第3章自回归滑动平均模型
第3章自回归滑动平均模型

如此并且正因为这个原因,AR 模型已经成为最常用的线性时间序列模型之一.
形式上,AR(p)模型{Yt}可以写为 (B)Yt Zt ,这里 (B) (1 1B
pBp) ,
BYt Yt 1 。于是,Yt 1Yt 1
pYt p Zt 。正式地,我们有如下定义。
定义 3.1 称{Yt}为 AR(p)过程,如果
3.2 滑动平均模型
设{Zt}是具有均值为零方差为 2 的独立同分布的随机变量序列并用 Zt i.i.d.(0, 2 ) 表示之。假如我们只要求{Zt}是不相关的而不必是独立的, 则{Zt}有时被称为白噪音序列并用 Zt WN(0, 2) 表示之。从直观上说,这 意味着序列{Zt}是随机而且没有系统结构的。 在本书的通篇,我们都用 {Zt}表示宽意义上的白噪音序列,这就是说, Zt WN(0, 2 ) 或者意味着 Zt i.i.d.(0, 2 ) 或者意味着{Zt}是具有均值为零方差为 2 的不相关的随机变 量序列。用 {Z t } 做成一个加权平均,我们就完成了如下的滑动平均(MA)时 间序列模型:
问题 2. 对于假设 1,情况又怎样呢?
这个假设是无关紧要的,因为一当我们建立了{Yt } 的正确形式,它就不
需要了。虽然当 1时,过程{Yt}不再收敛,我们仍可以重写(3.4)如下。
既然Yt 1
Yt
Zt
,方程两边同时除以
1
,我们有
1
1
Yt
Yt 1
Zt 1
(3.5)
在(3.5)中用 t 1代替 t ,我们得到Yt 1 (Yt 2 Zt 2 ) 。将此表达式代入 (3.5)中并且向前迭代 t ,我们有
为了证明 2
1,设 和 是 (z)
0 的根。由因果性,
(转)滑动平均法、滑动平均模型算法(Movingaverage,MA)

(转)滑动平均法、滑动平均模型算法(Movingaverage,MA)原⽂链接:https:///qq_39521554/article/details/79028012什么是移动平均法? 移动平均法是⽤⼀组最近的实际数据值来预测未来⼀期或⼏期内公司产品的需求量、公司产能等的⼀种常⽤⽅法。
移动平均法适⽤于即期预测。
当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是⾮常有⽤的。
移动平均法根据预测时使⽤的各元素的权重不同 移动平均法是⼀种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含⼀定项数的序时平均值,以反映长期趋势的⽅法。
因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较⼤,不易显⽰出事件的发展趋势时,使⽤移动平均法可以消除这些因素的影响,显⽰出事件的发展⽅向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
移动平均法的种类 移动平均法可以分为:简单移动平均和加权移动平均。
⼀、简单移动平均法 简单移动平均的各元素的权重都相等。
简单的移动平均的计算公式如下: Ft=(At-1+At-2+At-3+…+At-n)/n式中, ·Ft–对下⼀期的预测值; ·n–移动平均的时期个数; ·At-1–前期实际值; ·At-2,At-3和At-n分别表⽰前两期、前三期直⾄前n期的实际值。
⼆、加权移动平均法 加权移动平均给固定跨越期限内的每个变量值以不同的权重。
其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作⽤是不⼀样的。
除了以n为周期的周期性变化外,远离⽬标期的变量值的影响⼒相对较低,故应给予较低的权重。
加权移动平均法的计算公式如下: Ft=w1At-1+w2At-2+w3At-3+…+wnAt-n式中, ·w1–第t-1期实际销售额的权重; ·w2–第t-2期实际销售额的权重; ·wn–第t-n期实际销售额的权 ·n–预测的时期数;w1+ w2+…+ wn=1 在运⽤加权平均法时,权重的选择是⼀个应该注意的问题。
