利用放缩法证明数列型不等式

合集下载

放缩法证明不等式

放缩法证明不等式

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。

放缩法证明数列不等式

放缩法证明数列不等式

放缩法证明数列不等式数列不等式是指对于数列${a_n}$,能够证明其满足其中一种特定的不等关系。

放缩法是一种常用的证明数列不等式的方法,其核心思想是通过数学推导和合适的放缩操作,将需要证明的不等式转化为已知的不等式或者已有的数学结论。

下面我将详细阐述放缩法的步骤,并通过一个具体的例子来演示放缩法如何证明数列不等式。

步骤一:首先,我们要明确需要证明的不等式形式。

通常,数列不等式可以分为两种情况:单调性不等式和两边夹逼不等式。

单调性不等式需要证明数列${a_n}$的单调性(如$a_{n+1}>a_n$),而两边夹逼不等式需要证明数列${a_n}$的极限(如$\lim_{n\to\infty}a_n=a$)。

在这里,我们以两边夹逼不等式为例来进行讲解。

步骤二:建立需要用到的不等式。

通常,需要利用已知的数学不等式或结论来辅助证明原不等式。

常见的不等式包括柯西-施瓦茨不等式、均值不等式、柯西反证法等。

在这里,我们以柯西-施瓦茨不等式为例进行讲解。

步骤三:利用放缩操作将原不等式转化为已知的不等式或数学结论。

放缩操作的核心是通过合适的代换或变形,对不等式进行放大或缩小,使得我们能够应用已知的不等式或数学结论。

在这里,我们以一个具体的例子来演示放缩操作的过程。

假设我们要证明数列${a_n}$满足以下不等式:$\frac{a_{n+1}}{a_n}<2$。

我们可以采用放缩法来证明这个不等式。

首先,我们知道对于任意的实数$x$,都有$x^2\geq 0$。

这是由平方数的非负性质可得,也可以通过推导得出。

根据柯西-施瓦茨不等式,我们有$(a_n\cdot 1-a_{n+1}\cdot 1)^2\geq 0$,即$a_n^2+a_{n+1}^2-2a_n\cdot a_{n+1}\geq 0$。

