2020-2021上海市高一数学上期末试卷(及答案)

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

2023-2024学年上海建平中学高一上学期数学期末试卷及答案(2024.01)

2023-2024学年上海建平中学高一上学期数学期末试卷及答案(2024.01)

1建平中学2023学年第一学期高一数学期末2024.1一、填空题(每题3分,满分36分)1.已知扇形的面积是4,半径为2,则扇形的圆心角为________弧度.2.已知α是第二象限角,且35sin α=,则tan α=________.3.若函数()()23(0a f x log x a =−−>且1)a ≠的图像恒过定点A ,则A 的坐标是______.4.已知02,πα∈−,若728cos α=,则sin α=________.5.方程)20sin xx =≤≤π的解集为________. 6.函数()2f x x =+的值域是________. 7.已知α为锐角,167cos πα+=,则cos α=________.8.已知函数()9999999f x ax bx x =+−+,且()210f −=,则()2f =________. 9.若存在x R ∈,使34cosx sinx k =+成立,则实数k 的取值范围是________.10.已知函数()(2x f x ln x =+,若()2561f m m +−<,则实数m 的取值范围是_____.11.已知函数()()242,1,23,1xx f x g x x ax x x −< ==++ −≥ ,若函数()()y g f x =有6个零点,则实数a 的取值范围是________.12.若存在实数,a b ,对任意实数[]01x ,∈,不等式32x m ax b x −≤+≤恒成立,则实数m 的取值范围是________.二、选择题(每题3分,满分12分) 13.“1sinx =”是“0cosx =”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件214.已知实数,a b 满足a b >,则下列不等式恒成立的是( )A.11a b −−>;B.22a b >;C.33a b >;D.a b >.15.对于ABC ∆,角,,A B C 的对边分别为,,a b c ,有如下判断:(1)若cosA cosB =,则ABC ∆为等腰三角形;(2)若A B >,则sin sinA B >;(3)若8,10,60a c B === ,则符合条件的ABC ∆有两个;(4)若sinAsinB cosAcosB <,则ABC ∆是钝角三角形.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个16.已知集合S 是由某些正整数组成的集合,且满足:若a S ∈,则当且仅当(a m n =+其中正整数,m n S ∈,且)m n ≠或(a p q =+其中正整数,p q S ∉,且)p q ≠.现有如下两个命题:(1)5S ∈;(2)集合{}*3xx n,n N S =∈⊆∣.则下列判断正确的是( ) A.(1)是真命题,(2)是真命题. B.(1)是真命题,(2)是假命题. C.(1)是假命题,(2)是真命题. D.(1)是假命题,(2)是假命题. 三、解答题(本题共有5大题,满分52分) 17.已知角α的终边经过点()12M ,−, (1)求()23sin cos cos sin α+π−αα−α的值.(2)求24tan πα+的值.18.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin B =. (1)求角B 的大小.(2)若ABC ∆的面积为6,4a =,求b 的长.319.某乡镇响应“绿水青山就是金山银山”的号召,将该镇打造成“生态水果特色小镇”.经调研发现,某水果的产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()2217,02850,251x x W x x x +≤≤=−<≤−,且施用肥料及其它成本总投入为20x 元.已知这种水果的市场售价大约10元/千克,且生产的水果都能售出.记该水果利润为()f x (单位:元)(利润=销售额-成本)(1)写出利润()f x (元)关于施用肥料x (千克)的关系式.(2)当施用肥料为多少千克时,该水果利润最大?最大利润是多少?20.对于函数()f x ,若存在0x R ∈,使()00f x x =成立,则称0x 为()f x 的不动点. (1)已知函数()23f x x x =−−,求函数()f x 的不动点.(2)若对于任意的b R ∈,二次函数()()()2180f x ax b x b a =+−+−≠恒有两个相异的不动点,求实数a 的取值范围.(3)若函数()()211f x mx m x m =−+++在区间()02,上有唯一的不动点,求实数m 的取值范围.421.若函数()f x 满足:对任意正数,s t ,都有()()()f s f t f s t +<+,则称函数()f x 为“H 函数”. (1)试判断函数()21f x x =与()()21f x ln x =+是否为“H 函数”,并说明理由. (2)若函数33x y x a =+−是“H 函数”,求实数a 的取值范围.(3)若函数()f x 为“H 函数”,()11f =,对任意正数,s t ,都有()()0,0f s f t >>,求证:对任意()()122k k x ,k N +∈∈,都有()122x f x f x x −>−.5参考答案一、填空题 1.2 ; 2. 34−3.()33,−4.14−;5.388,ππ ;6.54,⋅−∞; 8.8; 9.[]55,⋅−; 10.()61,−;11.(3,⋅−− 12.14,+∞二、选择题13.A 14. C 15. C 16.A 三.解答题17.【答案】(1)-1 (2)-7【解析】(1)由已知得2tan α=−,()22211333sin cos sin cos tan cos sin cos sin tan α+π−αα−αα−∴===−α−αα−α−α;(2)2tan α=− ,224231tan tan tan α∴α==−α,则2127412tan tan tan πα+α+==− −α. 18.【答案】(1)4B π=(2)b = 【解析】(1)因为2sin B =,所以2sinBcosB =. 因为0sinB ≠,所以cosB =,又,0B <<π,所以4B π=.(2)因为114622ABC S acsinB c ∆==××=,所以c =由余弦定理可得222216182410b a c accosB +−+−××,所以b =. 19.【答案】(1)()22020340,028050020,251x x x f x x x x −+≤≤= −−<≤−(2)肥料为3千克时,该水果的利润最大,最大利润是400元【解析】(1)由已知()()1020f x W x x =−,又()()2217,02850,251x x W x x x +≤≤= −<≤ −,6所以()()2201720,028050020,251x x x f x x x x +−≤≤= −−<≤ − ,整理得()22020340,028050020,251x x x f x x x x −+≤≤ = −−<≤− . (2)当02x ≤≤时,()2212020340203352f x x x x−+−+,∴当02x ≤≤时,()()2380f x f ≤=,当25x <≤时,()80500201f x x x =−−−, ()80500201201x x =−+−+ − ()804802014804001x x−+−≤− −当且仅当()802011x x =−−,即3x =时等号成立,()400max f x =,因为380400<综上,所以()f x 的最大值为400.故当施用肥料为3千克时,该水果的利润最大,最大利润是400元. 20.【答案】(1)1,3− (2)()06,(3)11m −<≤或m =【解析】(1)设0x 为不动点,因此20003x x x −−=,解得01x =−或03x =,所以1,3−为函数()f x 的不动点.(2)方程()f x x =,即()218ax b x b x +−+−=,有()22800ax b x b a +−+−=≠,, 于是得方程()2280ax b x b +−+−=有两个不等实根, 即()()()22(2)480414810Δb a b b a b a =−−−>⇔−+++>, 依题意,对于任意的b R ∈,不等式()()2414810b a b a −+++>恒成立, 则()216(1)16810,Δa a ′=+−+<整理得260a a −<,解得06a <<, 所以实数a 的取值范围是()06,.