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
arima模型使用条件

arima模型使用条件
ARIMA模型(自回归滑动平均模型)适用于时间序列数据,并且有以下条件:
1. 线性性:ARIMA模型假设时间序列数据是线性的,即每个数据点是由过去的数据点线性组合而成。
2. 平稳性:ARIMA模型要求时间序列数据是平稳的,即数据的均值和方差在时间上是恒定的。
3. 自相关性:ARIMA模型假设时间序列数据具有自相关性,即过去的观测值对当前观测值有影响。
4. 白噪声:ARIMA模型要求数据的误差项是独立且具有相同的方差的白噪声。
在使用ARIMA模型时,一般需要先进行数据预处理,包括去趋势和去季节性等步骤,确保数据满足ARIMA模型的条件。
同时,还需要选择合适的模型参数,包括自回归阶数(p)、差分阶数(d)和移动平均阶数(q),这可以通过观察自相关图(ACF)和偏自相关图(PACF)来确定。
总之,ARIMA模型适用于具有一定自相关性和平稳性的时间序列数据,但在使用时需要注意数据的预处理和参数的选择。
差分整合移动平均自回归模型

差分整合移动平均自回归模型差分整合移动平均自回归模型,简称ARIMA模型,是一种常用的时间序列分析方法。
它可以用来对非平稳时间序列进行建模和预测,常用于经济、金融、股票、气象等领域。
本文将介绍ARIMA模型的基本原理、建模方法和应用实例。
一、ARIMA模型的基本原理ARIMA模型是由自回归(AR)、移动平均(MA)和差分(I)三个部分组成的。
其中,自回归部分是指用过去的数据来预测未来的数据,移动平均部分是指用过去的误差来预测未来的数据,差分部分是指对非平稳序列进行差分处理,使其成为平稳序列。
ARIMA模型的一般形式可以表示为ARIMA(p,d,q),其中p是自回归项数,d是差分次数,q是移动平均项数。
ARIMA模型的基本原理是建立在时间序列的平稳性基础上的。
平稳序列是指时间序列的均值、方差和自协方差函数都不随时间发生变化。
在实际应用中,很多时间序列都是非平稳的,例如股票价格、经济增长率等,这时需要对其进行差分处理,使其成为平稳序列。
二、ARIMA模型的建模方法ARIMA模型的建模方法包括模型识别、参数估计、模型检验和预测四个步骤。
1. 模型识别模型识别是指确定ARIMA模型的阶数。
一般采用自相关函数(ACF)和偏自相关函数(PACF)来进行识别。
ACF是指时间序列的自协方差函数,PACF是指在去除其他相关性的影响后,时间序列的自相关函数。
通过观察ACF和PACF的图形,可以确定ARIMA模型的阶数。
一般情况下,如果ACF呈现出指数衰减的趋势,而PACF在某个阶数后截尾,就可以确定AR模型的阶数。
如果ACF和PACF都呈现出指数衰减的趋势,就可以确定MA模型的阶数。
如果ACF呈现出周期性的趋势,就可以确定差分的阶数。
2. 参数估计在确定了ARIMA模型的阶数之后,需要对模型的参数进行估计。
估计方法包括最小二乘估计法、极大似然估计法和贝叶斯估计法等。
其中,最小二乘估计法是指通过最小化残差平方和来估计模型的参数;极大似然估计法是指通过最大化似然函数来估计模型的参数;贝叶斯估计法是指通过贝叶斯公式来估计模型的参数。
arma模型的数学表达式

arma模型的数学表达式摘要:1.ARMA 模型的概述2.ARMA 模型的数学表达式3.ARMA 模型的应用正文:一、ARMA 模型的概述自回归滑动平均模型(ARMA)是一种常用的时间序列分析方法,主要用于拟合和预测具有线性趋势的时间序列数据。
ARMA 模型是由自回归模型(AR)和滑动平均模型(MA)组合而成的,可以同时对时间序列数据中的长期依赖关系和短期依赖关系进行建模。
二、ARMA 模型的数学表达式ARMA 模型的数学表达式分为两个部分:自回归部分(AR)和滑动平均部分(MA)。
1.自回归部分(AR)自回归模型主要描述时间序列数据中的长期依赖关系,其数学表达式为:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + ε_t其中,X_t 表示时间序列数据在t 时刻的取值,c 为常数项,Φ1、Φ2、...、Φp 为自回归系数,ε_t 为误差项。