然后,利用放缩操作,我们可以将上述不等式改写为$a_n^2+a_{n+1}^2\geq 2a_n\cdot a_{n+1}$。

例谈放缩法在数列不等式问题中的应用

例谈放缩法在数列不等式问题中的应用

高中例谈放缩法在数列不等式问题中的应用福建省清流县第一中学 赖礼昌 数列不等式问题,一向被认为是中学数学中最难的一类问题.其具有思维跨度大和构造性强的特点,是高考压轴题或数学竞赛题的命题素材.求解过程中,需要较高的放缩技巧,对学生具有极强的挑战性.求解这类问题的落脚点是观察数列通项特征,抓住通项内在规律恰当放缩并进行求和,而放缩是关键.如何放缩,是一个值得研究的课题.放缩的方法主要有:裂项放缩、函数放缩、分子放缩、借助数列递推关系放缩等,下文举例加以研究,供大家参考.一、裂项放缩法裂项相消法是数列求和的常用方法之一,将数列利用裂项相消法求和后,通过舍去某些项可达到证明数列不等式的最终目的,这类问题难度虽然不大,但解题者必须熟悉一些数列通项基本的裂项公式.例1 求证: 6狀(狀+1)(2狀+1)≤1+14+19+…+1狀2<53.解析:因为1狀2<1狀2-14=44狀2-1=212狀-1(-12狀+1),所以∑狀犽=11犽2<1+213(-15+…+12狀-1-12狀+1)<1+23=53.又因为1+14+19+…+1狀2>11×2+12×3+13×4+…+1狀(狀+1)=1-1狀+1=狀狀+1,当狀≥3时,狀狀+1>6狀(狀+1)(2狀+1),当狀=1时,6狀(狀+1)(2狀+1)=1,当狀=2时,6狀(狀+1)(2狀+1)<1+14,综上可得6狀(狀+1)(2狀+1)≤1+14+19+…+1狀2<53.点评:运用这个方法时,如何裂项后放缩,应具体问题具体分析.笔者整理出如下结论,希望对大家有所帮助:(1)1狀2=44狀2<44狀2-1=212狀-1-12狀+1();(2)1狀(狀+1槡)<槡狀-狀-槡1(狀≥2);(3)1+1狀()狀<1+1+12×1+13×2+…+1狀(狀-1)<52;(4)2(狀+槡1-槡狀)<1槡狀<2(槡狀-狀-槡1);(5)2狀(2狀-1)2=2狀(2狀-1)(2狀-1)<2狀(2狀-1)(2狀-2)=2狀-1(2狀-1)(2狀-1-1)=12狀-1-1-12狀-1(狀≥2);(6)1狀槡3=1狀·狀槡2<1狀(狀-1)(狀+1槡)=1狀(狀-1槡)-1狀(狀+1槡)()·1狀+槡1-狀-槡1=1狀-槡1-1狀+槡1()·狀+槡1+狀-槡12槡狀<1狀-槡1-1狀+槡1.二、函数放缩从本质上看,数列就是一类定义域为正整数集的函数,在求证某些数列不等式时,可以将数列“退化”成两个函数间的不等关系,再利用这个不等关系放缩成数列不等式.例2 求证:ln22+ln33+ln44+…+ln3狀3狀<3狀-5狀+66(狀∈犖 ).752020年3月 解法探究教学参谋Copyright ©博看网. All Rights Reserved.高中证明:先构造函数有犳(狓)=ln狓-狓+1,于是犳′(狓)=1狓-1.当狓∈(0,1)时,犳′(狓)>0;当狓∈(1,+∞)时,犳′(狓)<0.