放缩法证明数列不等式问题的方法

合集下载

【数列】放缩证明不等式的4种方法(数列难点)

【数列】放缩证明不等式的4种方法(数列难点)

【数列】放缩证明不等式的4种方法(数
列难点)
数列放缩证明不等式的方法有很多,以下是其中4种方法:
- 直接求和再放缩:通过求和的方式将原式进行化简,再进行放缩证明。

- 先放缩再求和:通过放缩将原式进行化简,再通过求和的方式证明。

- 等差数列:将原式中的数列通过放缩转换为等差数列,再进行证明。

- 等比数列:将原式中的数列通过放缩转换为等比数列,再进行证明。

在使用放缩法证明不等式时,需要根据数列的特点选择合适的放缩方法,并进行严谨的证明。

放缩法证明数列不等式的策略探究

放缩法证明数列不等式的策略探究

2021年第2期(上)中学数学研究41放缩法证明数列不等式的策略探究甘肃省兰州市第六中学(730060)焦永垚数列不等式的证明是高中数学中的重点和难点,是历年 高中各类考试中的热门考点,这类问题通常难度较大,具有很高的综合性与灵活性.本文以2019年全国高中数学联赛 贵州省预赛试题(B)卷第16题为例,从不同角度探寻放缩法 证明数列不等式的策略与方法,重点阐述如何选择合理地放缩思路,如何准确把握放缩的“尺度”,以期能帮助同学们从根本上认识放缩法的规律,从而优化解题方法,提升解题能 力,提高解题效率.一、试题分析题目 设数列{a ”}的前n 项和S ”满足:S ” = k • q ”-k , 其中k, q 为非零常数,且a i = 3, a 4 = 81.(1)求数列{a ”}的通项公式;1 1 1 9b i 十瓦十•••十瓦 < 歪.⑵设b ” = a ” ——,证明: a ”分析 第(1)问考查数列的基础知识,易求得a ” = 3”.第(2)问是数列不等式的证明,数学归纳法是解决这类问题的优选方案.1 3 9当n = 1时,—=- < —,不等式成立.b 1 8 16假设当n = k (k e N *)时结论成立,即士 + 士 +b 1 b 219• • • +匸< 16,那么当n = k 十1时,因为b ” — 3b ”-1 =81莎 > 0,所以 b ” > 3b ”-i ,即—<1 1 1 1 1 1 ( 1 亠 | b i 十b 2十 十b k 十b k+i b i 十3 I b i 十b 2十 十b k 丿3 1 9 93 + 1 x 爲=爲,即当n = k + 1时不等式也成立.8 3 16 161 1 1 9综上,对于一切正整数n ,不等式十+十十…+厂< 土b 1 b 2 b ” 16都成立.莎・(n 2 2),则3b ”-i1; b 2 b k 可以看到,上述方法中我们需要克服以下三个难点:(1) 如何利用归纳假设?要证明当n = k + 1时结论也成立,如何利用归纳假设, 是解决问题的的关键,为了利用假设,我们需要找岀1与b ”1 1 1亠(n 2 2)的关系,要找岀二与亠的等量关系难度 b ”-1 b ” b ”-1太大,所以考虑它们的不等关系,也就是放缩.(2) 怎样放缩?因为b ” =3” -补,容易发现{b ”}为递增数列,3”所以1 < 占(n 2 2),因此我们会首先做这样的尝b ” b ”-1试:当n = k 十1时,岂+岂+ • ••十!1 + <b i b 2 b k b k+i1 1 1 1 3 9 15 9b i +(b 十厉十.…十瓦)< l + 注,但歪> 16,放缩过度了.(3) 如何调整放缩度?因为PA 2PE PF , 所 以 PE = 1, AE =VPA 2 - PE 2 = 73.故 AC = 2AE = 273.在 Rt AABCAB中,选取ZBAC 为自变量,记ZBAC = 0,则cos 0 = -&,所以 AB = 273 cos 0,又 sin 0 = B D , cos 0 = AD ,故AB ABBD = ^/3 sin 0 cos 0, AD = ^/3 cos 0 cos 0,所以S a abd = 2 AD • BD = 6 sin 0 cos 3 0.令sin 2 0 = x(0 < x < 1),则三棱锥P - ABD 的体积 为 V = 1 • S a abd • PE = 2 Jx(1 — x)3(0 < x < 1),令 f (x) = x(1 - x)3(0 < x < 1),通过求导可解得 V max =算1,8即三棱锥P - ABD 的体积的最大值为呼.8究竟怎样选取自变量角解题?通过以上几例的解答,我们可以发现,要先找岀题设中的变量,然后确定变量中的角 为自变量,再从多个变量角中选取一个变量角为自变量,结合正弦定理、余弦定理、三角公式、三角形的面积公式、三角函数等相关知识点,建立所求取值范围(最值)的变量与所选取自变量角的关系式,由此把问题转化为求所选取自变量角 的三角函数的值域(最值)问题,同时要注意所选取自变量角的取值范围.参考文献[1] 武增明•一道2015年高考题的评析与推广[J].数理化学习:高中版,2016(10) : 25-26.[2] 钱鹏•你若探究 花自盛开——一道河南模考解析几何题的探究[J].中学数学教学,2019(3) : 53-54.[3] 赵建勋.设角为自变量求图形的最值[J].