用放缩法证明数列不等式

合集下载

放缩法证明不等式

放缩法证明不等式

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。

【数列】放缩证明不等式的4种方法(数列难点)

【数列】放缩证明不等式的4种方法(数列难点)

【数列】放缩证明不等式的4种方法(数
列难点)
数列放缩证明不等式的方法有很多,以下是其中4种方法:
- 直接求和再放缩:通过求和的方式将原式进行化简,再进行放缩证明。

- 先放缩再求和:通过放缩将原式进行化简,再通过求和的方式证明。

- 等差数列:将原式中的数列通过放缩转换为等差数列,再进行证明。

- 等比数列:将原式中的数列通过放缩转换为等比数列,再进行证明。

在使用放缩法证明不等式时,需要根据数列的特点选择合适的放缩方法,并进行严谨的证明。

放缩法证明数列不等式的策略探究

放缩法证明数列不等式的策略探究

2021年第2期(上)中学数学研究41放缩法证明数列不等式的策略探究甘肃省兰州市第六中学(730060)焦永垚数列不等式的证明是高中数学中的重点和难点,是历年 高中各类考试中的热门考点,这类问题通常难度较大,具有很高的综合性与灵活性.本文以2019年全国高中数学联赛 贵州省预赛试题(B)卷第16题为例,从不同角度探寻放缩法 证明数列不等式的策略与方法,重点阐述如何选择合理地放缩思路,如何准确把握放缩的“尺度”,以期能帮助同学们从根本上认识放缩法的规律,从而优化解题方法,提升解题能 力,提高解题效率.一、试题分析题目 设数列{a ”}的前n 项和S ”满足:S ” = k • q ”-k , 其中k, q 为非零常数,且a i = 3, a 4 = 81.(1)求数列{a ”}的通项公式;1 1 1 9b i 十瓦十•••十瓦 < 歪.⑵设b ” = a ” ——,证明: a ”分析 第(1)问考查数列的基础知识,易求得a ” = 3”.第(2)问是数列不等式的证明,数学归纳法是解决这类问题的优选方案.1 3 9当n = 1时,—=- < —,不等式成立.b 1 8 16假设当n = k (k e N *)时结论成立,即士 + 士 +b 1 b 219• • • +匸< 16,那么当n = k 十1时,因为b ” — 3b ”-1 =81莎 > 0,所以 b ” > 3b ”-i ,即—<1 1 1 1 1 1 ( 1 亠 | b i 十b 2十 十b k 十b k+i b i 十3 I b i 十b 2十 十b k 丿3 1 9 93 + 1 x 爲=爲,即当n = k + 1时不等式也成立.8 3 16 161 1 1 9综上,对于一切正整数n ,不等式十+十十…+厂< 土b 1 b 2 b ” 16都成立.莎・(n 2 2),则3b ”-i1; b 2 b k 可以看到,上述方法中我们需要克服以下三个难点:(1) 如何利用归纳假设?要证明当n = k + 1时结论也成立,如何利用归纳假设, 是解决问题的的关键,为了利用假设,我们需要找岀1与b ”1 1 1亠(n 2 2)的关系,要找岀二与亠的等量关系难度 b ”-1 b ” b ”-1太大,所以考虑它们的不等关系,也就是放缩.(2) 怎样放缩?因为b ” =3” -补,容易发现{b ”}为递增数列,3”所以1 < 占(n 2 2),因此我们会首先做这样的尝b ” b ”-1试:当n = k 十1时,岂+岂+ • ••十!1 + <b i b 2 b k b k+i1 1 1 1 3 9 15 9b i +(b 十厉十.…十瓦)< l + 注,但歪> 16,放缩过度了.(3) 如何调整放缩度?因为PA 2PE PF , 所 以 PE = 1, AE =VPA 2 - PE 2 = 73.故 AC = 2AE = 273.在 Rt AABCAB中,选取ZBAC 为自变量,记ZBAC = 0,则cos 0 = -&,所以 AB = 273 cos 0,又 sin 0 = B D , cos 0 = AD ,故AB ABBD = ^/3 sin 0 cos 0, AD = ^/3 cos 0 cos 0,所以S a abd = 2 AD • BD = 6 sin 0 cos 3 0.令sin 2 0 = x(0 < x < 1),则三棱锥P - ABD 的体积 为 V = 1 • S a abd • PE = 2 Jx(1 — x)3(0 < x < 1),令 f (x) = x(1 - x)3(0 < x < 1),通过求导可解得 V max =算1,8即三棱锥P - ABD 的体积的最大值为呼.8究竟怎样选取自变量角解题?通过以上几例的解答,我们可以发现,要先找岀题设中的变量,然后确定变量中的角 为自变量,再从多个变量角中选取一个变量角为自变量,结合正弦定理、余弦定理、三角公式、三角形的面积公式、三角函数等相关知识点,建立所求取值范围(最值)的变量与所选取自变量角的关系式,由此把问题转化为求所选取自变量角 的三角函数的值域(最值)问题,同时要注意所选取自变量角的取值范围.参考文献[1] 武增明•一道2015年高考题的评析与推广[J].数理化学习:高中版,2016(10) : 25-26.[2] 钱鹏•你若探究 花自盛开——一道河南模考解析几何题的探究[J].中学数学教学,2019(3) : 53-54.[3] 赵建勋.设角为自变量求图形的最值[J].