(3)由于函数()f x 有且只有一个不动点在()02,上所以()211mx m x m x −+++=, 即()2210mx m x m −+++=在()02,上有且只有一个解令()()221g x mx m x m =−+++7①()()020g g ⋅<,则()()110m m +−<,解得11m −<<;②()00g =即1m =−时,方程可化为20x x −−=,另一个根为-1,不符合题意,舍去; ③()20g =即1m =时,方程可化为2320x x −+=,另一个根为1,满足; ④0∆=,即()()22410m m m +−+=,解得m =(I)当m =时,方程的根为()2222m m x m m −++=−=,满足; (II)当m =时,方程的根为()2222m m x m m −++=−=,不符合题意,舍去; 综上,m 的取值范围是11m −<≤或m =. 21.【答案】(1)不是 (2)13a ≥(3)见解析【解析】(1)对于任意()()()()()222111,0,,s t ,f s f t s t f s t s t ∈+∞+=++=+,()()()()222111()20f s t f s f t s t s t st ∴+−+=+−+=> ,即()()()111f s f t f s t +<+成立;故()21f x x =是“H 函数”.对于()()21f x ln x =+,取1s t ==,则()()()22222,3f s f t ln f s t ln +=+=. 因为22ln 3ln >,故()()21f x ln x =+不是“H 函数”.(2)因为函数33x y x a =+−是“H 函数”,故对于任意的(),0s t ,∈+∞有 ()333333s t s t s t a s a t a +++−>+−++−恒成立,即3333s t s t a +−−>−恒成立所以()()313113s t a −−>−恒成立.又(),0s t ,∈+∞,故()3,31s t ,∈+∞,则()()()31310s t ,−−∈+∞则130a −≤,即13a ≥. (3)由函数()f x 为“H 函数”,可知对于任意正数,s t , 都有()()0,0f s f t >>,且()()()f s f t f s t +<+,8令s t =,可知()()22f s f s >,即()()22f s f s >,故对于自然数k 与正数s ,都有()()()()()()()()111122222,22k k k k k k f s f s f s f s f s f s f s f s +++−=⋅>对任意()()122k k x ,k N +∈∈,可得111122k k,x +∈,又()11f =, 所以()()()()()122222122k kkkkxf x f x f f f +>−+>≥=>,同理()1111111122222222k k k k k k f f f f f x x x + <−−<≤==< ,故()122x f x f x x−>− .。

2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷

2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷

2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷试题数:20,总分:01.(填空题,0分)已知集合A={-3,-2,-1,0,1,2,3},B={x||x-1|≤1},则A∩B=___ .2.(填空题,0分)函数f(x)= log2(x−1)x−2的定义域为 ___ .3.(填空题,0分)若指数函数y=f(x)的图像经过点(12,2)则函数y=f(x)-2x+1的零点为 ___ .4.(填空题,0分)不等式1|x|<x的解集为 ___ .5.(填空题,0分)已知log62=a,用a表示log412=___ .6.(填空题,0分)已知函数y=(log2a)x在R上是严格减函数,则实数a的取值范围是___ .7.(填空题,0分)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集区间长度为2,则实数m的值为 ___ .8.(填空题,0分)设x,y∈(1,+∞),若log2x、log2y的算术平均值为1,则2x、2y的几何平均值的最小值为 ___ .9.(填空题,0分)已知函数y=f(x)是R上的奇函数,且是(-∞,0)上的严格减函数,若f(1)=0,则满足不等式(x-1)f(x)≥0的x的取值范围为 ___ .10.(填空题,0分)已知a∈{-2,-1,13,23,43,2},当x∈(-1,0)∪(0,1)时,不等式x a>|x|恒成立,则满足条件的a形成的集合为 ___ .11.(填空题,0分)函数y=f(x)(x<0)的反函数为y=f-1(x),且函数g(x)={f(x),x<0log2(x+1),x≥0是奇函数,则不等式f-1(x)≥-2的解集为 ___ .12.(填空题,0分)已知函数f(x)=|2x-1|,若函数g(x)=f2(x)+mf(x)+ 14有4个零点,则实数m的取值范围为 ___ .13.(单选题,0分)已知陈述句α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},则M与N之间的关系为()A.M⊂NB.M⊃NC.M=ND.M∩N=∅14.(单选题,0分)若log3m<log3n且log m3<log n3,则实数m、n满足的关系式为()A.0<m<n<1B.0<n<m<1C.0<m<1<nD.1<m<n15.(单选题,0分)设a1、a2、b1、b2、c1、c2都是非零实数,不等式a1x2+b1x+c1>0的解集为A,不等式a2x2+b2x+c2>0的解集为B,则“A=B是“ a1a2=b1b2=c1c2>0”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件16.(单选题,0分)定义在R上的函数y=f(x)的表达式为f(x)= {x2,x∈Qx,x∈Q,给出下列3个判断:(1)函数y=f(x)是非奇非偶函数;(2)当a<0且a∈Q时,方程f(x)=a无解;(3)当a>0时,方程f(x)=a至少有一解;其中正确的判断有()A.0个B.1个C.2个D.3个17.(问答题,0分)已知集合A={x||x-a|≤2},不等式2x−1x+2≥1的解集为B.(1)用区间表示B;(2)若全集U=R,且A∩ B =A,求实数a的取值范围.18.(问答题,0分)已知a、b都是正实数,且ba=b-a.(1)求证:a>1;(2)求b的最小值.19.(问答题,0分)设函数y=f(x)的表达式为f(x)=x2+|x-a|,其中a为实常数.(1)判断函数y=f(x)的奇偶性,并说明理由;在区间(0,a]上为严格减函数,求实数a的最大值.(2)设a>0,函数g(x)= f(x)x20.(问答题,0分)已知非空集合S的元素都是整数,且满足:对于任意给定的x,y∈S(x、y可以相同),有x+y∈S且x-y∈S.(1)集合S能否为有限集,若能,求出所有有限集,若不能,请说明理由;(2)证明:若3∈S且5∈S,则S=Z.2020-2021学年上海市黄浦区格致中学高一(上)期末数学试卷参考答案与试题解析试题数:20,总分:01.(填空题,0分)已知集合A={-3,-2,-1,0,1,2,3},B={x||x-1|≤1},则A∩B=___ . 【正确答案】:[1]{0,1,2}【解析】:求出集合B ,利用交集定义能求出A∩B .【解答】:解:∵集合A={-3,-2,-1,0,1,2,3}, B={x||x-1|≤1}={x|0≤x≤2}, ∴A∩B={0,1,2}, 故答案为:{0,1,2}.【点评】:本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题. 2.(填空题,0分)函数f (x )=log 2(x−1)x−2的定义域为 ___ . 【正确答案】:[1](1,2)∪(2,+∞) 【解析】:根据使得函数f (x )= log 2(x−1)x−2的表达式有意义即可解决此题.【解答】:解:要使得函数f (x )=log 2(x−1)x−2的表达式有意义, 则 {x −1>0x −2≠0 ,解得x∈(1,2)∪(2,+∞).∴函数定义域为(1,2)∪(2,+∞). 故答案为:(1,2)∪(2,+∞).