所以函数犳(狓)在(0,1)上递增,在(1,+∞)上递减,故犳(狓)max=犳(1)=0,即犳(狓)=ln狓-狓+1≤0,ln狓≤狓-1 ln狓狓≤1-1狓,从而ln22+ln33+ln44+…+ln3狀3狀<3狀-1-12(+13+…+13狀).因为12+13+…+13狀=12+13()+14+15+16+17+18+19()+…+12狀(+12狀+1+…+13狀)>56+36+39()+918+927()+…+3狀-12·3狀-1+3狀-13狀()=5狀6,所以ln22+ln33+ln44+…+ln3狀3狀<3狀-1-5狀6=3狀-5狀+66.点评:利用函数放缩法证明数列不等式的难点,在于如何构造一个与题目相关的函数,需要解题者仔细分析所证数列不等式的结构特征,抽象出一个基本的数列不等式,如本例中的ln狀狀<1-1狀,再将狀还原成狓,再根据这个不等式构造函数,并利用导数证明这个不等式.三、分式放缩当数列不等式内含分式形式时,可以利用分式放缩法求证.主要用到两个姐妹不等式:犫犪>犫+犿犪+犿(犫>犪>0,犿>0)和犫犪<犫+犿犪+犿(犪>犫>0,犿>0),我们不妨用口诀“小者小,大者大”加以记忆,意思只要看犫,如果犫小,那么不等号是小于号,反之亦然.例3 证明:(1+1)1+14()1+17()·…·1+13狀-2()>33狀+槡1.证明:利用两次分式放缩:21·54·87·…·3狀-13狀-2>32·65·98·…·3狀3狀-1(分子分母加1);21·54·87·…·3狀-13狀-2>43·76·109·…·3狀+13狀(分子分母加2).两式左右对应相乘,可以得到:21·54·87·…·3狀-13狀-2()2>42·75·108·…·3狀+13狀-1=12·45·78·…·3狀-23狀-1·(3狀+1).于是有(1+1)1+14()1+17()·…·1+13狀-2()>33狀+槡1.点评:从本例的证明可以看出,分式放缩法的应用并不是一蹴而就的,首先,必须要认清题目的适合分式放缩的特征;其次,要有分式放缩的意识,勇于尝试.所以这类问题具有很强的探究性,技巧性也非常强.四、基本不等式放缩基本不等式是不等式证明的基本工具,有时也可用在数列不等式的证明上,因为基本不等式中含有等号,而有些数列不等式却不含等号,于是可以考虑利用基本不等式进行放缩.例4 设犛狀=1·槡2+2·槡3+…+狀(狀+1槡).求证狀(狀+1)2<犛狀<(狀+1)22.证明:此数列的通项为犪犽=犽(犽+1槡),犽=1,2,…,狀.因为犽<犽(犽+1槡)<犽+犽+12=犽+12,所以∑狀犽=1犽<犛狀<∑狀犽=1犽+12(),即狀(狀+1)2<犛狀<狀(狀+1)2+狀2<(狀+1)22.点评:本题应注意把握放缩的“度”:上述不等式右边放缩用的是基本不等式槡犪犫≤犪+犫2,若放成犽(犽+1槡)<犽+1,则得犛狀<∑狀犽=1(犽+1)=(狀+1)(狀+3)2>(狀+1)22,就放过“度”了!从以上研究可以看出,利用放缩法证明数列不等式虽然复杂多样,但还是有规律可循的,规律隐藏在数列不等式的特征中,而如何参透这个特征是难点,突破了这个难点,也就找到了相应的方法.犠85教学参谋解法探究2020年3月Copyright ©博看网. All Rights Reserved.。