2.滑动平均部分(MA)滑动平均模型主要描述时间序列数据中的短期依赖关系,其数学表达式为:X_t = μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,X_t 表示时间序列数据在t 时刻的取值,μ为常数项,θ1、θ2、...、θq 为滑动平均系数,ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。
将自回归部分和滑动平均部分相结合,即可得到ARMA 模型的数学表达式:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,c、μ为常数项,Φ1、Φ2、...、Φp、θ1、θ2、...、θq 分别为自回归系数和滑动平均系数,ε_t、ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。
三、ARMA 模型的应用ARMA 模型广泛应用于金融、经济学、气象学等领域的时间序列数据分析和预测。
sarima模型的实现

sarima模型的实现(实用版)目录1.SARIMA 模型的概述2.SARIMA 模型的实现步骤3.SARIMA 模型的优缺点4.SARIMA 模型的应用实例正文一、SARIMA 模型的概述SARIMA(季节自回归滑动平均模型)是一种用于时间序列预测的经典模型,由自回归模型(AR)、移动平均模型(MA)和季节性模型(Seasonal)组合而成。
SARIMA 模型可以有效地处理具有线性趋势和季节性特征的时间序列数据,被广泛应用于经济学、金融学、气象学等领域。
二、SARIMA 模型的实现步骤1.数据预处理:首先对原始时间序列数据进行预处理,包括去除异常值、填补缺失值、对数据进行平滑等。
2.确定模型参数:根据时间序列数据的特点,选取合适的 SARIMA 模型,包括自回归项(p)、移动平均项(q)、季节性项(P、Q、R)和趋势项(d、D)。
3.模型参数估计:利用最小二乘法(OLS)或其他优化方法,根据历史数据求解 SARIMA 模型的参数。
4.模型评估与选择:通过比较不同模型的预测误差,选择最优的SARIMA 模型。
5.模型预测:根据所选模型及参数,对未来时间序列数据进行预测。
三、SARIMA 模型的优缺点优点:1.可以处理具有线性趋势和季节性特征的时间序列数据。
2.参数稳定,易于估计。
3.预测结果较为准确,适用于多种领域。
缺点:1.对非线性趋势的时间序列数据预测效果较差。
2.模型参数选取和优化较为复杂,需要一定的经验。
3.预测结果受历史数据影响较大,可能出现过度拟合现象。
四、SARIMA 模型的应用实例以股票市场为例,通过 SARIMA 模型对某支股票的历史价格数据进行分析和预测,可以预测未来一段时间内股票价格的走势,为投资者提供参考依据。
高级计量经济学模型与应用

高级计量经济学模型与应用导言计量经济学是一门应用数学和统计学原理来研究经济学理论的学科。
随着数据科学和计量经济学的发展,高级计量经济学模型的重要性日益凸显。
这些模型可以帮助经济学家和决策者更准确地理解经济现象,并做出有根据的政策建议。
本文将介绍几种常见的高级计量经济学模型,并探讨它们在实际中的应用。
ARMA模型ARMA模型(自回归滑动平均模型)是一种时间序列模型,用于描述时间序列的相关性和趋势。
ARMA模型结合了自回归(AR)模型和滑动平均(MA)模型的特点。
在实际应用中,ARMA模型经常被用来分析和预测金融时间序列数据,如股票价格、汇率和利率等。
通过估计ARMA模型的参数,我们可以对未来数据进行预测,从而帮助投资者做出更明智的决策。
面板数据模型面板数据模型是一种经济计量学中常用的模型,用于分析横截面数据和时间序列数据的交叉样本。
面板数据模型具有较强的灵活性,可以用来处理包含多个观察单元和时间点的复杂数据。
在实践中,面板数据模型广泛应用于诸如教育经济学、劳动经济学和区域经济学等领域的研究中。
例如,研究人员可以使用面板数据模型来评估教育政策对学生学习成果的影响,或分析劳动市场的供求关系。