中学生数学:高中版,2012(6) : 15-16.42中学数学研究2021年第2期(上)经历(2)的尝试,发现放缩过度了,需要调整放缩的度: 如果忽略b ” 一 3” - 3”中的1,则有b ” — 3b ”—i (n 2 2),于是我们猜想b ” > 3b ”—i ,是否成立呢?因为b ” - 3b ” —i — 3” > 0,所以 b ” > 3b ”_i ,可得右 < (n 2 2),再进行计算发现刚刚好. ""1从以上过程可以看到,放缩法是证明数列不等式的重点 和难点,因此我们有必要进一步探究放缩法证明数列不等式的思路与策略.二、思路探究1 1 1 9综上,对于一切n e N *,都有 + +…+ < —.b i b 2 b ” 16点评此证法中如果只保留第一项,从第二项开始放大, 则寺+占+ ••• +丄< 1 +1 — 5 > 9,放缩过度了;b i b 2 b ” 8 4 8 16如果保留前两项,从第三项放大,则+寺+…+岂<b i b 2 b ”3 9 1 137 98 + 80 + 12 = 240 > 16,依然太大了,只有保留前三项, 从第四项开始放大,才能得到符合的结果.因此,当岀现放缩 过度的情况时,就要适时进行“局部调整”,保持前若干项不 变,从后面的项开始放缩,反复尝试,直至成功.数列.思路1放缩成一个等比数列为了便于求和,我们尝试将数列{右}放缩成一个等比策略1利用不等式一a ” -b ”中a > b > 0.因为3” -丄3”3”—iI 3”_____1_____放缩苴a”- (a - b)放缩,苴 (3 - 3 • 32”—r) 21 3 1匸工4 8 •尹,3n393 < ,不等式成立;当n 2 2时,8 16思路2向裂项相消放缩除了将数列{右}放缩为一个等比数列,我们还 可以尝试将其放缩"为可以“裂项相消”的形式,结合1 3”-=(3”一 1)(3” + 1)的结构,有以下两种策略.3”—i-i ,所以b ”于是,当n =1时,b i1亠 亠 亠” 1 3/1 1b i + - + ••• + 瓦 4b i + 8(3 + 羽 + •••+3 3 9< —+ ———8 16 ,11b i b 2 (3 3 1 (—+ — • — ( 18 8 2 \b ”1 1 1 9综上,对于一切n e N *,都有r +厂+…+厂 < 毎.b i b 2 b ” 16点评 在证明数列不等式的问题中,对于形 如 一「(a>b> 0)的数列,通常可以利用不等式a ” -b ”4 —二_応将其放缩为一个等比数列.a ” -b ” a ”—i (a - b)策略2利用不等式3” 2 2 • 3”-】+ 1放缩.因为3” - 2 • 3"—i — 3"—i 2 1,所以,对任意 e N *,都有3” 2 2 • 3"—i + 1 成立.所以,1 —b ”4 13” - 1、2 • 3"—i '3 < 2;当n — 2时,丄+丄8 16' n bl b 2鶴;当n =3时,b i ++右 4095 9< 7280 =花;当 n 2 4 时,1 1 1b i + 瓦 + •••+ -<丄+丄+丄+1 <b i + — — 2n 3”3”(3” - 1) • 3”1忘=4580 =3819------<--------7280 7280(3” 一 1) (3” + 1) <于是,当n — 1时,3 9 39—+ ——— <8 80 803 9 27—+ — +-----—8 80 7283 9 27 18 + 80 + 728 + 233 + 34 + •••+ 善「-黠3)3 9 27 1< I + I0 + 7lI + 361 - 1336191 36855 9 --------< ---------—65520 65520 16’策略1放缩成入(3”, 一丄-莎一万)的形式,入为 常数.当n 2 2时,1---—-----------------------< -----------------b ” (3- - 1) (3- + 1) (3- - 3) (3- - 1)—________里二_______ — 1(_________」)(3”—】-1)(3” - 1) 2 ,3”—】-1 3” - 1)1 3 9 1 1所以,当n — 1时,b- — 8 < —;当n — 2时,汗+ —b i 8 16 b i b 23 9 39 45 9 业、° 冶8 80 80 80 16, " '1 1 1-+ 厉 + •••+ -111/1 1 1 b i b 2 2 \32 - 1 33 - 1 33 - 1+_________)3”—i - 1 3” - 1_3 9 1 (1 1 )=8 + 80 + 2(8 - 3”—!丿3 9 1 44 45< —+ -- + -- -- < --8 80 16 80 803”3”1----------------34 — 1 +916综上,对于一切正整数n ,都有寺+寺+ •b i b 21策略2放缩成入(莎—亍一莎百3”119••+ - < 16.的形式,入为常数.因为右—(3”一 1)(3” + 1),为了便于用裂项相消法求和,所以我们联想能否把{右}中的全部或者部分的形式.我们先逆向进行探3” + 11 2 3”—i 1项放大成3-^1 -1索,因为L!