放缩法证明数列不等式的策略探究

放缩法证明数列不等式的策略探究

2021年第2期(上)中学数学研究41放缩法证明数列不等式的策略探究甘肃省兰州市第六中学(730060)焦永垚数列不等式的证明是高中数学中的重点和难点,是历年 高中各类考试中的热门考点,这类问题通常难度较大,具有很高的综合性与灵活性.本文以2019年全国高中数学联赛 贵州省预赛试题(B)卷第16题为例,从不同角度探寻放缩法 证明数列不等式的策略与方法,重点阐述如何选择合理地放缩思路,如何准确把握放缩的“尺度”,以期能帮助同学们从根本上认识放缩法的规律,从而优化解题方法,提升解题能 力,提高解题效率.一、试题分析题目 设数列{a ”}的前n 项和S ”满足:S ” = k • q ”-k , 其中k, q 为非零常数,且a i = 3, a 4 = 81.(1)求数列{a ”}的通项公式;1 1 1 9b i 十瓦十•••十瓦 < 歪.⑵设b ” = a ” ——,证明: a ”分析 第(1)问考查数列的基础知识,易求得a ” = 3”.第(2)问是数列不等式的证明,数学归纳法是解决这类问题的优选方案.1 3 9当n = 1时,—=- < —,不等式成立.b 1 8 16假设当n = k (k e N *)时结论成立,即士 + 士 +b 1 b 219• • • +匸< 16,那么当n = k 十1时,因为b ” — 3b ”-1 =81莎 > 0,所以 b ” > 3b ”-i ,即—<1 1 1 1 1 1 ( 1 亠 | b i 十b 2十 十b k 十b k+i b i 十3 I b i 十b 2十 十b k 丿3 1 9 93 + 1 x 爲=爲,即当n = k + 1时不等式也成立.8 3 16 161 1 1 9综上,对于一切正整数n ,不等式十+十十…+厂< 土b 1 b 2 b ” 16都成立.莎・(n 2 2),则3b ”-i1; b 2 b k 可以看到,上述方法中我们需要克服以下三个难点:(1) 如何利用归纳假设?要证明当n = k + 1时结论也成立,如何利用归纳假设, 是解决问题的的关键,为了利用假设,我们需要找岀1与b ”1 1 1亠(n 2 2)的关系,要找岀二与亠的等量关系难度 b ”-1 b ” b ”-1太大,所以考虑它们的不等关系,也就是放缩.(2) 怎样放缩?因为b ” =3” -补,容易发现{b ”}为递增数列,3”所以1 < 占(n 2 2),因此我们会首先做这样的尝b ” b ”-1试:当n = k 十1时,岂+岂+ • ••十!1 + <b i b 2 b k b k+i1 1 1 1 3 9 15 9b i +(b 十厉十.…十瓦)< l + 注,但歪> 16,放缩过度了.(3) 如何调整放缩度?因为PA 2PE PF , 所 以 PE = 1, AE =VPA 2 - PE 2 = 73.故 AC = 2AE = 273.在 Rt AABCAB中,选取ZBAC 为自变量,记ZBAC = 0,则cos 0 = -&,所以 AB = 273 cos 0,又 sin 0 = B D , cos 0 = AD ,故AB ABBD = ^/3 sin 0 cos 0, AD = ^/3 cos 0 cos 0,所以S a abd = 2 AD • BD = 6 sin 0 cos 3 0.令sin 2 0 = x(0 < x < 1),则三棱锥P - ABD 的体积 为 V = 1 • S a abd • PE = 2 Jx(1 — x)3(0 < x < 1),令 f (x) = x(1 - x)3(0 < x < 1),通过求导可解得 V max =算1,8即三棱锥P - ABD 的体积的最大值为呼.8究竟怎样选取自变量角解题?通过以上几例的解答,我们可以发现,要先找岀题设中的变量,然后确定变量中的角 为自变量,再从多个变量角中选取一个变量角为自变量,结合正弦定理、余弦定理、三角公式、三角形的面积公式、三角函数等相关知识点,建立所求取值范围(最值)的变量与所选取自变量角的关系式,由此把问题转化为求所选取自变量角 的三角函数的值域(最值)问题,同时要注意所选取自变量角的取值范围.参考文献[1] 武增明•一道2015年高考题的评析与推广[J].数理化学习:高中版,2016(10) : 25-26.[2] 钱鹏•你若探究 花自盛开——一道河南模考解析几何题的探究[J].中学数学教学,2019(3) : 53-54.[3] 赵建勋.设角为自变量求图形的最值[J].中学生数学:高中版,2012(6) : 15-16.42中学数学研究2021年第2期(上)经历(2)的尝试,发现放缩过度了,需要调整放缩的度: 如果忽略b ” 一 3” - 3”中的1,则有b ” — 3b ”—i (n 2 2),于是我们猜想b ” > 3b ”—i ,是否成立呢?因为b ” - 3b ” —i — 3” > 0,所以 b ” > 3b ”_i ,可得右 < (n 2 2),再进行计算发现刚刚好. ""1从以上过程可以看到,放缩法是证明数列不等式的重点 和难点,因此我们有必要进一步探究放缩法证明数列不等式的思路与策略.