【点评】:本题考查函数定义域求法,考查数学运算能力,属于基础题.3.(填空题,0分)若指数函数y=f (x )的图像经过点( 12 ,2)则函数y=f (x )-2x+1的零点为 ___ .【正确答案】:[1]x=1【解析】:利用待定系数法求出f (x )=4x ,再利用零点的定义求解即可.【解答】:解:设指数函数y=a x ,∵图像经过点( 12,2),∴ a 12 =2,解得a=4,∴f (x )=4x , ∴y=f (x )-2x+1=4x -2x+1,令y=0,则4x =2x+1,∴2x=x+1,∴x=1, 故答案为:x=1.【点评】:本题考查了待定系数法求的应用,零点的求法,是基础题. 4.(填空题,0分)不等式 1|x| <x 的解集为 ___ . 【正确答案】:[1](1,+∞)【解析】:结合x 的范围分类讨论,转化为二次不等式进行求解即可.【解答】:解:由题意得, {x |x |>1x ≠0 ,即 {x >0x 2>1 或 {−x 2>1x <0,解得,x >1,所以原不等式的解集(1,+∞). 故答案为:(1,+∞).【点评】:本题主要考查了分式不等式的求解,体现了转化思想的应用,属于基础题. 5.(填空题,0分)已知log 62=a ,用a 表示log 412=___ . 【正确答案】:[1] 1+a2a【解析】:利用换底公式以及对数的运算性质求解.【解答】:解:log 412= log 612log 64 = log 62+12log 62 = 1+a2a, 故答案为: 1+a2a .【点评】:本题主要考查了对数的运算性质以及换底公式的应用,是基础题.6.(填空题,0分)已知函数y=(log 2a )x 在R 上是严格减函数,则实数a 的取值范围是 ___ . 【正确答案】:[1](1,2)【解析】:根据指数函数的单调性,可得0<log2a<1,结合对数函数的图象和性质,可得实数a的取值范围.【解答】:解:∵函数y=(log2a)x在R上是严格减函数,∴0<log2a<1,∴1<a<2,故答案为:(1,2).【点评】:本题考查的知识点是指数函数的图象和性质,对数函数的图象和性质,属于基础题.7.(填空题,0分)定义区间[a,b](a<b)的长度为b-a,若关于x的不等式x2-4x+m≤0的解集区间长度为2,则实数m的值为 ___ .【正确答案】:[1]3【解析】:根据题意利用根与系数的关系,以及解集区间长度为2得到关于m的方程,再求出m即可.【解答】:解:因为不等式x2-4x+m≤0的解集区间长度为2,所以Δ=16-4m>0,解得m<4;设方程x2-4x+m=0的解是x1,x2,则x1+x2=4,x1x2=m,因为|x1-x2|=2,所以√(x1+x2)2−4x1x2 =2,所以16-4m=4,解得m=3,所以实数m的值为3.故答案为:3.【点评】:本题考查了不等式与对应方程的应用问题,也考查了根与系数的关系以及转化思想和方程思想,是基础题.8.(填空题,0分)设x,y∈(1,+∞),若log2x、log2y的算术平均值为1,则2x、2y的几何平均值的最小值为 ___ .【正确答案】:[1]4【解析】:由已知结合对数运算性质可求xy,然后结合基本不等式求出x+y的最小值,再由指数运算性质可求.【解答】:解:由题意得,log2x+log2y=2,所以xy=4,所以x+y ≥2√xy =4,当且仅当x=y=2时取等号,则√2x•2y = √2x+y≥4.故答案为:4.【点评】:本题主要考查了对数与指数的运算性质,考查了算术平均数与几何平均数的概念,还考查了利用基本不等式求解最值,属于基础题.9.(填空题,0分)已知函数y=f(x)是R上的奇函数,且是(-∞,0)上的严格减函数,若f(1)=0,则满足不等式(x-1)f(x)≥0的x的取值范围为 ___ .【正确答案】:[1][-1,0]∪{1}【解析】:偶数形结合分类讨论x<1和x≥1即可求解.【解答】:解:函数f(x)是定义在R上的奇函数,且是(-∞,0)上的严格减函数,f(1)=0,可得f(0)=0,f(-1)=0,f(x)在(0,+∞)上单调递增,由于(x-1)f(x)≥0,当x<1时,f(x)≤0,所以-1≤x≤0,当x≥1时,f(x)≥0,所以x=1,综上所述,x的取值范围是[-1,0]∪{1}.故答案为:[-1,0]∪{1}.【点评】:本题主要考查函数奇偶性与单调性的综合,考查不等式的解法,考查分类讨论与数形结合思想的应用,考查运算求解能力,属于基础题.10.(填空题,0分)已知a∈{-2,-1,13,23,43,2},当x∈(-1,0)∪(0,1)时,不等式x a>|x|恒成立,则满足条件的a形成的集合为 ___ .【正确答案】:[1] {−2,23}【解析】:直接利用幂函数的性质进行分类讨论,即可得到答案.【解答】:解:令f(x)=x a,因为当x∈(-1,0)∪(0,1)时,不等式x a>|x|恒成立,则当x∈(-1,0)∪(0,1)时,幂函数f(x)的图象在y=|x|的图象的上方,如果函数f(x)为奇函数,则第三象限有图象,故f(x)不是奇函数,所以a=-1,a= 13不符合题意;当x∈(0,1)时,函数f(x)=x a>x,即1>x1-a,所以1-a>0,解得a<1,所以a= 43,a=2不符合题意.综上所述,满足条件的a形成的集合为{−2,23}.故答案为:{−2,23}.【点评】:本题考查了函数恒成立问题,幂函数图象与性质的应用,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.11.(填空题,0分)函数y=f(x)(x<0)的反函数为y=f-1(x),且函数g(x)={f(x),x<0log2(x+1),x≥0是奇函数,则不等式f-1(x)≥-2的解集为 ___ .【正确答案】:[1][-log23,0)【解析】:当x<0时-x>0,所以g(-x)=log2(-x+1),再利用函数g(x)的奇偶性可求出f(x)的解析式,进而求出f-1(x)的解析式,注意不要忽视定义域,从而求出不等式f-1(x)≥-2的解集.【解答】:解:当x<0时,-x>0,∴g(-x)=log2(-x+1),又∵g(x)是奇函数,∴g(-x)=-g(x),∴-g(x)=log2(-x+1),即g(x)=-log2(-x+1),∴f(x)=-log2(-x+1)(x<0),令y=-log2(-x+1),x<0,则y<0,∴-x+1=2-y,∴x=1-2-y,∴f-1(x)=1-2-x(x<0),∴1-2-x≥-2,即2-x≤3,∴-x≤log23,∴x≥-log23,又∵x<0,∴-log23≤x<0,即不等式f-1(x)≥-2的解集为[-log23,0),故答案为:[-log 23,0).【点评】:本题主要考查了利用函数的奇偶性求解析式,考查了求反函数,以及解指数不等式,是中档题.12.(填空题,0分)已知函数f (x )=|2x -1|,若函数g (x )=f 2(x )+mf (x )+ 14 有4个零点,则实数m 的取值范围为 ___ . 【正确答案】:[1](- 54,-1)【解析】:由函数解析式画出函数图象,再令t=f (x ),将g (x )转化为t 的函数,再由图象求m 的范围即可.【解答】:解:由函数f (x )=|2x -1|,如图所示;令t=f (x ), 则h (t )=t 2+mt+ 14, 则h (t )=0,t 最多有两解, 而t=f (x )关于x 最多有两解,故g (x )=0有4解时,必对应h (t )与f (x )均有2解, f (x )=t 有两解,如图, 只要t∈(0,1)即可,故原问题转化为h (t )=0的根t 1,t 2∈(0,1),且t 1≠t 2, 由于h (t )过(0, 14 ), 对称轴t=- m2 必在(0,1)内, 且顶点处h (t )<0,且h (1)>0, 即 {0<−m 2<1ℎ(−m 2)=1−m 24<0ℎ(1)=54+m >0 ,即- 54 <m <-1,,-1).故答案为:(- 54【点评】:本题考查函数的零点与方程的关系,属于中档题.13.(单选题,0分)已知陈述句α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},则M与N之间的关系为()A.M⊂NB.M⊃NC.M=ND.M∩N=∅【正确答案】:B【解析】:利用充要条件与集合间关系的转化即可求解.【解答】:解:∵α是β的必要非充分条件,集合M={x|x满足α},集合N={x|x满足β},∴N⫋M,故选:B.【点评】:本题考查了充要条件与集合间关系的转化,考查了推理能力与计算能力,属于基础题.14.(单选题,0分)若log3m<log3n且log m3<log n3,则实数m、n满足的关系式为()A.0<m<n<1B.0<n<m<1C.0<m<1<nD.1<m<n【正确答案】:C【解析】:根据对数函数的图象和性质即可判断.