VAR模型VAR模型(向量自回归模型)是一种多元时间序列模型,用于描述多个经济变量之间的动态关系。
VAR模型可以帮助我们了解不同变量之间的相互作用,并预测它们可能的未来走势。
在经济学领域,VAR模型被广泛应用于宏观经济预测、货币政策分析和金融风险管理等方面。
例如,央行可以利用VAR模型,基于过去的经济数据来预测未来的通货膨胀率,从而制定相应的货币政策。
ARCH/GARCH模型ARCH模型(自回归条件异方差模型)和GARCH模型(广义自回归条件异方差模型)是一类用来研究时间序列波动性的模型。
它们被广泛应用于金融风险管理和资产组合优化等领域。
通过建立ARCH/GARCH模型,我们可以对金融数据中的波动性进行建模和预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
iZt i
i0
Y k 1 t k1
·暂假定 1。既然{Yt}是平稳的,那么对于所有的 t , EYt2 常量 。特别地,命 Yt 2 EYt2,则我们有:当 k时,
2 k
Yt
jZt j
j0
Y 2k 2
2
t k1
0
因此依 L2 ,Yt
。 Zj
j0
tj
对于这个新定义的过程Yt
j 0 jZt j ,我们有如下性质:
例 3.1 考虑 MA(1) 模型Yt
Zt
1Zt
。它的相关函数满足
1
1,
k 0,
Y (k)
1 (1
2 1
),
0,
k 1, 其它.
考虑另一个 MA(1) 模型
1
Xt Zt
Zt 1
1
那么有 X (k) Y (k) 。
{ X t } 和 {Yt } 二者具有相同的协方差函数。那么 { X t } 和 {Yt } 二者谁
第三章 自回归滑动平均模型
3.1 简介
本章引入了时间序列分析常用的几个概率模型。假定所要研究的序列已 经用前两章介绍的方法剔除了趋势。粗略地说,存在三种模型:滑动平均模 型(MA);自回归模型(AR)和自回归滑动平均模型(ARMA)。它们用来描述平稳 时间序列。此外,因一些类型的非平稳性可以用差分的手段来处理,所以 我们也研究自回归融合滑动平均模型(ARIMAs)这种类型。
(i) {Yt}是平稳的; (ii) 对所有的 t ,{Yt}满足 (B)Yt Zt 。
3.3.1 因果和平稳二象性
在不同的著作中,关于 AR(一般地,ARMA)模型的平稳性和因果性的 概念似乎存在着混淆。本节我们来澄清这种模棱两可的情况。
主要问题:AR(p)总是存在的吗?
为了回答这个问题,考虑简单的 AR(1)情形:
Yt Yt 1 Zt , Zt WN(0, 2 )
迭代这个方程,有Yt Zt Zt 1
。 Y k 1 t k1
(3.4)
问题 1. 我们可以找到满足方程(3.4)的平稳过程吗?
首先,假如这样的过程 {Yt } 的确存在,它会是怎样的呢?
·既然 {Yt } 满足方程(3.4),它必须有如下形式:
k
Yt
(B)Zt ,那么
3.3 自回归模型
另一类常用的模型是自回归(AR)模型。AR 模型之所以有吸引力是因为它
很类似于传统的回归模型。当我们用时间序列的过去(滞后)值代替经典回归
模型中的预测子后,我们就得到了一个 AR 模型。因此我们有理由料想为经典
回归导出的大部分统计结果可以不做什么修改就推广到 AR 情形。情况确实
(i) 对于所有的t ,Yt 满足(3.4);
(ii) EYt 0 , varYt 2 (1 2) ;
(iii)
cov(Yt ,Yt k ) cov
jZt j ,
Zl tkl
j0
l0
2
2j k
j0
2 k (1 2) 。
因此,这个新定义的{Yt}是平稳的并且问题 1 的答案是存在
平稳 AR(1)过程{Yt}满足(3.4)。
(B) 1 1B
qBq 而 BZt Zt 1。{Yt}可逆的条件由如下定理给出。
定理 3.1 如果方程 (B) 0 的根全部位于单位圆之外,那么 MA(q) 模
型 {Yt } 是可逆的。 证明: MA(1) 情形说明了证明思路。
注释:假如一个常数均值 加入到方程中,使的Yt EYt ,但是,自协方差函数保持不变。
更可取呢?