二、思路探究1 1 1 9综上,对于一切n e N *,都有 + +…+ < —.b i b 2 b ” 16点评此证法中如果只保留第一项,从第二项开始放大, 则寺+占+ ••• +丄< 1 +1 — 5 > 9,放缩过度了;b i b 2 b ” 8 4 8 16如果保留前两项,从第三项放大,则+寺+…+岂<b i b 2 b ”3 9 1 137 98 + 80 + 12 = 240 > 16,依然太大了,只有保留前三项, 从第四项开始放大,才能得到符合的结果.因此,当岀现放缩 过度的情况时,就要适时进行“局部调整”,保持前若干项不 变,从后面的项开始放缩,反复尝试,直至成功.数列.思路1放缩成一个等比数列为了便于求和,我们尝试将数列{右}放缩成一个等比策略1利用不等式一a ” -b ”中a > b > 0.因为3” -丄3”3”—iI 3”_____1_____放缩苴a”- (a - b)放缩,苴 (3 - 3 • 32”—r) 21 3 1匸工4 8 •尹,3n393 < ,不等式成立;当n 2 2时,8 16思路2向裂项相消放缩除了将数列{右}放缩为一个等比数列,我们还 可以尝试将其放缩"为可以“裂项相消”的形式,结合1 3”-=(3”一 1)(3” + 1)的结构,有以下两种策略.3”—i-i ,所以b ”于是,当n =1时,b i1亠 亠 亠” 1 3/1 1b i + - + ••• + 瓦 4b i + 8(3 + 羽 + •••+3 3 9< —+ ———8 16 ,11b i b 2 (3 3 1 (—+ — • — ( 18 8 2 \b ”1 1 1 9综上,对于一切n e N *,都有r +厂+…+厂 < 毎.b i b 2 b ” 16点评 在证明数列不等式的问题中,对于形 如 一「(a>b> 0)的数列,通常可以利用不等式a ” -b ”4 —二_応将其放缩为一个等比数列.a ” -b ” a ”—i (a - b)策略2利用不等式3” 2 2 • 3”-】+ 1放缩.因为3” - 2 • 3"—i — 3"—i 2 1,所以,对任意 e N *,都有3” 2 2 • 3"—i + 1 成立.所以,1 —b ”4 13” - 1、2 • 3"—i '3 < 2;当n — 2时,丄+丄8 16' n bl b 2鶴;当n =3时,b i ++右 4095 9< 7280 =花;当 n 2 4 时,1 1 1b i + 瓦 + •••+ -<丄+丄+丄+1 <b i + — — 2n 3”3”(3” - 1) • 3”1忘=4580 =3819------<--------7280 7280(3” 一 1) (3” + 1) <于是,当n — 1时,3 9 39—+ ——— <8 80 803 9 27—+ — +-----—8 80 7283 9 27 18 + 80 + 728 + 233 + 34 + •••+ 善「-黠3)3 9 27 1< I + I0 + 7lI + 361 - 1336191 36855 9 --------< ---------—65520 65520 16’策略1放缩成入(3”, 一丄-莎一万)的形式,入为 常数.当n 2 2时,1---—-----------------------< -----------------b ” (3- - 1) (3- + 1) (3- - 3) (3- - 1)—________里二_______ — 1(_________」)(3”—】-1)(3” - 1) 2 ,3”—】-1 3” - 1)1 3 9 1 1所以,当n — 1时,b- — 8 < —;当n — 2时,汗+ —b i 8 16 b i b 23 9 39 45 9 业、° 冶8 80 80 80 16, " '1 1 1-+ 厉 + •••+ -111/1 1 1 b i b 2 2 \32 - 1 33 - 1 33 - 1+_________)3”—i - 1 3” - 1_3 9 1 (1 1 )=8 + 80 + 2(8 - 3”—!丿3 9 1 44 45< —+ -- + -- -- < --8 80 16 80 803”3”1----------------34 — 1 +916综上,对于一切正整数n ,都有寺+寺+ •b i b 21策略2放缩成入(莎—亍一莎百3”119••+ - < 16.的形式,入为常数.因为右—(3”一 1)(3” + 1),为了便于用裂项相消法求和,所以我们联想能否把{右}中的全部或者部分的形式.我们先逆向进行探3” + 11 2 3”—i 1项放大成3-^1 -1索,因为L!