【解答】:解:∵log3m<log3n,∴0<m<n,∵log m3<log n3,∴0<m<1,n>1,∴0<m<1<n.故选:C.【点评】:本题考查了对数函数的图象和性质,属于基础题.15.(单选题,0分)设a1、a2、b1、b2、c1、c2都是非零实数,不等式a1x2+b1x+c1>0的解集为A,不等式a2x2+b2x+c2>0的解集为B,则“A=B是“ a1a2=b1b2=c1c2>0”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件【正确答案】:B【解析】:根据不等式的基本性质,充分必要条件的定义判断即可.【解答】:解:① 当A=B=∅时,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0可能是不同的不等式,则a1a2=b1b2=c1c2>0不一定成立,∴充分性不成立,② 若a1a2=b1b2=c1c2=k>0时,则不等式a1x2+b1x+c1>0⇔ka2x2+kb2x+kc2>0⇔a2x2+b2x+c2>0,∴A=B,∴必要性成立,∴A=B是a1a2=b1b2=c1c2>0的必要不充分条件,故选:B.【点评】:本题考查充要条件的判断,不等式的基本性质,属于中档题.16.(单选题,0分)定义在R上的函数y=f(x)的表达式为f(x)= {x2,x∈Qx,x∈Q,给出下列3个判断:(1)函数y=f(x)是非奇非偶函数;(2)当a<0且a∈Q时,方程f(x)=a无解;(3)当a>0时,方程f(x)=a至少有一解;其中正确的判断有()A.0个B.1个C.2个D.3个【正确答案】:C【解析】:根据函数表达式,分别讨论变量是有理数和无理数,即可得到结论.【解答】:解:(1)若x∈Q,则-x∈Q,则f(-x)=x2=f(x),此时为偶函数,若x∈ Q,则-x∈ Q,则f(-x)=-x=-f(x),此时为奇函数,综上y=f(x)是非奇非偶函数,故(1)正确,(2)当a<0且a∈Q时,f(x)=x2≥0,则方程f(x)=a无解,故(2)正确,(3)当a>0时,若a∈Q,则由f(x)=a2=a,得a=1,若a∈ Q,则由f(x)=x=a,得x=a只有一解,故(3)错误,故选:C.【点评】:本题主要考查命题的真假判断,根据分段函数的表达式,利用分类讨论思想进行判断是解决本题的关键,是中档题.17.(问答题,0分)已知集合A={x||x-a|≤2},不等式2x−1x+2≥1的解集为B.(1)用区间表示B;(2)若全集U=R,且A∩ B =A,求实数a的取值范围.【正确答案】:【解析】:(1)根据题意,分析可得2x−1x+2≥1⇔ x−3x+2≥0⇔(x-3)(x+2)≥0且x+2≠0,解可得集合B,即可得答案;(2)根据题意,求出集合A以及B,由A∩ B =A可得A⊆ B,由此分析可得答案.【解答】:解:(1)根据题意,2x−1x+2≥1⇔ x−3x+2≥0⇔(x-3)(x+2)≥0且x+2≠0,解可得:x<-2或x≥3,即B=(-∞,-2)∪[3,+∞);(2)由(1)的结论,B=(-∞,-2)∪[3,+∞),则B =[-2,3),A={x||x-a|≤2}=[a-2,a+2],若A∩ B =A,则A⊆ B,则有-2≤a-2<a+2<3,解可得:0≤a<1,即a的取值范围为[0,1).【点评】:本题考查不等式的解法,涉及集合之间的关系,属于基础题.18.(问答题,0分)已知a 、b 都是正实数,且 b a =b-a .(1)求证:a >1;(2)求b 的最小值.【正确答案】:【解析】:(1)根据已知条件,结合不等式的性质,即可求解.(2)根据已知条件,结合换元法和基本不等式的公式,即可求解.【解答】:证明:(1)∵ b a =b-a ,∴ b (1−1a )=a ,又∵a ,b 都是正实数,∴ (1−1a )>0 ,∴ 1a <1 ,又∵a >0,∴a <1,即得证.(2)∵ b a =b-a ,∴ b (1−1a )=a ,∵a >1,∴ b =a 2a−1 ,令t=a-1(t >0),则b= a 2a−1 = (t+1)2t =t +1t +2≥2√t •1t +2=4 , 当且仅当t=a-1=1,即a=2时,取得最小值,所以a=2时,b 的最小值为4.【点评】:本题主要考查不等式的证明,掌握基本不等式是解本题的关键,属于基础题.19.(问答题,0分)设函数y=f (x )的表达式为f (x )=x 2+|x-a|,其中a 为实常数.(1)判断函数y=f (x )的奇偶性,并说明理由;(2)设a >0,函数g (x )=f (x )x 在区间(0,a]上为严格减函数,求实数a 的最大值.【正确答案】:【解析】:(1)利用奇函数与偶函数的定义,分a=0和a≠0两种情况讨论即可;(2)利用函数单调性的定义分析,列出关于a 的不等式组,求解即可.【解答】:解:(1)函数f (x )=x 2+|x-a|的定义域为R ,关于原点对称,f (-x )=(-x )2+|-x-a|=x 2+|x+a|,当a=0时,f (-x )=f (x ),则f (x )为偶函数,当a≠0时,f (-x )≠f (x )且f (-x )≠-f (x ),则f (x )为非奇非偶函数.(2)当x∈(0,a]时, g (x )=f (x )x =x 2+|x−a|x =x +a x −1 , 设0<x 1<x 2≤a ,则 g (x 1)−g (x 2)=x 1+a x 1−x 2−a x 2 = (x 1−x 2)(x 1x 2−a )x 1x 2 ,因为0<x 1<x 2≤a ,所以x 1-x 2<0且0<x 1x 2<a 2,因为函数g (x )在区间(0,a]上为严格减函数,所以x 1x 2-a <0恒成立,即a >x 1x 2恒成立,所以 {a ≥a 2a >0,解得0<a≤1, 故a 的最大值为1.【点评】:本题考查了奇偶性的判断,函数单调性的应用,函数单调性定义的理解与应用,判断函数奇偶性时要先判断函数的定义域是否关于原点对称,考查了逻辑推理能力与化简运算能力,属于中档题.20.(问答题,0分)已知非空集合S 的元素都是整数,且满足:对于任意给定的x ,y∈S (x 、y 可以相同),有x+y∈S 且x-y∈S .(1)集合S能否为有限集,若能,求出所有有限集,若不能,请说明理由;(2)证明:若3∈S且5∈S,则S=Z.【正确答案】:【解析】:(1)分a∈S,且a≠0和a∈S,且a=0两种情况分别验证即可;(2)结合条件,由5∈S,3∈S,首先证得2的所有整数倍的数都是S中的元素,又3-2=1∈S,所以x=2k+l,k∈Z也是集合S中的元素,即{x|x=2k+1,k=Z}⫋S,所以有{x|x=2k,k∈Z}U{x|x=2k+1,k∈Z}=Z,即证得S=Z.【解答】:解:(1)能,理由如下:若a∈S,且a≠0,由题意知a的所有整数倍的数都是S中的元素,所以S是无限集;若a∈S,且a=0,则S={0},x+y∈S,x-y∈S符合题意,且S={0}是有限集,所以集合S能为有限集,即S={0};(2)证明:因为非空集合S的元素都是整数,且x+y∈Z,x-y∈Z,由5∈S,3∈S,所以5-3=2∈S,所以3-2=l∈S,所以1+1=2∈S,1+2=3∈S,1+3=4∈S,…,1-1=0∈S,0-1=-1∈S,-1-1=-2∈S,-2-1=-3∈S…,所以非空集合S是所有整数构成的集合,由5∈S,3∈S,所以5-3=2∈S,因为x+y∈S,x-y∈S,所以2+2=4∈S,2-2=0∈S,2+4=6∈S,2-4=-2∈S,2+6=8∈S,2-6=-4∈S,…,所以2的所有整数倍的数都是S中的元素,即{x|x=2k,k∈Z}⫋S,且3-2=1∈S,所以x=2k+l,k∈Z也是集合S中的元素,即{x|x=2k+1,k=Z}⫋S,{x|x=2k,k∈Z}U{x|x=2k+1,k∈Z}=Z,综上所述,S=Z.【点评】:本题考查了元素与集合的关系,属于难题.。

2020-2021学年上海市浦东新区建平中学高一(上)期末数学试卷

2020-2021学年上海市浦东新区建平中学高一(上)期末数学试卷