中学生数学:高中版,2012(6) : 15-16.42中学数学研究2021年第2期(上)经历(2)的尝试,发现放缩过度了,需要调整放缩的度: 如果忽略b ” 一 3” - 3”中的1,则有b ” — 3b ”—i (n 2 2),于是我们猜想b ” > 3b ”—i ,是否成立呢?因为b ” - 3b ” —i — 3” > 0,所以 b ” > 3b ”_i ,可得右 < (n 2 2),再进行计算发现刚刚好. ""1从以上过程可以看到,放缩法是证明数列不等式的重点 和难点,因此我们有必要进一步探究放缩法证明数列不等式的思路与策略.二、思路探究1 1 1 9综上,对于一切n e N *,都有 + +…+ < —.b i b 2 b ” 16点评此证法中如果只保留第一项,从第二项开始放大, 则寺+占+ ••• +丄< 1 +1 — 5 > 9,放缩过度了;b i b 2 b ” 8 4 8 16如果保留前两项,从第三项放大,则+寺+…+岂<b i b 2 b ”3 9 1 137 98 + 80 + 12 = 240 > 16,依然太大了,只有保留前三项, 从第四项开始放大,才能得到符合的结果.因此,当岀现放缩 过度的情况时,就要适时进行“局部调整”,保持前若干项不 变,从后面的项开始放缩,反复尝试,直至成功.数列.思路1放缩成一个等比数列为了便于求和,我们尝试将数列{右}放缩成一个等比策略1利用不等式一a ” -b ”中a > b > 0.因为3” -丄3”3”—iI 3”_____1_____放缩苴a”- (a - b)放缩,苴 (3 - 3 • 32”—r) 21 3 1匸工4 8 •尹,3n393 < ,不等式成立;当n 2 2时,8 16思路2向裂项相消放缩除了将数列{右}放缩为一个等比数列,我们还 可以尝试将其放缩"为可以“裂项相消”的形式,结合1 3”-=(3”一 1)(3” + 1)的结构,有以下两种策略.3”—i-i ,所以b ”于是,当n =1时,b i1亠 亠 亠” 1 3/1 1b i + - + ••• + 瓦 4b i + 8(3 + 羽 + •••+3 3 9< —+ ———8 16 ,11b i b 2 (3 3 1 (—+ — • — ( 18 8 2 \b ”1 1 1 9综上,对于一切n e N *,都有r +厂+…+厂 < 毎.b i b 2 b ” 16点评 在证明数列不等式的问题中,对于形 如 一「(a>b> 0)的数列,通常可以利用不等式a ” -b ”4 —二_応将其放缩为一个等比数列.a ” -b ” a ”—i (a - b)策略2利用不等式3” 2 2 • 3”-】+ 1放缩.因为3” - 2 • 3"—i — 3"—i 2 1,所以,对任意 e N *,都有3” 2 2 • 3"—i + 1 成立.所以,1 —b ”4 13” - 1、2 • 3"—i '3 < 2;当n — 2时,丄+丄8 16' n bl b 2鶴;当n =3时,b i ++右 4095 9< 7280 =花;当 n 2 4 时,1 1 1b i + 瓦 + •••+ -<丄+丄+丄+1 <b i + — — 2n 3”3”(3” - 1) • 3”1忘=4580 =3819------<--------7280 7280(3” 一 1) (3” + 1) <于是,当n — 1时,3 9 39—+ ——— <8 80 803 9 27—+ — +-----—8 80 7283 9 27 18 + 80 + 728 + 233 + 34 + •••+ 善「-黠3)3 9 27 1< I + I0 + 7lI + 361 - 1336191 36855 9 --------< ---------—65520 65520 16’策略1放缩成入(3”, 一丄-莎一万)的形式,入为 常数.当n 2 2时,1---—-----------------------< -----------------b ” (3- - 1) (3- + 1) (3- - 3) (3- - 1)—________里二_______ — 1(_________」)(3”—】-1)(3” - 1) 2 ,3”—】-1 3” - 1)1 3 9 1 1所以,当n — 1时,b- — 8 < —;当n — 2时,汗+ —b i 8 16 b i b 23 9 39 45 9 业、° 冶8 80 80 80 16, " '1 1 1-+ 厉 + •••+ -111/1 1 1 b i b 2 2 \32 - 1 33 - 1 33 - 1+_________)3”—i - 1 3” - 1_3 9 1 (1 1 )=8 + 80 + 2(8 - 3”—!丿3 9 1 44 45< —+ -- + -- -- < --8 80 16 80 803”3”1----------------34 — 1 +916综上,对于一切正整数n ,都有寺+寺+ •b i b 21策略2放缩成入(莎—亍一莎百3”119••+ - < 16.的形式,入为常数.因为右—(3”一 1)(3” + 1),为了便于用裂项相消法求和,所以我们联想能否把{右}中的全部或者部分的形式.我们先逆向进行探3” + 11 2 3”—i 1项放大成3-^1 -1索,因为L!