骤。

4. 教学步骤(1) 引入新课:化学反应与化学方程式。

(2) 讲解化学反应的基本概念。

(3) 进行实验操作,观察和分析实验现象。

(4) 讲解化学方程式的书写方法和步骤。

(5) 布置作业,巩固所学知识。

三、第三章:物质的性质与变化1. 教学目标(1) 让学生了解物质的性质和变化的基本概念。

(2) 使学生掌握物质的物理性质和化学性质。

(3) 培养学生的实验操作能力和观察能力。

2. 教学内容(1) 物质的性质和变化的基本概念。

(2) 物质的物理性质和化学性质。

(3) 物质变化的原因和规律。

3. 教学方法(1) 采用讲授法,讲解物质的性质和变化的基本概念。

八年级数学下册教案5篇

八年级数学下册教案5篇

八年级数学下册教案5篇作为一位不辞辛劳的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。

那么写教案需要注意哪些问题呢?以下是小编为大家整理的八年级数学下册教案,仅供参考,希望能够帮助到大家。

八年级数学下册教案1一、学习目标:1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点重点:平方差公式的推导和应用;难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999(2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x—1);(2)(m+2)(m—2)(3)(2x+1)(2x—1);(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x—2);(2)(b+2a)(2a—b);(3)(—x+2y)(—x—2y)。

例2:计算:(1)102×98;(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习计算:(1)(a+b)(—b+a);(2)(—a—b)(a—b);(3)(3a+2b)(3a—2b);(4)(a5—b2)(a5+b2);(5)(a+2b+2c)(a+2b—2c);(6)(a—b)(a+b)(a2+b2)。

五、小结(a+b)(a—b)=a2—b2八年级数学下册教案2一、教材分析:《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。

纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。

既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

人教版八年级语文下册教案5篇

人教版八年级语文下册教案5篇

人教版八年级语文下册教案5篇人教版八年级语文下册教案1《桃花源记》教学目标:1、知识与技能目标:能正确、流利、有感情的朗读课文,积累文言字词;理清文章的叙事线索,理解课文内容。

2、过程与方法目标:在诵读的基础上,感受桃花源的美,描绘桃花源的美。

3、情感态度与价值观目标:体会作者对“桃花源”的理想社会的描述,认识其对美好社会的向往和追求。

教学重点:感受桃花源的美,描绘桃花源的美教学难点:理解作者笔下的理想社会及作者寄托的思想感情。

教学过程:一、创设情境,导入新课首先,看PPT欣赏图片。

同学们,当你们看到这样的美景时,脑海中会想到哪个成语?(引出“世外桃源”这个成语)“世外桃源”这个成语是晋朝陶渊明在《桃花源记》中所描述的一个与世隔绝的,不遭战祸的安乐而美好的地方。

现在我们一起跟着渔人到这个世外桃源去看看。

本文大约写于宋永初二年(421年),陶渊明约57岁。

他既拒绝过东晋政权的征召,又复拒绝同刘裕的宋政权合作,而以《桃花源诗并记》寄托了自己的社会理想。

2、字词正音豁然开朗huò屋舍俨然shèyǎn阡陌qiānmò黄发垂髫tiáo便要还家yāo诣太守yì3、朗读感知范读课文,清楚、流畅。

清楚:句读分明,节奏合理,语速适中。

流畅:语句流利,音韵铿锵。

4、了解文章文章是的叙事线索是什么?明确:发现桃花源——进入桃花源——访问桃花源——离开桃花源——寻找桃花源三、细读课文,质疑探究第一节:发现桃花源1、渔人怎样发现桃花源的?2、桃花林里的自然景色如何?景物描写有何作用?明确:为写渔人进入桃花源渲染神秘气氛,也为写桃花源的美好作了铺垫3、如此奇异幽雅的环境,假如你来到这里,你会有何感想?你又有何推断呢?明确:有山有水,人杰地灵。