2020-2021学年上海市浦东新区建平中学高一(上)期末数学试卷试题数:21,总分:1501.(填空题,5分)函数y= √ln(2021−x)的定义域为___ .2.(填空题,5分)已知集合A={x|y=x12},B={x|e x-2<1},则A∩B=___ .3.(填空题,5分)已知函数f(x)=(a2-1)x,若函数在(-∞,+∞)严格增函数,则实数a 的取值范围是___ .4.(填空题,5分)函数f(x)=(12)x2−x−2的单调递增区间为___ .5.(填空题,5分)对于任意实数a,函数f(x)=a x+3+12(a>0且a≠1)的图象经过一个定点,则该定点的坐标是___ .6.(填空题,5分)如图是一个地铁站入口的双翼闸机,它的双翼展开时,双翼边缘的端点A 与B之间的距离为16cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BQD=30°,当双翼收起时,可以通过闸机的物体的最大宽度为___ cm.7.(填空题,5分)已知函数f(x)=x2(x≤0),则y=f(x)的反函数为___ .8.(填空题,5分)已知a、b都是正数,且(a+1)(b+2)=16,则a+b的最小值为___ .9.(填空题,5分)已知log35= 1a,5b=7,则用a、b的代数式表示log63105=___ .10.(填空题,5分)当|lga|=|lgb|,a<b时,则a+3b的取值范围是___ .11.(填空题,5分)如图所示,已知函数f(x)=log24x图象上的两点A、B和函数f(x)=log2x上的点C,线段AC平行于y轴,三角形ABC为正三角形时,设点B的坐标为(p,q),则2qp的值为___ .12.(填空题,5分)已知函数f(x)={2−|x|,x≤2(x−2)2,x>2,函数g(x)=b-f(2-x),如果y=f(x)-g(x)恰好有两个零点,则实数b的取值范围是___ .13.(单选题,5分)函数f(x)= lg|x|x2的大致图象为()A.B.C.D.14.(单选题,5分)若函数f(x)=x2+a−1e x是偶函数,则实数a的值是()A.-1B.0C.1D.不唯一15.(单选题,5分)已知cos170°=m,则tan10°的值为()A. √1−m2mB. −√1−m 2mC. √1−m 2D. √1−m 216.(单选题,5分)已知n <m ,函数 f (x )={log 12(1−x ),−1≤x ≤n 22−|x−1|−3,n <x ≤m的值域是[-1,1],有下列结论:① 当n=0时, m ∈(12,2] ; ② 当 n ∈[0,12) 时,m∈(n ,2];③ 当 n ∈[0,12) 时,m∈[1,2]; ④ 当 n =12 时, m ∈(12,2] .其中正确结论的序号是( )A. ① ②B. ① ③C. ② ③D. ③ ④17.(问答题,12分)(1)已知 f (α)=cos (π+α)tan (π−α)cot (−α)sin (2π+α) ,求 f (π3) 的值; (2)已知 tanθ=12 ,求sin 2θ+sinθcosθ-cos 2θ的值.18.(问答题,12分)设函数 f (x )=a•e x −11+e x (a ∈R ) 是R 上的奇函数.(1)求a 的值,并求函数f (x )的反函数f -1(x )解析式;(2)若k 为正实数,解关于x 的不等式 f −1(x )>ln 1+x k.19.(问答题,14分)某校数学建模小组研究发现:在40分钟的一节课中,高一年级学生注意力指标S 与学生听课时间t (单位:分钟)之间的函数关系为 S ={−14t 2+6t +46,0<t ≤1383−log 3(t −5),13<t ≤40. (1)在上课期间的前13分钟内(包括第13分钟),求注意力的最大指标;(2)根据研究结果表明,当注意力指标大于80时,学生的学习效果最佳,现有一节40分钟课,其核心内容为连续的20分钟,问:教师是否能够安排核心内容的时间段,使得学生在核心内容的这段时间内,学习效果均在最佳状态?20.(问答题,16分)已知幂函数f(x)=x−2m2+m+3(m∈Z)是奇函数,且f(x)在(0,+∞)为严格增函数.(1)求m的值,并确定f(x)的解析式;(2)求y=log22f(x)−log12 [2f(x)],x∈[12,2]的最值,并求出取得最值时的x取值.21.(问答题,16分)已知函数f(x)=2x(x∈R),记g(x)=f(x)-f(-x).(1)解不等式:f(2x)-2f(x)≤3;(2)设t为实数,若存在实数x0∈(1,2],使得g(2x0)=t•g2(x0)-1成立,求t的取值范围;(3)记H(x)=f(2x+2)+af(x)+b(其中a、b均为实数),若对于任意的x∈[0,1],均有|H(x)|≤ 12,求a、b的值.2020-2021学年上海市浦东新区建平中学高一(上)期末数学试卷参考答案与试题解析试题数:21,总分:1501.(填空题,5分)函数y= √ln(2021−x)的定义域为___ .【正确答案】:[1](-∞,2020]【解析】:根据二次根式以及对数函数的性质求出函数的定义域即可.【解答】:解:由题意得:2021-x≥1,解得:x≤2020,故答案为:(-∞,2020].【点评】:本题考查了求函数的定义域问题,考查对数函数以及二次根式的性质,是一道基础题.2.(填空题,5分)已知集合A={x|y=x12},B={x|e x-2<1},则A∩B=___ .【正确答案】:[1][0,2)【解析】:求出集合A,B,由此能求出A∩B.【解答】:解:∵集合A={x|y=x 12}={x|x≥0},B={x|e x-2<1}={x|x<2},∴A∩B=[0,2).故答案为:[0,2).【点评】:本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.3.(填空题,5分)已知函数f(x)=(a2-1)x,若函数在(-∞,+∞)严格增函数,则实数a 的取值范围是___ .【正确答案】:[1] (−∞,−√2)∪(√2,+∞)【解析】:根据指数函数的单调性即可得出:a2-1>1,然后解出a的范围即可.【解答】:解:∵f(x)在(-∞,+∞)严格增函数,∴a2-1>1,解得a<−√2或a>√2,∴a的取值范围是(−∞,−√2)∪(√2,+∞).故答案为:(−∞,−√2)∪(√2,+∞).【点评】:本题考查了指数函数的单调性,一元二次不等式的解法,考查了计算能力,属于基础题.4.(填空题,5分)函数f(x)=(12)x2−x−2的单调递增区间为___ .【正确答案】:[1] (−∞,12]【解析】:利用复合函数的单调性,转化求解即可.【解答】:解:因为y= (12)x是减函数,y=x2-x-2在(−∞,12]是减函数,所以函数f(x)=(12)x2−x−2的单调递增区间为:(−∞,12].故答案为:(−∞,12].【点评】:本题考查复合函数的单调性的求法,是基础题.5.(填空题,5分)对于任意实数a,函数f(x)=a x+3+12(a>0且a≠1)的图象经过一个定点,则该定点的坐标是___ .【正确答案】:[1] (−3,32)【解析】:直接利用指数的性质a0=1求解即可.【解答】:解:因为当x=-3式时,f(x)= a0+12=32,所以函数f(x)必过定点(−3,32).故答案为:(−3,32).【点评】:本题考查了指数函数的性质,解题的关键是掌握指数的性质a0=1,属于基础题.6.(填空题,5分)如图是一个地铁站入口的双翼闸机,它的双翼展开时,双翼边缘的端点A 与B之间的距离为16cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BQD=30°,当双翼收起时,可以通过闸机的物体的最大宽度为___ cm.【正确答案】:[1]70【解析】:连接AB,CD,过A作AE⊥CD于E,过B作BF⊥CD于F,推得四边形AEFB为矩形,可得EF=AB,再由解直角三角形可得CE=DF,即可得到所求最大值.【解答】:解:连接AB,CD,过A作AE⊥CD于E,过B作BF⊥CD于F,因为AB || EF,AE || BF,所以四边形AEFB为平行四边形,又因为∠AEF=90°,可得四边形AEFB为矩形,所以EF=AB=16,因为AE || PC,可得∠PCA=∠CAE=30°,×54=27,所以CE=ACsin30°= 12同理可得DF=27,所以当双翼收起时,可以通过闸机的物体的最大宽度为:CD=CE+EF+FD=27+16+27=70(cm),故答案为:70.【点评】:本题考查解直角三角形在实际问题中的应用,考查运算能力和数形结合思想,属于基础题.7.(填空题,5分)已知函数f(x)=x2(x≤0),则y=f(x)的反函数为___ .【正确答案】:[1] f−1(x)=−√x(x≥0)【解析】:由y=f (x )反解出x ,然后求出原函数的值域即为反函数的定义域,再得到y=f (x )的反函数.【解答】:解:因为y=x 2(x≤0),所以x=- √y ,又因原函数的值域是{y|y≥0},所以已知函数f (x )=x 2(x≤0),则y=f (x )的反函数为 f −1(x )=−√x (x ≥0) .故答案为: f −1(x )=−√x (x ≥0) .【点评】:本题主要考查反函数的求解,解题中一般可通过求原函数的值域的方法求反函数的定义域,同时考查了学生的计算能力,属于基础题.8.