- 要使 b ” < 3”-1 + 1 - 莎+!2• 3”—】 口需^ <(3"—i + 1)(3” + 1)'只需 3” - 1 < 3 < 2 • 3” - 2,即 3” > 5,显然当 n n 2 2 时,有 1 < 1 1b ”3” + 1 _ (3”-+ 1)(3” + 1),所以1 □需_______二________ <,只需(3” - 1)(3” + 1)2 口需 3” +3”—i + 1,只需3十2 2时成立,所以,当, 于是当 n — 1 时,3”—】+ 1 一 3” + 13”2021年第2期(上)中学数学研究433 9 1一 < —;当 n = 2 时,----+8 16’ b i 9 1 116 ;当 n = 3 时,^- + 厂 +16 b 1 b 24095 9< 7280 =歪;当 n 24 时,13 9 39—+ —=— <8 80 803 9 27—+ — +-----=8 80 728b 211+ 1b 21b =4580 —3819 < 7280-----72801 1 1b 十厉十•••十瓦1 1 1 1bib 2b 3 33 + 1 34 + 1 丁 34 + 111十...---------------------------3”-1 + 1 3” + 11 1 1 1 1 =-------------------------------------------------------------b i b2 b3 33 十1 3n + 13 9 27 1 4079 4095 9< —+ — +----+ — ------- < ------ —8 80 728 28 7280 7280 16综上,对于一切正整数n ,都有当+当+…十右 b 1 b 2 b ”思路3利用“糖水不等式”放缩135 + 119< 16b ”3”33”我们都熟悉这一不等式模型:设n > m > 0, c > 0, 则m < m+^jjj .由于它体现了 “糖水加糖变甜了”n n+c的生活实际,因此通常将其称为“糖水不等式”.因为””瓦=莎二r ,且0 <莎二r < 1,所以由“糖水不等” 1 3” 3” + 1 1 1式”可得b ” = E <掳厂=3”十9”,所以,当139n = 1时,—=- < —,不等式成立;当n 2 2时,b 1 8 161 1 1 b 十厉十•••十石<b i 十(32十33十…•十=3 + 1 (1-丄)+ 丄(1-丄)8 6 I 3”-i 丿十 72 I 9”-i 丿3 1 1 5 9< —+ — + —=— < —8 6 72 9 161+------------+-------十93十 十9”91”〕综上,对于一切正整数n ,都有1十1十…十右思路4利用分项比较法放缩9< 16需证b i 十十…十策略1执果索因,逆推探源.不等式的左边是数列 的前n 项和,右边为一个常数,结合1 = -3— b ” b ” 32” - 19的结构,我们联想,把右边常数-9缩小成某个等比数列16{c ”}的前n 项和,然后只需证明1 < c k 就可以了,其 中k = 1,2,...n .那么{c ”}究竟等于什么呢?我们可1 1 1 9以逆推回去:要证右+右+…+右 < 爲成立,只 b 1 b2 ( b ” ) 16/ <16(1-3”)成立,设数列=箱(1-3”),则当n 2 2时,3—,当n = 1时,c i = T i =—,符合上 8・3”‘ '丄 i 8’9 1 3k 9式,故=厂莎.于是,由b 一c k =站二! 一 E ={c ”}的前n 项和几9T n - T ”—i9=Ti 3k 9 32k 18.3k (32k - 1) < 0 可得瓦 < %,其中 k =】,2,_n ,所以右十右十…十右< T ” = 1H 1-3”)< 16,即1 1 1 9.b i 十厉十•••十石 < 歪.9策略2逆用累加法.同思路4,先把常数為缩小为161H 1-3”),即要证右十右十…十b ” < 16,只需证b 十瓦十•• •十瓦 < 花(1-莎丿,而三、小结反思数学归纳法和放缩法都是证明数列不等式的常用方法,而放缩法通常学生感觉无从下手,不知所措,主要表现在以 下几个方面:(1)用什么方法放缩?首先要搞清楚到底是放大还是缩小,再考虑采用哪种放缩方法.常见的方法有利用均值不等式、“糖水”不等式、放大(或缩小)分子(或分母)、一些常用的不等式等等.(2) 向什么方向放缩?对于像母题中与数列前n 项和有关的不等式,放缩的原则是经过放缩后能够求和,比如放缩成一个等比数列、向裂项相消放缩等等.(3) 如何把握放缩的度?我们经常会遇到放得“太大”或“太小”的问题,这就要求调整放缩的尺度,例如在本文中,当我们发现放缩得“太大”时,就要采取补救措施,即保留前若干项不变,对后面的项进行放缩,逐一尝试,直至成功.另外,本文中的这道竞赛题是一道典型而设置巧妙的考 题,它之所以能引起我们强烈的共鸣与反响,不仅仅是因为其独特的解题思路与技巧,更是因为问题中所蕴含的丰富的 数学知识思维和思想方法.这样的题目有利于学生模式化解题的总结,不仅仅教会了学生怎样解题,而且还有效地培养 了学生思维的广阔性和灵活性,提高了解题效率.参考文献[1]曹莹,李鸿昌.利用糖水不等式证明一类数列不等式[J].数学通讯(上半月),2019(11):2-3.。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩

用放缩法证明数列不等式的策略与技巧

用放缩法证明数列不等式的策略与技巧
第l O期
寿 鲜 春 : 放 缩 法 证 明数 列 不等 式 的 策 略 与 技 巧 用
・1 ・ 7
用 放 缩 法 证 明 数 列 不 等 式 的 策 略 与 技 巧
●寿鲜春 ( 牌头中学 浙江诸暨 31 5 1 2) 8
类 似 的 , 可 以证 明下 面一 个不 等式 : 还 例 2 已知数 列 { 满 足 : =a a} a+ 一a +1 , a= , 证: 】 2求 — + —+… + ——< ( ≥2 ∈ ・ . —+ - + … +— <1 n , ) — 【 ≥Z /∈N J 。 7 ,
利用 加糖后 糖水 变 甜 的结论 , 以得 出 : 可 若a>
b + rl < 2 3 . a ‘ t _
2 2 利 用浓度 不等 式 建 立项 与项之 间的对 应 关 系 .
32 +33 ’… + 3 一 <一 , + 。 。 1、 6 ’
< <
2 ( ≥3 n 凡 )
( 凡≥3 ),

g 一ln)g . ( ÷(_-艚 2 ) g 1l 2
然 后用 错位 相减 法计算 得 到
6 8
一 +
这 问 就 转 为 明l1 ) 样 题 可 化 证 :( > g+