- 要使 b ” < 3”-1 + 1 - 莎+!2• 3”—】 口需^ <(3"—i + 1)(3” + 1)'只需 3” - 1 < 3 < 2 • 3” - 2,即 3” > 5,显然当 n n 2 2 时,有 1 < 1 1b ”3” + 1 _ (3”-+ 1)(3” + 1),所以1 □需_______二________ <,只需(3” - 1)(3” + 1)2 口需 3” +3”—i + 1,只需3十2 2时成立,所以,当, 于是当 n — 1 时,3”—】+ 1 一 3” + 13”2021年第2期(上)中学数学研究433 9 1一 < —;当 n = 2 时,----+8 16’ b i 9 1 116 ;当 n = 3 时,^- + 厂 +16 b 1 b 24095 9< 7280 =歪;当 n 24 时,13 9 39—+ —=— <8 80 803 9 27—+ — +-----=8 80 728b 211+ 1b 21b =4580 —3819 < 7280-----72801 1 1b 十厉十•••十瓦1 1 1 1bib 2b 3 33 + 1 34 + 1 丁 34 + 111十...---------------------------3”-1 + 1 3” + 11 1 1 1 1 =-------------------------------------------------------------b i b2 b3 33 十1 3n + 13 9 27 1 4079 4095 9< —+ — +----+ — ------- < ------ —8 80 728 28 7280 7280 16综上,对于一切正整数n ,都有当+当+…十右 b 1 b 2 b ”思路3利用“糖水不等式”放缩135 + 119< 16b ”3”33”我们都熟悉这一不等式模型:设n > m > 0, c > 0, 则m < m+^jjj .由于它体现了 “糖水加糖变甜了”n n+c的生活实际,因此通常将其称为“糖水不等式”.因为””瓦=莎二r ,且0 <莎二r < 1,所以由“糖水不等” 1 3” 3” + 1 1 1式”可得b ” = E <掳厂=3”十9”,所以,当139n = 1时,—=- < —,不等式成立;当n 2 2时,b 1 8 161 1 1 b 十厉十•••十石<b i 十(32十33十…•十=3 + 1 (1-丄)+ 丄(1-丄)8 6 I 3”-i 丿十 72 I 9”-i 丿3 1 1 5 9< —+ — + —=— < —8 6 72 9 161+------------+-------十93十 十9”91”〕综上,对于一切正整数n ,都有1十1十…十右思路4利用分项比较法放缩9< 16需证b i 十十…十策略1执果索因,逆推探源.不等式的左边是数列 的前n 项和,右边为一个常数,结合1 = -3— b ” b ” 32” - 19的结构,我们联想,把右边常数-9缩小成某个等比数列16{c ”}的前n 项和,然后只需证明1 < c k 就可以了,其 中k = 1,2,...n .那么{c ”}究竟等于什么呢?我们可1 1 1 9以逆推回去:要证右+右+…+右 < 爲成立,只 b 1 b2 ( b ” ) 16/ <16(1-3”)成立,设数列=箱(1-3”),则当n 2 2时,3—,当n = 1时,c i = T i =—,符合上 8・3”‘ '丄 i 8’9 1 3k 9式,故=厂莎.于是,由b 一c k =站二! 一 E ={c ”}的前n 项和几9T n - T ”—i9=Ti 3k 9 32k 18.3k (32k - 1) < 0 可得瓦 < %,其中 k =】,2,_n ,所以右十右十…十右< T ” = 1H 1-3”)< 16,即1 1 1 9.b i 十厉十•••十石 < 歪.9策略2逆用累加法.同思路4,先把常数為缩小为161H 1-3”),即要证右十右十…十b ” < 16,只需证b 十瓦十•• •十瓦 < 花(1-莎丿,而三、小结反思数学归纳法和放缩法都是证明数列不等式的常用方法,而放缩法通常学生感觉无从下手,不知所措,主要表现在以 下几个方面:(1)用什么方法放缩?首先要搞清楚到底是放大还是缩小,再考虑采用哪种放缩方法.常见的方法有利用均值不等式、“糖水”不等式、放大(或缩小)分子(或分母)、一些常用的不等式等等.(2) 向什么方向放缩?对于像母题中与数列前n 项和有关的不等式,放缩的原则是经过放缩后能够求和,比如放缩成一个等比数列、向裂项相消放缩等等.(3) 如何把握放缩的度?我们经常会遇到放得“太大”或“太小”的问题,这就要求调整放缩的尺度,例如在本文中,当我们发现放缩得“太大”时,就要采取补救措施,即保留前若干项不变,对后面的项进行放缩,逐一尝试,直至成功.另外,本文中的这道竞赛题是一道典型而设置巧妙的考 题,它之所以能引起我们强烈的共鸣与反响,不仅仅是因为其独特的解题思路与技巧,更是因为问题中所蕴含的丰富的 数学知识思维和思想方法.这样的题目有利于学生模式化解题的总结,不仅仅教会了学生怎样解题,而且还有效地培养 了学生思维的广阔性和灵活性,提高了解题效率.参考文献[1]曹莹,李鸿昌.利用糖水不等式证明一类数列不等式[J].数学通讯(上半月),2019(11):2-3.。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩

用放缩法证明数列不等式的策略与技巧

用放缩法证明数列不等式的策略与技巧
第l O期
寿 鲜 春 : 放 缩 法 证 明数 列 不等 式 的 策 略 与 技 巧 用
・1 ・ 7
用 放 缩 法 证 明 数 列 不 等 式 的 策 略 与 技 巧
●寿鲜春 ( 牌头中学 浙江诸暨 31 5 1 2) 8
类 似 的 , 可 以证 明下 面一 个不 等式 : 还 例 2 已知数 列 { 满 足 : =a a} a+ 一a +1 , a= , 证: 】 2求 — + —+… + ——< ( ≥2 ∈ ・ . —+ - + … +— <1 n , ) — 【 ≥Z /∈N J 。 7 ,
利用 加糖后 糖水 变 甜 的结论 , 以得 出 : 可 若a>
b + rl < 2 3 . a ‘ t _
2 2 利 用浓度 不等 式 建 立项 与项之 间的对 应 关 系 .
32 +33 ’… + 3 一 <一 , + 。 。 1、 6 ’
< <
2 ( ≥3 n 凡 )
( 凡≥3 ),

g 一ln)g . ( ÷(_-艚 2 ) g 1l 2
然 后用 错位 相减 法计算 得 到
6 8
一 +
这 问 就 转 为 明l1 ) 样 题 可 化 证 :( > g+