(填空题,5分)已知a 、b 都是正数,且(a+1)(b+2)=16,则a+b 的最小值为___ .【正确答案】:[1]5【解析】:直接利用均值不等式求解【解答】:解:∵(a+1)(b+2)=16,∴(a+1)+(b+2) ≥2√( a +1)(b +2) =2× √16 =8,(当且仅当a+1=b+2,即a=3,b=2时取等号)∴a+b≥5,则a+b 的最小值为5,故答案为:5.【点评】:本题考查了均值不等式的应用,属于基础题.9.(填空题,5分)已知log 35= 1a ,5b =7,则用a 、b 的代数式表示log 63105=___ .【正确答案】:[1] b+a+1b+2a【解析】:由换底公式可得出 log 63105=log 3(5×7×3)log 3(7×32) ,然后进行对数的运算即可.【解答】:解:∵ log 35=1a ,5b =7 ,∴ log 63105=log 3(5×7×3)log 3(7×32) = log 35+log 35b +1log 35b +2 = 1a +b a +1b a +2 = b+a+1b+2a . 故答案为: b+a+1b+2a .【点评】:本题考查了对数的换底公式,对数的运算性质,考查了计算能力,属于基础题.10.(填空题,5分)当|lga|=|lgb|,a<b时,则a+3b的取值范围是___ .【正确答案】:[1](4,+∞)【解析】:利用对数函数的性质,判断a,b是大小,得到关系式,然后求解a+2b的取值范围.【解答】:解:|lga|=|lgb|,a<b时,|lga|=|lgb|,lga+lgb=0=lg(ab),∴ab=1,a,b>0,所以a+3b=a+ 3 a ,令f(a)=a+ 3a,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+ 31=4,即a+3b的取值范围是(4,+∞).故答案为:(4,+∞).【点评】:本题考查了函数与方程的应用、对数运算性质,考查了推理能力与计算能力,属于基础题.11.(填空题,5分)如图所示,已知函数f(x)=log24x图象上的两点A、B和函数f(x)=log2x上的点C,线段AC平行于y轴,三角形ABC为正三角形时,设点B的坐标为(p,q),则2qp的值为___ .【正确答案】:[1]4【解析】:直接利用点B在函数f(x)上,得到p和q的关系式,再利用对数式与指数式的互化即可得到答案.【解答】:解:根据题意,因为点B(p,q)在函数f(x)=log24x上,又f(x)=2+log2x,所以2+log2p=q,所以p=2q-2,即4p=2q ,所以 2q p 的值为4.故答案为:4.【点评】:本题考查了指数函数与对数函数的图象与性质的应用,涉及了指数与对数的运算,解题的关键是将点B 代入f (x )得到p 和q 的关系,属于基础题.12.(填空题,5分)已知函数 f (x )={2−|x |,x ≤2(x −2)2,x >2,函数g (x )=b-f (2-x ),如果y=f (x )-g (x )恰好有两个零点,则实数b 的取值范围是___ .【正确答案】:[1] {74}∪(2,+∞)【解析】:根据f (x )的解析式,先求出f (2-x )的解析式,进而求得y=f (x )+f (2-x )的解析式,然后将问题转化为函数y=f (x )+f (2-x )与函数y=b 的图象恰有两个交点,作出两个函数的图象,根据图象分析求解即可.【解答】:解:函数 f (x )={2−|x |,x ≤2(x −2)2,x >2, 则函数 f (2−x )={2−|2−x |,x ≥0x 2,x <0 , 故函数 y =f (x )+f (2−x )={2−|x |+x 2,x <02−|x |+2−|2−x |,0≤x ≤2(x −2)2+2−|2−x |,x >2,即 y =f (x )+f (2−x )={x 2+x +2,x <02,0≤x ≤2x 2−5x +8,x >2,因为函数g (x )=b-f (2-x ),且y=f (x )-g (x )恰好有两个零点,等价于f (x )+f (2-x )=b 恰有两个根,即函数y=f (x )+f (2-x )与函数y=b 的图象恰有两个交点,因为 y =x 2+x +2=(x +12)2+74 且 y =x 2−5x +8=(x −52)2+74 , 所以函数y=f (x )+f (2-x )的最低点的纵坐标为 74 ,作出函数y=f (x )+f (2-x )和y=b 的图象如图所示,由图象可知,当b= 74 或b >2时,两个函数图象有两个交点,即y=f (x )-g (x )恰好有两个零点,}∪(2,+∞).所以实数b的取值范围是{74}∪(2,+∞).故答案为:{74【点评】:本题考查了函数零点与方程根的关系,涉及了分段函数的应用,对于分段函数一般选用分类讨论或是数形结合的方法进行研究,而对于函数零点问题,则一般会转化为两个函数图象的交点进行处理,解题的关键是作出函数y=f(x)+f(2-x)的图象,属于中档题.13.(单选题,5分)函数f(x)= lg|x|的大致图象为()x2A.B.C.D.【正确答案】:D【解析】:根据函数的奇偶性和函数的单调性,即可判断函数的图象.【解答】:解:∵f (-x )= lg|x|x 2=f (x ),且定义域关于原点对称, ∴函数f (x )为偶函数,即函数f (x )的图象关于y 轴对称,故排除A ,B当x >1是函数y=lg|x|为增函数,当0<x <1时,函数y=lg|x|为减函数, 当x >0,函数y= 1x 2 为减函数,故函数f (x )在(0,1)上为增函数,在(1,+∞)为减函数, 故图象为先增后减,故排除C , 故选:D .【点评】:本题主要考查了函数的图象的识别,关键是掌握函数的奇偶性和函数的单调性,属于基础题.14.(单选题,5分)若函数 f (x )=x 2+a−1e x是偶函数,则实数a 的值是( )A.-1B.0C.1D.不唯一 【正确答案】:C【解析】:根据题意,由偶函数的定义可得f (-x )=f (x ),即x 2+ a−1e x =(-x )2+ a−1e (−x ) ,变形可得答案.【解答】:解:根据题意,函数 f (x )=x 2+a−1e x是偶函数, 则f (-x )=f (x ),即x 2+ a−1e x =(-x )2+ a−1e (−x ) , 变形可得:(a-1)(e x -e -x )=0恒成立,必有a=1, 故选:C .【点评】:本题考查函数奇偶性的性质以及应用,注意函数奇偶性的定义,属于基础题. 15.(单选题,5分)已知cos170°=m ,则tan10°的值为( ) A.√1−m 2m B. −√1−m 2mC.√1−m 2D. √1−m 2【正确答案】:B【解析】:由已知利用同角三角函数基本关系式可求sin170°= √1−m 2 ,进而根据诱导公式,同角三角函数基本关系式化简所求即可得解.【解答】:解:因为cos170°=m , 所以sin170°= √1−m 2 , 则tan10°= sin10°cos10° = sin170°−cos170° = √1−m 2−m =- √1−m 2m. 故选:B .【点评】:本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.16.(单选题,5分)已知n <m ,函数 f (x )={log 12(1−x ),−1≤x ≤n 22−|x−1|−3,n <x ≤m 的值域是[-1,1],有下列结论:① 当n=0时, m ∈(12,2] ; ② 当 n ∈[0,12) 时,m∈(n ,2]; ③ 当 n ∈[0,12) 时,m∈[1,2]; ④ 当 n =12 时, m ∈(12,2] . 其中正确结论的序号是( ) A. ① ② B. ① ③ C. ② ③ D. ③ ④ 【正确答案】:D【解析】:先研究函数的性质,求出函数值为±1时对应x 的值,再根据函数的单调性对四个结论进行判断,找出使得值域是[-1,1]结论,即可得出答案.【解答】:解: y =log 12(1−x ) 是增函数,且当x=-1时,y=-1,x= 12时,y=1,y=22-|x-1|-3= {23−x −3,x ≥12x+1−3,x <1 ,当x=1时,y=1,x=2时,y=-1,x=0时,y=-1,且当x <1时,函数y=22-|x-1|-3是增函数,x >1时,函数y=22-|x-1|-3是减函数,当n=0时,最大值1必在x >n 时取到,即m 的值必须保证自变量x 可以取到1,故m≥1,故 m ∈(12,2] 错误, ① 不正确;② 当 n ∈[0,12) 时,此范围中n=0存在,故此时m≥1,故m∈(n ,2]错误, ② 不正确; ③ 由 ① 知,当 n ∈[0,12) 时,m∈[1,2],故 ③ 正确;④ 当 n =12 时,此时 y =log 12(1−12) =1,此时在-1≤x≤n 时,-1≤y≤1,故此时 m ∈(12,2] ,可保证函数 f (x )={log 12(1−x ),−1≤x ≤n22−|x−1|−3,n <x ≤m 的值域是[-1,1],故 ④ 正确.