< ,

√等即明 > 等显成. , √ , 立 证 然
与 要证 结果 不符. 事买是 放缩 时放 得 太大 !
l+ )把 边 作 一 数 之 , 3 g . 右 看 某 个 列 和则 ( 1 若
对应 的数列 通项 为 :
11
尝试 2 用 数学 归纳法 容 易 证 明 : n≥3时 , 当 > n 则 由浓度 不等式 可 以得 到 以下不 等式 : 2,

放缩法证明数列不等式

放缩法证明数列不等式

似,只不过放缩后的 bn 是可求积的模型,能求积的常见的数列
模型是 bn

cn1 cn
(分式型),累乘后约简为
n i 1
bi

cn1 c1
.
n
(三)形如 a f (n) i
i 1
例6
求证:1 3 5 2n 1 1 (n N)
246
2n 2n 1
1 3 5 2n 1 1
对 1 放缩方法不同,得到的结果也不同. 显然 5 7 2 ,
n2
34
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
那么变式 1 和变式 2 就显然成立.
对1 n2
的 3 种放缩方法体现了
三种不同“境界”,得到
n k 1
1 k2
的三个“上界”.
【方法总结之二】
放缩法证明与数列求和有关的不等式的过程 中,很多时候要“留一手”, 即采用“有所保留” 的方法,保留数列的第一项或前两项,从数列的第 二项或第三项开始放缩,这样才不致使结果放得过 大或缩得过小.
求证:(11)(1 1)(1 1) (1 1 ) 3 3n 1 (n N*)
47
3n 2
课堂小结
本节课我们一起研究了利用放缩法证明数列不等 式,从中我们可以感受到在平时的学习中有意识地去 积累总结一些常用的放缩模型和放缩方法非常必要, 厚积薄发,“量变引起质变”
例如:我们可以这样总结本节课学到的放缩模型:
23
100
分析 不能直接求和式 S ,须将通项 1 放缩为裂项相消模型后求和. n
思路 为了确定S的整数部分,必须将S的值放缩在相邻的两个
整数之间.
例4 (2012广东理19第(3)问) 求证: 1 1 1

用“放缩法”证明不等式的基本方法

用“放缩法”证明不等式的基本方法

用“放缩法”证明不等式的基本方法近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。

特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。

“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。

1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-Q1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。

由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。

本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-Λ)(2121)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。

放缩法证数列不等式的常用技巧和2个关键的把握

放缩法证数列不等式的常用技巧和2个关键的把握
地舍 去 这 些 非 负 项 便 达 到 了 证 明 的 目 的.常 见 的 如 :


, < ; (> ) ‘ 『 = n ) D 3. ‘
1 3 利 用最 大项 ( . 或最 小项 或指定 项的边界 值 ) 代替 各 项
进 行 放 缩

>l I ( a ,n+1 >n n+1 n. ) ( )>
20 0 8年 第 9期
凼 此 当 k≥ 1时 ,

。 ≤ 。3≤ ,
中学教研 ( 学) 数
・l 5・
例 5 已知 数列 { 的通项 公 式 为 。 丁 [ 一 n} = 2 2~

( 一 t 。 )