< ,

√等即明 > 等显成. , √ , 立 证 然
与 要证 结果 不符. 事买是 放缩 时放 得 太大 !
l+ )把 边 作 一 数 之 , 3 g . 右 看 某 个 列 和则 ( 1 若
对应 的数列 通项 为 :
11
尝试 2 用 数学 归纳法 容 易 证 明 : n≥3时 , 当 > n 则 由浓度 不等式 可 以得 到 以下不 等式 : 2,

不等式证明 之 放缩法

不等式证明 之 放缩法

不等式证明 之 放缩法放缩法的定义所谓放缩法,即要证明不等式A<B 成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A 放大成C ,即A<C ,后证C<B ,这种证法便称为放缩法。

使用放缩法的注意事项(1)放缩的方向要一致。

(2)放与缩要适度。

(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。

(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。

典例分析:例1、 设x>y>z ,n *N ∈,且z x n z y y x -≥-+-11恒成立,求n 的最大值.例2、 已知:x>0,y>0,z>0,求证:z y x z yz y y xy x ++>+++++2222.例3、 求证:n n n 21...31211112<++++<-+)(, n *N ∈.例4、 求证:21...31211222<++++n ,n *N ∈.变式:求证:471...31211222<++++n,n *N ∈.例5、 已知:)()1(...433221+∈+⨯++⨯+⨯+⨯=N n n n a n ,, 求证:2)2(2)1(+<<+n n a n n n .例6、{}n b 满足:2111,(2)3n n n b b b n b +≥=--+(1) 用数学归纳法证明:n b n ≥(2) 1231111...3333n n T b b b b =++++++++,求证:12n T < 解:(1)略(2) 13()2(3)n n n n b b b n b ++=-++又 n b n ≥132(3)n n b b +∴+≥+ , *n N ∈ 迭乘得:11132(3)2n n n b b -++≥+≥ *111,32n n n N b +∴≤∈+ 234111111111 (2222222)n n n T ++∴≤++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。

证明数列不等式的等比数列放缩法

证明数列不等式的等比数列放缩法
证明不等式“∑ < (M是常数)”是高中数
学推理 难 点之 一 ,通 常使 用“放 缩 法”,但 所依 赖 的“辅 助不等 式”似 乎技 巧 性很 强 ,思 维量 大 且无 固定程序
可用.本文对“∑ < (M是常数)且 ,是f的指
则 有 6l= ,N PA{b.}的通 项 公 式为 = ( ) ,因
例1数列 }的通项公式为a =— l_ ,求证:
al+ a2+ a3+ … + a < 1.
例 3 数 列 }的通 项公 式 为 :=
” ·

aI+ a2 + a3 + … + 口 < 一
2 ‘
解析 令 = ,由 = 1 ,
,求证 :
= 吉,则
解 析 令 _1, an m ,可 令 g= 1

1一g l— g






为 目标
’。。一


为 ,
’ 2
故令 = ,由 =
,令 g= ,则 有 = 1 ,
所 以 2时 = 1( 1) , 而 2时 ,
a ≤
≤ ( ) 2§ ,z≥2成 立 .
所 以“辅 助不 等 式”为 1 1( 1) ( 2)
有 63= 3 所 以

3时 = 3( 1)

 ̄iln_>3时 ,
3 ‘ 1

正确 ,
+a3+---+ ≤ ( )。+ 1 1 J ̄十 1 1) 2
·


. .
营 ,2 一 ≥ 一】营 ≥3成’ 立 .
所 以“辅 助不 等 式”为
3( 1) ( ≥3)