- 要使 b ” < 3”-1 + 1 - 莎+!2• 3”—】 口需^ <(3"—i + 1)(3” + 1)'只需 3” - 1 < 3 < 2 • 3” - 2,即 3” > 5,显然当 n n 2 2 时,有 1 < 1 1b ”3” + 1 _ (3”-+ 1)(3” + 1),所以1 □需_______二________ <,只需(3” - 1)(3” + 1)2 口需 3” +3”—i + 1,只需3十2 2时成立,所以,当, 于是当 n — 1 时,3”—】+ 1 一 3” + 13”2021年第2期(上)中学数学研究433 9 1一 < —;当 n = 2 时,----+8 16’ b i 9 1 116 ;当 n = 3 时,^- + 厂 +16 b 1 b 24095 9< 7280 =歪;当 n 24 时,13 9 39—+ —=— <8 80 803 9 27—+ — +-----=8 80 728b 211+ 1b 21b =4580 —3819 < 7280-----72801 1 1b 十厉十•••十瓦1 1 1 1bib 2b 3 33 + 1 34 + 1 丁 34 + 111十...---------------------------3”-1 + 1 3” + 11 1 1 1 1 =-------------------------------------------------------------b i b2 b3 33 十1 3n + 13 9 27 1 4079 4095 9< —+ — +----+ — ------- < ------ —8 80 728 28 7280 7280 16综上,对于一切正整数n ,都有当+当+…十右 b 1 b 2 b ”思路3利用“糖水不等式”放缩135 + 119< 16b ”3”33”我们都熟悉这一不等式模型:设n > m > 0, c > 0, 则m < m+^jjj .由于它体现了 “糖水加糖变甜了”n n+c的生活实际,因此通常将其称为“糖水不等式”.因为””瓦=莎二r ,且0 <莎二r < 1,所以由“糖水不等” 1 3” 3” + 1 1 1式”可得b ” = E <掳厂=3”十9”,所以,当139n = 1时,—=- < —,不等式成立;当n 2 2时,b 1 8 161 1 1 b 十厉十•••十石<b i 十(32十33十…•十=3 + 1 (1-丄)+ 丄(1-丄)8 6 I 3”-i 丿十 72 I 9”-i 丿3 1 1 5 9< —+ — + —=— < —8 6 72 9 161+------------+-------十93十 十9”91”〕综上,对于一切正整数n ,都有1十1十…十右思路4利用分项比较法放缩9< 16需证b i 十十…十策略1执果索因,逆推探源.不等式的左边是数列 的前n 项和,右边为一个常数,结合1 = -3— b ” b ” 32” - 19的结构,我们联想,把右边常数-9缩小成某个等比数列16{c ”}的前n 项和,然后只需证明1 < c k 就可以了,其 中k = 1,2,...n .那么{c ”}究竟等于什么呢?我们可1 1 1 9以逆推回去:要证右+右+…+右 < 爲成立,只 b 1 b2 ( b ” ) 16/ <16(1-3”)成立,设数列=箱(1-3”),则当n 2 2时,3—,当n = 1时,c i = T i =—,符合上 8・3”‘ '丄 i 8’9 1 3k 9式,故=厂莎.于是,由b 一c k =站二! 一 E ={c ”}的前n 项和几9T n - T ”—i9=Ti 3k 9 32k 18.3k (32k - 1) < 0 可得瓦 < %,其中 k =】,2,_n ,所以右十右十…十右< T ” = 1H 1-3”)< 16,即1 1 1 9.b i 十厉十•••十石 < 歪.9策略2逆用累加法.同思路4,先把常数為缩小为161H 1-3”),即要证右十右十…十b ” < 16,只需证b 十瓦十•• •十瓦 < 花(1-莎丿,而三、小结反思数学归纳法和放缩法都是证明数列不等式的常用方法,而放缩法通常学生感觉无从下手,不知所措,主要表现在以 下几个方面:(1)用什么方法放缩?首先要搞清楚到底是放大还是缩小,再考虑采用哪种放缩方法.常见的方法有利用均值不等式、“糖水”不等式、放大(或缩小)分子(或分母)、一些常用的不等式等等.(2) 向什么方向放缩?对于像母题中与数列前n 项和有关的不等式,放缩的原则是经过放缩后能够求和,比如放缩成一个等比数列、向裂项相消放缩等等.(3) 如何把握放缩的度?我们经常会遇到放得“太大”或“太小”的问题,这就要求调整放缩的尺度,例如在本文中,当我们发现放缩得“太大”时,就要采取补救措施,即保留前若干项不变,对后面的项进行放缩,逐一尝试,直至成功.另外,本文中的这道竞赛题是一道典型而设置巧妙的考 题,它之所以能引起我们强烈的共鸣与反响,不仅仅是因为其独特的解题思路与技巧,更是因为问题中所蕴含的丰富的 数学知识思维和思想方法.这样的题目有利于学生模式化解题的总结,不仅仅教会了学生怎样解题,而且还有效地培养 了学生思维的广阔性和灵活性,提高了解题效率.参考文献[1]曹莹,李鸿昌.利用糖水不等式证明一类数列不等式[J].数学通讯(上半月),2019(11):2-3.。