= ・ -
( 一 - ) +) ‘ 。 1
÷一 + + < . 一 …+ ‘ 丁 ÷< ’ ÷
( 06年福建省数学 高考试题改编 ) 20
证明 因 为
Байду номын сангаас
证明 由0 =: < ÷ , 0, n≤ 可得 0
n ≤
÷。 去0 < =2, , , , l, ) ] < ≤ , … 3
维普资讯
例 3 已知 数列 { 满足 + =口 , 0<Ⅱ ≤ n} 。 当 。 1时 ,
1 2 利 用放 大或 缩 小 分 式 的 分 子 或 分母 进 行 放 缩 .
证 : 明 ∑(
) < : 寺
(0 3年 江苏省数 学高考试题 改编 ) 20
例 2 已知数列 0 2 一1 n∈N , 明 : = “ ( ) 证
(一0 一1 u[ , ) , 1个交点. 0, ] 1 + 时 有
放 缩 法 证 数 列 不 等 式 的 常 用 技 巧 和 2个 关 键 的 把 握

放缩法技巧全总结

放缩法技巧全总结

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(1n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b -≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn n a a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nnααααααα解析:构造函数x x x f ln )(=,得到2ln ln n n n n ≤α,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n n nn n n nn n函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n i n ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知11111,(1).2n n a a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)F E D C BAn-inyxO放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21n n n n a 211ln 2+++≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放缩法证明“数列+不等式”问题的两条途径
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。

用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。

1、 先放缩再求和
例1 (05年湖北理)已知不等式],[log 2
1131212n n >+++Λ其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。

设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2(Λ=n ,证明:]
[log 222n b b a n +<,Λ5,4,3=n 分析:由条件11--+≤
n n n a n na a 得:n a a n n 1111+≥- n
a a n n 1111≥-∴- )2(≥n
1111
21-≥---n a a n n (2)
11112≥-a a 以上各式两边分别相加得:
2
1111111++-+≥-Λn n a a n 2
111111++-++≥∴Λn n b a n ][log 2
112n b +> )3(≥n =b
n b 2][log 22+ ∴ ][log 222n b b a n +<
)3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。

例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n
(1)写出数列}{n a 的前三项1a ,2a ,3a ;
(2)求数列}{n a 的通项公式;
(3)证明:对任意的整数4>m ,有8
711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;
⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)
化简得:1122(1)n n n a a --=+-
2)1(2)1(11---=---n n n n a a ,]32)
1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以3
21+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3
n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3
n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。

而左边=232451113111[]221212(1)
m m m a a a -+++=+++-+--L L ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:32322121121121+>++-, 43432121121121+<-++,因此,可将1
212-保留,再将后面的项两两组合后放缩,即可求和。

这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时, m a a a 11154+++Λ)11()11(11654m
m a a a a a +++++=-Λ )2
12121(2321243-++++<
m Λ )2
11(4123214--⨯+=m 8321+<87=
(2)当m 是奇数)4(>m 时,1+m 为偶数,
8711111111165454<+++++<++++m m m a a a a a a a a ΛΛ 所以对任意整数4>m ,有m a a a 11154+++Λ87<。

本题的关键是并项后进行适当的放缩。

2、 先求和再放缩
例3(武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22
11
证明:(1)对于*∈N n 恒有n n a a >+1成立。

(2)当*∈>N n n 且2,有11211+=-+a a a a a n n n Λ成立。

(3)111121
12006
212006<+++<-a a a Λ。

分析:(1)用数学归纳法易证。

(2)由12
1+-=+n n n a a a 得: )1(11-=-+n n n a a a
)1(111-=-∴--n n n a a a
… …
)1(1112-=-a a a
以上各式两边分别相乘得:
)1(111211-=--+a a a a a a n n n Λ,又21=a 11211+=∴-+a a a a a n n n Λ
(3)要证不等式111121
12006
212006<+++<-a a a Λ, 可先设法求和:2006
21111a a a +++Λ,再进行适当的放缩。

)1(11-=-+n n n a a a Θ
n
n n a a a 11111
1--=-∴+
1
11111---=∴+n n n a a a 2006
21111a a a +++∴Λ )1111()1111()1111(
200720063221---++---+---=a a a a a a Λ 1
11120071---=a a 2006
2111a a a Λ-=1< 又2006200612006212=>a a a a Λ
20062006212
1111->-∴a a a Λ ∴原不等式得证。

本题的关键是根据题设条件裂项求和。

相关文档
最新文档