或,心情舒畅、愉快、惬意。

推断:A、有人。

B、那么,这里的人的生活又如何呢?第二节:进入桃花源1、渔人入山后,看到了怎样的图景?2、这里的人生活的好吗?何以见得?3、讨论:如此之美的环境,在现实生活中能找到吗?第三节:访问桃花源1、桃花源的人见到渔人有何反应?说明什么?明确:大惊——显示出桃花源与外界隔绝久远。

八年级数学下册教案15篇

八年级数学下册教案15篇

八年级数学下册教案八年级数学下册教案15篇作为一位不辞辛劳的人民教师,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。

教案要怎么写呢?以下是小编精心整理的八年级数学下册教案,欢迎阅读,希望大家能够喜欢。

八年级数学下册教案1【教学目标】一、知识目标经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

二、能力目标知道分时方程的意义,会解可化为一元一次方程的分式方程。

三、情感目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

【教学重难点】将实际问题中的等量关系用分式方程表示。

找实际问题中的等量关系。

【教学过程】一、课前预习与导学1.什么叫做分式方程?解分式方程的步骤有哪几步?2.判断下面解方程的过程是否正确,若不正确,请加以改正。

解方程:=3-解:两边同乘以(x-1),得2=3-x=1,①x=3+1-2,②所以x=2.③(不正确。

正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)3.解下列分式方程:(1)=(2)+=2.二、新课(一)情境创设:1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。

怎样用方程来描述其中数量之间的相等关系?设甲每天加工服装多少件,可得方程:2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。

怎样用方程来描述其中数量之间的相等关系?设这个两位数的十位数字是x,可得方程:3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。

已知汽车的速度是自行车的速度的3倍。

怎样用方程来描述其中数量之间的相等关系?设自行车的速度为xkm/h,可得方程:(二)探索活动:1.上面所得到的方程有什么共同特点?2.这些方程与整式方程有什么区别?结论:分母中含有未知数的方程叫做分式方程。

八年级下册生物教案全册

八年级下册生物教案全册

八年级下册生物教案全册第一章:人体的营养1.1 食物中的营养物质了解人体所需的六大类营养物质:蛋白质、糖类、脂肪、维生素、水和无机盐。

掌握各种营养物质的作用和食物来源。

1.2 食物的消化与吸收了解消化系统的组成和功能。

掌握食物的消化过程和营养物质的吸收途径。

1.3 营养失调与健康了解营养过剩和营养不足对健康的影响。

学会合理搭配食物,保持营养均衡。

第二章:人体的呼吸2.1 呼吸系统的组成了解呼吸系统的器官和功能。

掌握呼吸作用的过程。

2.2 空气质量与健康了解空气质量对人体的影响。

学会保护呼吸系统,预防呼吸道疾病。

2.3 呼吸与运动了解运动时呼吸的变化。

掌握科学的锻炼方法,提高运动能力。

第三章:人体的排泄3.1 排泄系统的组成了解排泄系统的器官和功能。

掌握排泄过程和排泄物的排出途径。

3.2 排泄与健康了解排泄的重要性。

学会保持排泄系统的健康。

3.3 尿的形成与排出了解尿的成分和形成过程。

掌握排尿的意义和预防尿路感染的方法。

第四章:人体内的水循环4.1 水的来源和分布了解人体水的来源和分布。

掌握水在人体中的作用。

4.2 水平衡与健康了解水平衡的重要性。

学会保持水平衡的方法。

4.3 出汗与体温调节了解出汗的意义和体温调节原理。

掌握科学的防暑降温方法。

第五章:人体生长与发育5.1 生长与发育的概念了解生长和发育的含义。

掌握生长发育的阶段和特点。

5.2 青春期的发育特点了解青春期的生理变化。

学会正确对待青春期的问题。

5.3 人体发育的调控了解人体发育的调控因素。

掌握科学的生活方式对发育的影响。

第六章:生殖与遗传6.1 生殖系统的组成与功能了解男性和女性的生殖系统组成。

掌握生殖器官的功能和生殖过程。

6.2 人类的遗传与变异理解遗传的概念和遗传规律。

掌握基因在亲子代间的传递。

6.3 遗传病与优生优育了解遗传病的概念和类型。

学会预防遗传病的措施和优生优育的方法。

第七章:人体的免疫与健康7.1 免疫的概念与功能理解免疫的基本概念和免疫器官的功能。

八年级下册生物教案(全册)