故选:D .【点评】:本题考查命题真假的判断与应用,分段函数的性质,本题综合性强,思维量大,研究清楚函数的性质是解答的关键. 17.(问答题,12分)(1)已知 f (α)=cos (π+α)tan (π−α)cot (−α)sin (2π+α) ,求 f (π3) 的值;(2)已知 tanθ=12 ,求sin 2θ+sinθcosθ-cos 2θ的值.【正确答案】:【解析】:(1)利用诱导公式,同角三角函数基本关系式化简可得f (α)=-tanα,根据特殊角的三角函数值即可求解.(2)根据同角三角函数基本关系式即可化简求解.【解答】:解:(1)因为 f (α)=cos (π+α)tan (π−α)cot (−α)sin (2π+α) = − cosα(−tanα)−cotαsinα=-tanα, 所以 f (π3) =-tan π3 =- √3 ;(2)因为 tanθ=12 , 所以sin 2θ+sinθcosθ-cos 2θ= sin 2θ+sinθcosθ−cos 2θsin 2θ+cos 2θ = tan 2θ+tanθ−1tan 2θ+1 = 14+12−114+1= −15 .【点评】:本题考查运用诱导公式化简求值,考查同角三角函数间的关系式的应用,属于基础题.18.(问答题,12分)设函数 f (x )=a•e x −11+e x(a ∈R ) 是R 上的奇函数.(1)求a 的值,并求函数f (x )的反函数f -1(x )解析式; (2)若k 为正实数,解关于x 的不等式 f −1(x )>ln 1+xk.【正确答案】:【解析】:(1)根据奇函数在x=0处有意义可得f (0)=0,然后求出a 的值,再求出f (x )的反函数;(2)根据对数函数的单调性建立不等关系,分0<k <2和k≥2两种情况,解不等式即可.【解答】:解:(1)因为函数 f (x )=a•e x −11+e x(a ∈R ) 是R 上的奇函数.所以f (0)=a−12=0 ,解得a=1,设y=f (x )=e x −11+e x,则 e x =1+y1−y,所以 x =ln (1+y1−y) , 所以函数f (x )的反函数 f −1(x )=ln 1+x1−x ,x∈(-1,1); (2)由 f −1(x )>ln 1+x k ,可得 ln 1+x 1−x >ln 1+xk,x∈(-1,1), 则1+x 1−x >1+x k ,所以 11−x >1k且k >0,所以1-x <k ,所以x >1-k ,① 若-1<1-k <1,即0<k <2,则原不等式的解集为(1-k ,1), ② 若1-k≤-1,即k≥2,则原不等式的解集为(-1,1).【点评】:本题主要考查反函数的求解,利用函数的奇偶性求参数值和对数不等式的解法,同时考查了学生的计算能力,属于中档题.19.(问答题,14分)某校数学建模小组研究发现:在40分钟的一节课中,高一年级学生注意力指标S 与学生听课时间t (单位:分钟)之间的函数关系为 S ={−14t 2+6t +46,0<t ≤1383−log 3(t −5),13<t ≤40. (1)在上课期间的前13分钟内(包括第13分钟),求注意力的最大指标;(2)根据研究结果表明,当注意力指标大于80时,学生的学习效果最佳,现有一节40分钟课,其核心内容为连续的20分钟,问:教师是否能够安排核心内容的时间段,使得学生在核心内容的这段时间内,学习效果均在最佳状态?【正确答案】:【解析】:(1)直接利用二次函数求最值即可;(2)分段求出满足S≥80的t 的范围,取并集求得学生的学习效果最佳时间,再与20比较即可得出结论.【解答】:解:(1)当0<t≤13时,S= −14t 2+6t +46 , ∴当t=-62×(−14)=12时,S 的值最大,最大值为82;(2)当0<t≤13时,令S=- 14 t 2+6t+46>80,解得12-2 √2 <t <12+2 √2 , ∴t∈(12-2 √2 ,13],当13<t≤40时,令83-log 3(t-5)>80,解得5<t <32,∴t∈(13,32), ∴t∈(12-2 √2 ,32),∵32-(12-2 √2 )=20+2 √2 >20,∴教师能够安排核心内容的时间段,使得学生在核心内容的这段时间内,学习效果均在最佳状态.【点评】:本题主要考查了函数的实际运用,考查分段函数最值的求法与不等式的解法,考查运算求解能力,是中档题.20.(问答题,16分)已知幂函数 f (x )=x −2m 2+m+3(m ∈Z ) 是奇函数,且f (x )在(0,+∞)为严格增函数.(1)求m 的值,并确定f (x )的解析式;(2)求 y =log 22f (x )−log 12[2f (x )], x ∈[12,2] 的最值,并求出取得最值时的x 取值.【正确答案】:【解析】:(1)由题意利用幂函数的定义和性质,可得-2m2+m+3 为奇数,且-2m2+m+3>0,由此求得m的值.(2)令log2f(x)=t= log2x3,则t∈[-3,3],函数y=t2+t+1= (t+12)2+ 34,再利用二次函数的性质,求出它的最值.【解答】:解:(1)∵幂函数f(x)=x−2m2+m+3(m∈Z)是奇函数,且f(x)在(0,+∞)为严格增函数,∴-2m2+m+3 为奇数,且-2m2+m+3>0,求得-1<m<32,且-2m2+m+3 为奇数.∴m=0,f(x)=x3.(2)令log2f(x)= log2x3 =t,则log12f(x) = log21f(x)=-log2f(x)=-t,y=t2+t+1.∵ x∈[12,2],∴t∈[-3,3],函数y=t2+t+1= (t+12)2+ 34,故当t=- 12时,此时,x= 2−16,函数y取得最小值为34,当t=3时,即x=2时,函数y取得最大值为 13.【点评】:本题主要考查幂函数的定义和性质,对数函数的性质应用,属于中档题.21.(问答题,16分)已知函数f(x)=2x(x∈R),记g(x)=f(x)-f(-x).(1)解不等式:f(2x)-2f(x)≤3;(2)设t为实数,若存在实数x0∈(1,2],使得g(2x0)=t•g2(x0)-1成立,求t的取值范围;(3)记H(x)=f(2x+2)+af(x)+b(其中a、b均为实数),若对于任意的x∈[0,1],均有|H(x)|≤ 12,求a、b的值.【正确答案】:【解析】:(1)函数f(x)=2x(x∈R),将f(2x)-2f(x)≤3转化为22x-2x-6≤0,然后利用一元二次不等式的解法以及指数不等式的解法求解即可;(2)根据g(2x0)=t•g2(x0)-1成立,利用换元法k=2x0−2−x0,转化为存在实数k∈(3 2,154],使得1+k√k2+4=tk2成立,再设m=1k2,m∈[16225,49),转化为求解函数y=m+√4m+1的求值范围,即可求得t的取值范围;(3)根据H(x)=f(2x+2)+af(x)+b的解析式,令v=2x,将问题转化为对任意v∈[1,2],均有|φ(v)|= |4v2+av+b|≤12,列出关于a,b的关系,求解即可.【解答】:解:(1)因为函数f(x)=2x(x∈R),所以不等式f(2x)-2f(x)≤3,即为22x-2x-6≤0,即(2x+2)(2x-3)≤0,解得0<2x≤3,所以x≤log23,故不等式f(2x)-2f(x)≤3的解集为(-∞,log23];(2)存在实数x0∈(1,2],使得g(2x0)=t•g2(x0)-1成立,即存在实数x0∈(1,2],使得1+22x0−2−2x0=t(2x0−2−x0)2成立,令k=2x0−2−x0,因为k在(1,2]上单调递增,所以k∈(32,154],又(2x0+2−x0)2=22x0+2−2x0+2=t2+4,则有存在实数k∈(32,154],使得1+k√k2+4=tk2成立,则t=1k2+√4k2+1,设m=1k2,m∈[16225,49),即有y=m+√4m+1在m∈[16225,49)上单调递增,所以y∈[271225,199),故t的取值范围为[271225,199);(3)H(x)=f(2x+2)+af(x)+b=22x+2+a•2x+b=4•(2x)2+a•2x+b,令v=2x,因为x∈[0,1],所以v∈[1,2],所以φ(v)=4v2+av+b,因为若对于任意的x∈[0,1],均有|H(x)|≤ 12,则对任意v∈[1,2],均有|φ(v)|= |4v2+av+b|≤12,所以 { |4+a +b |≤12①|16+2a +b |≤12②|16b−a 216|≤12③ ,由 ① ② ③ 解得a=-12,b= 172.【点评】:本题考查了函数与方程的综合运用,涉及了函数与不等式的综合应用,解题的关键是利用换元法将复杂函数转化为常见函数进行研究,属于难题.。