为了回答这个问题,倒过头来将{Zt } 用数据来表示。对于数据集{Yt } ,残差 {Z t } 可以写为
Zt Yt 1Zt 1 Yt 1(Yt 1 1Zt 2 )
Yt
1Yt 1
Y2
1 t2
(3.2)
对于数据集 { X t } ,残差{Z t } 可以写为
1
Zt Xt
Zt 1
1
1
1
Xt
Xt 1
2
i i k,
i0
k q, k q.
证明: cov(Yt ,Yt k ) E(YtYt k )
E(Zt
q Zt q )(Zt k
qZt k q )
观察公式
qk
2
i i k,
i0
其中, 0 1.
qk
q
ii k
2 i
,
k q, k 0,
(k) i 0
i0
1,
k 0,
0,
其它.
知,对于 MA(q) 模型,其 ACF 在 q 次滞后以后变为零。它显然是一个平稳模型。
问题 2. 对于假设 1,情况又怎样呢?
这个假设是无关紧要的,因为一当我们建立了{Yt } 的正确形式,它就不
需要了。虽然当 1时,过程{Yt}不再收敛,我们仍可以重写(3.4)如下。
既然Yt 1
Yt
Zt
,方程两边同时除以
1
,我们有
如此并且正因为这个原因,AR 模型已经成为最常用的线性时间序列模型之一.
形式上,AR(p)模型{Yt}可以写为 (B)Yt Zt ,这里 (B) (1 1B
pBp) ,
BYt Yt 1 。于是,Yt 1Yt 1
pYt p Zt 。正式地,我们有如下定义。
定义 3.1 称{Yt}为 AR(p)过程,如果
3.2 滑动平均模型
设{Zt}是具有均值为零方差为 2 的独立同分布的随机变量序列并用 Zt i.i.d.(0, 2 ) 表示之。假如我们只要求{Zt}是不相关的而不必是独立的, 则{Zt}有时被称为白噪音序列并用 Zt WN(0, 2) 表示之。从直观上说,这 意味着序列{Zt}是随机而且没有系统结构的。 在本书的通篇,我们都用 {Zt}表示宽意义上的白噪音序列,这就是说, Zt WN(0, 2 ) 或者意味着 Zt i.i.d.(0, 2 ) 或者意味着{Zt}是具有均值为零方差为 2 的不相关的随机变 量序列。用 {Z t } 做成一个加权平均,我们就完成了如下的滑动平均(MA)时 间序列模型:
2 Xt 2
1
1
(3.3)
如果 1
1,方程(3.2)收敛而方程(3.3)发散。当我们想去解释残差{Z t } 时
,处理一个收敛的表达式当然是更合意的。因此方程(3.2)更可取。在这种
情形下, MA(1) 模型{Yt}被称为是可逆的。
一般地,设{Yt}是一个 MA(q) 模型,由Yt (B)Zt 给出,这里
Yt Zt 1Zt 1
qZt q , Zt WN(0, 2 )
此模型称为 q 阶滑动平均模型并记为 MA(q) 。
(3.1)
命题 3.1 设{Yt}是(3.1)式给出的 MA(q) 模型。那么
(i)
EYt
0 ; (ii) varYt
(1
2 1
2 q
)
2;
(iii)
cov(Yt ,Yt k )
0,
qk