八年级下册生物教案(全册)

八年级下册生物教案(全册)第一章:生物的细胞结构与功能1.1 细胞的基本结构介绍细胞的概念讲解细胞的基本结构,包括细胞膜、细胞质、细胞核等分析细胞结构对生物生存的重要性1.2 细胞的能量转换器讲解线粒体和叶绿体的功能和区别分析细胞内能量转换过程探讨能量转换对生物的影响第二章:人体的主要系统2.1 人体神经系统介绍神经系统的组成和功能讲解神经元的基本结构和工作原理分析神经系统对人体生命活动调节的作用2.2 人体循环系统介绍循环系统的组成和功能讲解心脏的结构和血液循环过程分析循环系统对人体健康的重要性第三章:生物的遗传与变异3.1 遗传的基本规律讲解孟德尔遗传定律的基本内容分析遗传规律在生物繁殖中的应用探讨基因型和表现型之间的关系3.2 生物的变异现象介绍变异的概念和分类讲解基因突变、基因重组和染色体变异的特点和原因分析变异对生物进化的意义第四章:生物的适应与进化4.1 生物的适应性介绍适应性的概念和原理讲解生物适应性的实例,如鸟的羽毛、鱼鳍等分析适应性对生物生存的重要性4.2 生物的进化介绍进化的概念和原理讲解自然选择和物种形成的过程分析进化对生物多样性的影响第五章:生物与环境的关系5.1 生物与非生物环境的关系讲解生物对非生物环境的依赖和适应分析生物与非生物环境的相互作用探讨生物与环境平衡的重要性5.2 生物与生物环境的关系介绍生态系统的概念和组成讲解生物之间的相互关系,如捕食、竞争、共生等分析生物与生物环境之间的相互影响第六章:植物的生长发育6.1 植物的生长过程介绍植物生长发育的基本过程,包括种子萌发、细胞分裂、伸长等讲解植物生长的激素调节,如生长素、赤霉素等的作用分析植物生长过程对植物繁殖和适应环境的影响6.2 植物的生殖与发育介绍植物的生殖方式,包括有性生殖和无性生殖讲解植物的繁殖结构和生殖过程,如花、果实、种子的形成分析植物生殖与发育对物种延续和生态系统的重要性第七章:动物的生长发育与生殖7.1 动物的生长发育介绍动物生长发育的基本过程,包括胚胎发育、幼年生长、成熟等讲解动物生长的激素调节,如甲状腺激素、生长激素等的作用分析动物生长发育对动物生存和繁殖的影响7.2 动物的生殖方式与发育介绍动物的生殖方式,包括有性生殖和无性生殖讲解动物的繁殖行为和生殖策略,如占巢、求偶、产卵等分析动物生殖与发育对物种延续和生态系统的重要性第八章:生态系统与环境保护8.1 生态系统的概念与组成介绍生态系统的定义和组成,包括生物群落、生物圈等讲解生态系统中能量流动和物质循环的过程分析生态系统对生物生存和发展的作用8.2 环境保护与可持续发展介绍环境保护的概念和意义讲解人类活动对生态环境的影响,如污染、破坏等分析环境保护和可持续发展的重要性第九章:生物技术及其应用9.1 生物技术的概述介绍生物技术的概念和分类,包括基因工程、细胞工程等讲解生物技术的发展历程和应用领域分析生物技术对人类社会的影响9.2 生物技术的应用实例介绍基因工程、克隆技术、转基因生物等生物技术的应用实例分析生物技术在医学、农业、环境保护等领域的作用探讨生物技术的发展趋势和伦理问题第十章:生物学与人类生活10.1 生物学的应用与生活讲解生物学在食品、药品、保健品等领域的应用分析生物学对人类生活质量的影响探讨生物学在未来的发展前景10.2 生物学与健康生活介绍生物学在疾病预防、治疗、康复等方面的应用讲解健康生活方式对生物学的依赖和影响分析生物学在人类健康中的重要作用重点和难点解析1. 细胞的能量转换器:叶绿体和线粒体的功能和区别是本节课的重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章一元一次不等式7.2不等式的解集目标要求:1.会判断一个数是否为不等式的解;2.