不等式放缩法

不等式放缩法

利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。

裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。

例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。

设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。

点评: 关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。

例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。

点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。

2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。

用于解决积式问题。

例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。

若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N,不等式12111(1)(1+)(1+)nc c c +⋅⋅>点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。

33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。

该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。

本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。

假设我们有一个数列${a_n}$,其中$n \geq 1$。

我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。

我们将使用数学归纳法来证明这个结论。

首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。

因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。

接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。

然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。

由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。

根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。

综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。

专题20 放缩法证明数列不等式(练习及答案)-高考数学二轮专题必考点专练

专题20 放缩法证明数列不等式(练习及答案)-高考数学二轮专题必考点专练

专题20:放缩法证明数列不等式题型一:先求和再证明不等式典型例题例1(2021·全国乙)设{a n}是首项为1的等比数列,数列{b n}满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式;(2)记S n和T n别为{a n}和{b n}的前n项和.证明:T n<S n2.变式训练练1已知数列{a n}为等比数列,数列{b n}为等差数列,且b1=a1=1,b2=a1+a2,a3=2b3−6.(1)求数列{a n},{b n}的通项公式;(2)设c n=1b n b n+2,数列{c n}的前n项和为T n,证明:15≤T n<13.练2已知数列{a n }的首项a 1=3,前n 项和为S n ,a n+1=2S n +3,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{b n a n}的前n 项和T n ,并证明:13≤T n <34.题型二:先放缩再求和证明不等式典型例题例2(2014·全国Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.变式训练练3已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式; (2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.练4已知数列{a n }的前n 项和为S n ,a 1=32,2S n =(n +1)a n +1(n ≥2).(1)求{a n }的通项公式;(2)设b n =1(a n +1)2(n ∈N *),数列{b n }的前n 项和为T n ,证明:T n<710(n ∈N *).专题训练1.数列{a n}中,a1=12,a n+1=a n2a n2−a n+1(n∈N∗).(1)求证:a n+1<a n;(2)记数列{a n}的前n项和为S n,求证:S n<1.2.已知正项数列{a n}的前n项和为S n,且a n+1a n=2S n,n∈N∗(1)求证:数列{S n2}是等差数列(2)记数列b n=2S n3,T n=1b1+1b2+⋯+1b n,证明:1√n+1<T n≤32−√n.3.已知数列{a n}满足a1=2,a n+1=2(1+1n )2a n,n∈N+(1)求证:数列{a nn2}是等比数列,并求出数列{a n}的通项公式;(2)设c n=na n ,求证:c1+c2+⋯+c n<1724.4.已知数列{a n}的前n项和S n=na n−3n(n−1),n∈N∗,且a3=17.(1)求a1;(2)求数列{a n}的前n项和S n;(3)设数列{b n}的前n项和T n,且满足b n=√nS n ,求证:T n<23√3n+2.5.已知数列{a n}满足a1=14,a n=a n−1(−1)n a n−1−2(n≥2,n∈N).(1)试判断数列{1a n+(−1)n}是否为等比数列,并说明理由;(2)设b n=a n sin(2n−1)π2,数列{b n}的前n项和为T n,求证:对任意的n∈N∗,T n<47.。

放缩法证明不等式

放缩法证明不等式

放缩法证明不等式放缩法是一种非常常用的证明不等式的方法,它通过逐步削弱不等式的一侧,使得最后的不等式很容易得到证明。

本文将通过一些例子来说明放缩法的使用。

例1:证明Cauchy不等式Cauchy不等式的表述为:对于任意的实数a1,a2,...,an和b1,b2,...,bn,有:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2) >=(a1b1+a2b2+...+anbn)^2证明方法如下:首先,我们注意到不等式的左边是一个平方形式,而右边是一个乘积形式。