放缩法证明不等式

放缩法证明不等式

放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。

但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。

比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。

“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。

做到放大或缩小恰到好处,才有利于问题的解决。

一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
当 n 1 时,有 2 3 也成立. 放缩成裂项相消型数列
课堂小结
用放缩法证明数列不等式
一.具备求和条件的数列不等式先求和再放缩
二. 不具备求和条件的数列不等式通先放缩再求和 目标1.放缩成裂项相消型求和 目标2.放缩成等比数列求和
化归与转化思想
再 见
从结论入手放缩
用放缩法证明数列不等式
例3: 已知数列 {an } 满足 a1 1, an1 2an 1(n N ) , (1)求数列{an } 的通项公式;
an n 1 a1 a2 n (2)求证: (n N ) 2 3 a2 a3 an 1 2
1 1 1 1 故 ai (ai 1) 2 2 n 3 n1 3(n 2) 2 2 2 2 i 1
当 n 1 时,有 2 3 也成立. 放缩成等比数列
n
用放缩法证明数列不等式
n 2n 练习: 已知数列 {an } 中 an n , 求证: ai (ai 1) 3 . 2 1 i 1 i 2 2i i 方法二:ai (ai 1) i i (2 1)(2 1) (2 1)(2i 2)
解:(1) an 2n 1(n N )
an 2n 1 1 1 (2) n1 an1 2 1 2 2(2n1 1)
用放缩法证明数列不等式
2n 练习: 已知数列 {an } 中 an n , 求证: 2 1
a (a 1) 3 .i 1ຫໍສະໝຸດ i i用放缩法证明数列不等式
用放缩法证明数列不等式
n 1 5n cn n , n c1 c2 L cn ,试比较 Tn 与 T 例1:(09· 湖北卷)已知 的大小. 2 2n 1
n3 分析: 可先求出 Tn 3 n 2
(请用放缩法证明)
5n (n 3)(2n 2n 1) 进一步 , Tn 2n 1 2n (2n 1)
故只需比较 2n 与 2n 1的大小
1 2n (1 1)n Cn0 Cn L Cnn1 Cnn
利用二项式定理放缩
0 1 2(Cn Cn ) 2n 2 2n 1 (n 3)
当n 2时,可得 2n 2n 1. 5n 5n T T . 综上:当 n 2 时, n ;当 n 3 时, n 2n 1 2n 1
用放缩法证明数列不等式
思考:比较 2n 与 n2 n 的大小. 当 n 5 时,
1 2n (11)n Cn0 Cn Cn2 L Cnn2 Cnn1 Cnn
2(C C C ) n2 n 2
0 n 1 n 2 n
n2 n
当 n 1 时,可得 2n n2 n.
当 1 n 5时,可得 2n n2 n.
用放缩法证明数列不等式
an n(n 1), bn (n 1)2 例2:(08· 辽宁卷)由已知条件可得 .
1 1 1 5 . 求证: a1 b1 a2 b2 an bn 12
1 1 1 1 1 1 1 ( ) 方法一: an bn (n 1)(2n 1) 2(n 1 )(n 1) 2n(n 1) 2 n n 1 2 n 1 1 1 1 1 1 1 1 1 ( ) 故 6 2 2 3 3 4 n n 1 i 1 ai bi
n
用放缩法证明数列不等式
2n 练习: 已知数列 {an } 中 an n , 求证: 2 1 方法一:
a (a 1) 3 .
i 1 i i
n
2i 1 1 1 ai (ai 1) 2i i i 1 i 1 (i 2) 2 2 2i 1 2 2 2 2i 1 2 2
5 1 12 2(n 1) 5 . ( n 2) 12
从通项入手放缩
1 5 当 n 1 时,有 也成立. 6 12
用放缩法证明数列不等式
an n(n 1), bn (n 1)2 . 例2:(08· 辽宁卷)由已知条件可得
1 1 1 5 求证: . a1 b1 a2 b2 an bn 12
2i 1 1 1 i i 1 i (i 2) i 1 (2 1)(2 1) 2 1 2 1
1 1 1 1 1 ai (ai 1) 2 ( 2 1 22 1) ( 2n1 1 2n 1) 3 2n 1 3(n 2) i 1
1 1 6 n 13 方法二: (n )(n 1) (n )(n ) 0 2 5 5 10 50 1 1 1 an bn 2(n 1 )(n 1) 2(n 1 )(n 6 ) 5 5 2 n 1 1 1 1 1 1 1 5 5 ( ) 故 1 6 2 1 1 1 6 2 6 12 i 1 ai bi n n 5 5 5 5
相关文档
最新文档