正确地将不等式的解集表示在数轴上.过程性目标在使用数轴表示不等式解集的过程中, 让学生感受数形结合思想.情感态度目标通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,体验数学活动充满着探索性与创造性.重点和难点重点:不等式解集;难点:对不等式解集的含义的理解;关键:通过数轴直观地表现出不等式的解集.一、创设情境1.什么叫做不等式?x+2>5是不等式吗?2. 当x的值分别取-1、0、2、3、3.5、5、6时,不等式x-3>0和x-4<0能分别成立吗?列出下表,让学生填写:不等式的解:能使不等式成立的未知数的值叫做不等式的解.例如,x=3.5、5、6都是不等式x-3>0的解,x=-1、0、2、3、3.5、5、6都是x-4<0的解.练习:课本P.10~练习1.探索归纳:1、x+2>5、x-3>0和x-4<0的解各有多少个?2、不等式的解与方程解有什么不同?小结:不等式解是能不等式成立的,它是不确定的,是在一个范围内的任意值(无数个);方程的解使等式成立的,它是一个具体的值.一个含有未知数的不等式的解的全体叫做不等式的解集(solution set).不等式x+2>5、x-3>0和x-4<0的解集分别是什么?求不等式解集的过程叫做解不等式.二、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的左边还是右边?(右边)因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画实心圆点.如图所示:引导学生总结出在数轴上表示不等式解集的要点:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.练习:课本P.11~练习2.3三、应用举例例1判断下列说法是否正确:(1)x=-2是不等式x+1<2的解;(2)不等式x+1<2的解集是x=-1.解(1);(2).[说明]不等式的解和不等式的解集既有联系又有区别,不等式的解是不等式解集中的一个元素;不等式解集中的每一个元素都是这个不等式其中的一个解.例2在数轴上表示下列不等式的解集:(1)x<3;(2)x≤4;(3)x≥-0;(4)x<2;(5)-1≤x<2.解:(1)(2)(3)(4)(5)例3将数轴上x的范围用不等式表示:(1);(2);(3);(4);(5)x 应取大于-2且小于1的值或x 等于-2.此不等式的解集在数轴上的表示为:三、交流反思师生共同回顾总结: 1.我们通过具体例子学习了不等式的解集的概念.要明确不等式的解集是指一个不等式所有解组成的集合.2.本课还学习了在数轴上表示不等式解集的方法. 要在认清不等式解集的含义的基础上,在数轴上正确地表示出不等式的解集. 四、检测反馈1. 根据“当x 为任何正数时,都能使不等式x +3>2成立”,能不能说“不等式x +3>2的解集是x >0”?为什么?2. 两个不等式的解集分别是x <2和x ≤2,它们有什么不同?在数轴上怎样表示它们的区别?3.两个不等式的解集分别是x <1和x ≥1,分别在数轴上将它们表示出来. 4.在数轴上表示下列不等式的解集:(1)x >5; (2) x ≥0; (3) x ≤2; (4)x <212 . 5.写出下列各图所表示的不等式的解集:(1);(2).6、 在数轴上表示下列不等式的解集: (1)x ≤-5; (2)x ≥0; (3)x >-1; (4)1≤X ≤4; (5)-2<X ≤3; (6)-2≤x <3.7、 用不等式表示下列数量关系,再用数轴表示出来: (1)x 小于-1; (2)x 不小于-1; (3)a 是正数; (4)b 是非负数. 五、课堂总结1.