我们可以利用这个观察来放缩不等式。

由平均值不等式,我们有:(a1^2+a2^2+...+an^2)/n >=(a1+a2+...+an)^2/n^2同样,(b1^2+b2^2+...+bn^2)/n >= (b1+b2+...+bn)^2/n^2将这两个不等式相乘,得到:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2) >=[(a1+a2+...+an)(b1+b2+...+bn)/n]^2注意到右边的中括号内的部分就是(a1b1+a2b2+...+anbn)/n,我们可以进一步放缩为:[(a1+a2+...+an)(b1+b2+...+bn)/n]^2 >= (a1b1+a2b2+...+anbn)^2因此,我们得到了Cauchy不等式的证明。

例2:证明AM-GM不等式AM-GM不等式的表述为:对于非负实数a1,a2,...,an,有:(a1+a2+...+an)/n >=(a1a2...an)^(1/n)证明方法如下:我们首先注意到不等式的左边是一个平均值形式,而右边是一个几何平均值的形式。

我们可以利用这个观察来放缩不等式。

由平均值不等式,我们有:(a1+a2+...+an)/n >= √(a1a2...an)对于任意的i,我们可以用a1a2...an的值来替换ai,则不等式仍然成立:(a1+a2+...+an)/n >= √(a1a2...an)因此,我们得到了AM-GM不等式的证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩
例22012广 东 卷.已 知 数 列an 的 通 项 公 式 为an
3n
1 - 2n
,

前n项

为S

n

证:
Sn

利用放缩法证明数列型不等式
一.常见的裂项公式
(1)
1 n(n
1)
1 n
n
1
1;
1 n(n
k)
1 k
(
1 n
n
1
k
)
(2)
(2n
1 1)(2n
1)
1 2
(
1 2n
1
1 2n
1);
(3)
1
n1 n.
n1 n
1 nk
n
1 k
(
nk
n)
(4)
2
11
(n 1)n(n 1) n(n 1) n(n 1)
当n
2时 ,Sn
S2
5 4
2
当n
3时 ,Sn
1
1 4
1 ( 2
1) 3
1 ( n-1
1 )
n
5 4
1 2
1 n
7 4
法2 : an
1 n2
1 n2 1
1( 1 2 n1
1) n1
(n 2)
当n 1时 ,Sn S1 1 2
当n
2时 ,Sn
1
1 2
1 ( 1
1 2
1 n
n
1
) 1
7 4
法3 : an
当n 1时 ,Sn S1 1 2
当n
2时 ,Sn
Байду номын сангаас
1
1 ( 1
1 )
2
(
1 2
1 )
3
(
1 n-
1
1 n
)
2
1 n
2
小结:不能求和先放缩,后裂项求和,再放缩。
变式2
(2013广东卷)同上,Sn
7 4
解 : 法1 : an
1 n2
1 n(n 1)
1 n1
1 n
(n 2)
当n 1时 ,Sn S1 1 2
放缩实现目标转化。 (3)二项式定理放缩:与指数有关的数列型不等式。
1
11
(5) 2n (2n 1) 2n 1 2n
(6) n 1 1 (n 1) ! n ! (n 1) !
二、常见放缩方法:
1.裂项放缩
(1)先裂项后放缩
例1.已 知 数 列an 的 通 项 公 式 为an
1 n(n 1)
, 且an的前n项和为Sn,
求证: Sn 1.
解析: an
(1 3
1) 4
1 2
1 (n 1)
1 n
6 1 (1 1 ) 29 3 5 2 2 n 20 2
小结:与指数有关的数列型不等式。
三、课堂小结:
数列型不等式常用的三种放缩技巧: (1)裂项放缩:能求和先求和,再放缩;否则,先放缩为可
裂项形式,后求和。 (2)等比放缩:先放缩构造成等比数列,再求和,最后二次
1 n2
1 n2
1
1 n
1
1 n
1
4
2
2
小结:放大不宜过大,缩小不宜过小,把握放缩的“度”。
2.等比放缩
例22012广 东 卷.已 知 数 列an 的 通 项 公 式 为an
1 3n - 2n
,

前n项

为S

n

证:
Sn
3 2
.
解析: an
1 3n - 2n
1 3n1
(n 2)
当n
1时 ,S1
相关文档
最新文档