如何区别不等式的解,不等式的解集及解不等式这几个概念?2.找出一元一次方程与不等式在“解”,“求解”第八章一元一次不等式7.3不等式的性质目标要求:1.掌握不等式的两条基本性质,并能熟练的应用不等式的性质进行不等式的变形; 2.理解不等式的基本性质与等式的基本性质之间的区别. 过程性目标在积极参与探索、发现不等式基本性质的过程中,体会不等式的两条基本性质的作用和意义,培养学生探索数学问题的能力.情感态度目标1.通过学生的自主讨论培养学生的观察力和归纳的能力;2.通过学生的讨论使学生进一步体会集体的作用,培养其集体合作的精神.重点和难点重点:掌握不等式的两条基本性质,尤其是不等式的基本性质2;难点:正确应用不等式的两条基本性质进行不等式的变形.一、创设情境问:在解一元一次方程时,我们主要是对方程进行变形,那么方程变形主要有哪些?答:去分母、移项、系数化为1.问:这些解法具体步骤的主要依据是等式的两条基本性质.等式基本性质1:在等式的两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式;等式基本性质2:等式的两边都乘以或除以同一个数不等于0的数,所得的结果仍是等式探索1:(1)请同学们观察:课本P.12电梯里两人身高分别为:a米、b米,且a>b,都升高6米后的高度后的不等式关系:a+6>b+6;同理:a-3b-3(填写“<”、“>”号)(2)实物演示:一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然有a >b),如果在两边盘内再分别加上等量的砝码c,那么盘子会出现什么情况?可让学生进行操作,并得出结论:盘子仍然像原来那样倾斜(即a+c>b+c).a>b ⇒a+c>b+c.归纳1:教师在学生得出结论的前提下总结:不等式的性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.用数学式了表示:如果a>b,那么a+c>b+c,a-c>b-c.探索2:问题:如果不等式的两边都乘以(或除以)同一个不为零的数, 不等号的方向是否也不变呢?将不等式7>4两边都乘以同一个数,比较所得数的大小,用“>”,“<”或“=”填空:7×3 ______4×3,7×2 ______4×2 ,7×1______ 4×1,……7×(-1)______4×(-1), 7×(-2)______4×(-2), 7×(-3)______4×(-3),……从中你能发现什么?在学生所得出的结论的基础上,引导学生总结概括出不等式的另外一条性质.不等式的性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变.用数学式了表示:如果a >b ,并且c >0,那么ac >bc.; 如果a >b ,并且c <0,那么ac <bc. 思考:不等式的两边都乘0,结果又怎样?如:7 4 而 7×0______ 4×0.注意:不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 三、实践应用例1 设:a <b ,用“<”或“>”号填空:(1)a -3 b -3;(2)a -b 0.(3)―4a ―4b ;(4)5a-5-b .例2 根据不等式的性质,把下列不等式化为“x >a ”或“x <a ”的形式. (1)x -4>3 (2)2x -3<x -2 (3)21x +1>-3; (4)-2x -4<4x +4; (5)31x ≤31(x -2); 注意:不等式的两边同乘以或除以同一个负数,不等号一定要改变方向.例3、根据不等式的性质,将不等式变形成x >a 或x <a 的形式。

(1)x -3>2; (2)3x <2x -3。

例4、根据不等式的性质,将不等式变形成x >a 或x <a 的形式。

(1)12x >-3; (2)-2x <3x+5 例5、已知a <2,则2)2(-a = .例6、有一个两位数,个位上的数字是a ,十位上的数字是b ,若把这个两位数的个位与十位数对调,得到的两位数大于原来的两位数,比较a 与b 的大小. 四、练习1.判断下列语句是否正确:(1)若m <0,则5m >4m ; (2)若x 为有理数,则4x 2 >-3x 2;(3)若y 为有理数,则4+y 2>0; (4)若3a <-2a ,则a <0; (5)若yx 11<,则x <y . 2.已知x <y ,用“<”或“>”号填空。

(1)22++y x ; (2)y x3131; (3)y x --; (4)m y m x --;3.将下列不等式改写成“x >a ”或“x <a ”的形式:(1)3-x >0; (2)x 2-<4。

4. 利用不等式的基本性质,填“>”或“<”: (1)若a >b ,则2a+1 2b+1; (2)若y 45-<10,则y -8; (3)若a <b ,且c >0,则ac+c bc+c ;(4)若a >0,b <0, c <0,(a-b )c 0。

5.(1)用“>”号或“<”号填空,并简说理由。

① 6+2 -3+2; ② 6×(-2) -3×(-2); ③ 6÷2 -3÷2; ④ 6÷(-2) -3÷(-2) (2)如果a >b ,则① b a + c b + ② b a - c b - ③ ac c bc (>0) ④c a cb(c <0) 五、拓展延伸。

1.已知a >b ,能否推出ac 2>bc 2? 2.已知ac 2>bc 2,能否推出a >b? 3.已知x >5,能否推出2x -3>7 4.已知x <2,能否推出3-2x >-1第九章一元一次不等式7.4解一元一次不等式 (第一课时)目标要求: 1、 解一元一次不等式的概念; 2、 熟练掌握较为简单的一元一次不等式的解法,并能正确地将不等式的解集表示在数轴上.过程性目标1.介绍一元一次不等式的概念;2.引导学生体会通过综合利用不等式的概念和基本性质解一元一次不等式. 情感态度目标通过实例让学生经历求一元一次不等式的解的过程,探索一元一次不等式的解法与一元一次方程解法的异同,从中感受到新旧知识的迁移和更新. 重点和难点重点:一元一次不等式的解法;难点:解一元一次不等式时,去分母及化系数为1,这两步当乘数是负数时改变不等号的方向.一、课前练习:1.直接写出下列一元一次不等式的解集.(1)-x <2; (2)1-x <x -1; (3)2x -3>1; (4)5x≤x. 2.解下列不等式,并把解集在数轴上表示出来. (1)31x-<-1; (2)6-(x -1)<1. 二、创设情境小华在3月初栽种了一棵小树,小树高75cm ,小树成活后每周长高2.5cm ,估计几周后这棵小树超过100cm.解:设x 周后这棵小树的高度超过100cm. 根据题意,得这个不等式的解集在数轴上表示如下:问: 这些不等式中含有几个未知数,未知数的次数是多少,含有未知数的式子是什么样的代数式?这些不等式有一个共同的特点:只含有一个未知数,并且未知数的最高次数是1,系数不等于0,这样的不等式叫做一元一次不等式(linear inequality with one unknown ).说明:它们都只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 三、解不等式:解下列不等式并把它的解集在数轴上表示出来: (1)x -8<3; (2)3x >7; (3)65-x -1≤2. (要求学生能够说出变形的方法和其依据) 问: 通过以上例题的解答,我们来总结一下一元一次不等式的解法,并和一元一次方程的解法作一下比较,看看他们有哪些类似之处?有什么不同?(可安排学生进行讨论和交流.) 由学生得出以下结论,教师作适当的总结.(1)解一元一次不等式的一般步骤: 去分母,去括号,移项,合并同类项,系数化为1.(2)解一元一次不等式和解一元一次方程步骤类似,但要注意在不等式两边都乘以(或除以)同一个负数时,不等号方向必须改变. 四、检测反馈1.下面方程或不等式的解法对不对?为什么? (1) 由5=-x , 得5-=x ; (2) 由5>-x ,得5->x ; (3) 由42->x ,得2-<x ; (4)由321≤-x ,得6-≥x . 2.解下列不等式,并把解集在数轴上表示出来: (1)2x +1>3; (2)2-x <1;(3)2(x +1)<3x ; (4)3(2x +2)≥4(x -1)+7. 3. a 取什么值时,代数式4a +2的值(1)大于1? (2)等于1? (3)小于1? 4.解下列不等式:(1)x x>+12; (2)7)1(5)3(3+-<+x x ; (3)x x 231)3(21-<-;5.一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题? 6. 如果关于x 的不等式-k -x +6>0的正整数解为1,2,3,正整数k 应取怎样的值? 7、 已知方程3(x -2a )+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。

相关文档
最新文档