2020-2021学年上海市上海中学高一上学期12月月考数学试题(解析版)

2020-2021学年上海市上海中学高一上学期12月月考数学试题(解析版)

2020-2021学年上海市上海中学高一上学期12月月考数学试题一、单选题1.已知()y f x =在区间I 上是严格增函数,且12,x x I ∈,则12x x <是()()12f x f x ≤( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【答案】A【分析】由增函数的定义知:12,x x I ∈且12x x <时21()()f x f x >,即可判断条件之间的充分、必要性.【详解】由()y f x =在区间I 上是严格增函数, ∴12,x x I ∈,12x x <时,2121()()0f x f x x x ->-,∴21()()0f x f x ->,即21()()f x f x >, 故12x x <是()()12f x f x ≤充分非必要条件. 故选:A.2.设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是 A .q r p =< B .q r p => C .p r q =< D .p r q =>【答案】C【详解】ln p f ==()ln 22a b a bq f ++==,11(()())ln 22r f a f b ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b +>()2a bf f +>,所以q p r >=,故选C . 【考点定位】1、基本不等式;2、基本初等函数的单调性.3.若a b 、是满足0ab <的实数,那么下列结论中成立的是( )A .a b a b -<-B .a b a b -<+C .a b a b +>-D .a b a b +<- 【答案】D【分析】利用特殊值法判断即可. 【详解】令1,2a b =-=, 则3||||3a b a b -=>-=-,||||3a b a b -=+=,||1||3a b a b +=<-=,故选:D【点睛】本题主要考查了绝对值不等式的大小比较,特殊值法,属于容易题. 4.关于函数()1x f x x =-,给出以下四个命题:(1)当0x >时,()y f x =单调递减且没有最值; (2)方程()(0)f x kx b k =+≠一定有实数解;(3)如果方程()f x m =(m 为常数)有解,则解的个数一定是偶数; (4)()y f x =是偶函数且有最小值. 其中正确的命题个数为( ) A .1 B .2C .3D .4【答案】B【分析】由函数解析式可推出()y f x =是偶函数,在(,1)-∞-、(0,1)上单调递增,在(1,0)-、(1,)+∞上单调递减,且()0f x ≥恒成立,即可判断各项的正误.【详解】函数()1xf x x =-是偶函数,当0x >时,()y f x =在(0,1)上单调递增,在(1,)+∞上单调递减,且()0f x ≥恒成立,可得函数草图如下:(1)当1x >时,1()111x y f x x x ===+--单调递减,当01x <<时,1()111x y f x x x ==-=----单调递增,故错误; (2)当0k >时,函数()y f x =与函数y kx b =+的图像一定有交点,由对称性可知,当0x <且0k <时,函数()y f x =与函数y kx b =+的图像也一定有交点,故正确; (3)当0m =时,方程()f x m =只有1个解0x =,故错误; (4) 由对称性知,()y f x =有最小值(0)0f =,故正确; 故选:B【点睛】关键点点睛:根据函数解析式确定单调区间,奇偶性以及值域,进而结合各项的描述判断正误,注意一次函数的性质和函数对称性的应用.二、填空题5.设全集U =R ,集合{1,2,3,4}A =,{23}B xx =≤<∣,则A B =___________【答案】{1,3,4}【分析】根据集合交补含义可得.【详解】因为{23}B x x =≤<∣,()[),23,B =-∞+∞,{}134A B =,,.故答案为: {1,3,4}【点睛】此题为基础题,考查集合的运算. 6.幂函数()af x x =的图像经过点12,2⎛⎫⎪⎝⎭,则()3f =______.【答案】13【分析】根据幂函数所过的点,代入可求得幂函数解析式,即可求得()3f 的值. 【详解】幂函数()af x x =的图像经过点12,2⎛⎫ ⎪⎝⎭代入可得122a = 解得1a =-所以幂函数解析式为()1f x x -=则()11333f -==故答案为:13【点睛】本题考查了幂函数解析式的求法,函数求值,属于基础题.7.不等式2(2)03x x x +≥-的解集为________.【答案】{}(,2]0(3,)-∞-+∞【分析】由分式不等式的解法,有2(2)(3)030x x x x ⎧+-≥⎨-≠⎩求解即可.【详解】由题意,有2(2)(3)030x x x x ⎧+-≥⎨-≠⎩,解得2x -≤或0x =或3x >,∴解集为{}(,2]0(3,)-∞-+∞. 故答案为:{}(,2]0(3,)-∞-+∞.8.已知“2(22)(2)0x a x a a -+++≤”是“231x +<”的必要非充分条件,则实数a 的取值范围是________ 【答案】[]3,2--【分析】先由一元二次不等式以及绝对值不等式的解法化简,再结合必要非充分条件的性质,列出不等式,得出答案.【详解】由|23|1x +<得1231x -<+<,解得21x -<<-由2(22)(2)0x a x a a -+++≤得(2)()0x a x a ---≤,解得2a x a ≤≤+因为“2(22)(2)0x a x a a -+++≤”是“231x +<”的必要非充分条件所以221a a ≤-⎧⎨+≥-⎩,解得32a --≤≤故答案为:[]3,2--9.已知()f x 为R 上的奇函数,且当0x ≥时,()32xf x x b =++,则()1f -=________.【答案】2-【分析】由R 上的奇函数,有(0)0f =求参数b ,进而求()1f ,又()1(1)f f -=-即可求值.【详解】由()f x 为R 上的奇函数,有(0)0f =, ∴根据函数解析式,有0(0)020f b =++=,即1b =-, ∴()321xf x x =+-,则()311212f =+-=,∴()1(1)2f f -=-=-. 故答案为:2-. 10.若a()2log 21a a +的值是________.【答案】1- 【分析】(1,2)=,即可得a =数运算的性质求值即可. 【详解】(1,2)=,知:1a =-=,即2a =,1212a +==∴()2log 211a a +==-=-. 故答案为:1-.11.已知关于x 的方程221(1)104x k x k -+++=有两个实数根1x 、2x ,若2212126x x x x +=-15,则k 的值为________【答案】4【分析】将2212126x x x x +=-15,变形为()21212815x x x x +=-,根据方程221(1)104x k x k -+++=有两个实数根1x 、2x ,得到212121+1,14x x k x x k =+⋅=+,再代入上式求解.【详解】因为方程221(1)104x k x k -+++=有两个实数根1x 、2x , 所以212121+1,14x x k x x k =+⋅=+, 因为2212126x x x x +=-15, 所以()21212815x x x x +=-,()221181154k k ⎛⎫+=⨯+- ⎪⎝⎭,即()()240k k +-=, 解得4k =或2k =-(舍去) 故答案为:412.若函数()()211f x mx m x =+--在区间[1,)-+∞上是严格单调函数,则实数m的取值范围是________. 【答案】[]1,0-【分析】讨论0m =、0m ≠,并结合二次函数的性质,列不等式求参数范围,合并不同情况的m 取值即可.【详解】当0m =时,()1f x x =--在[1,)-+∞上是严格单调函数,符合题意;当0m ≠时,()221(1)()24m m f x m x m m-+=+-, ∴112m m -≤-,即102mm+≤,可得10m -≤<, 综上,有10m -≤≤. 故答案为:[]1,0-.13.若函数()2()lg 1f x ax ax =-+的定义域为R ,则实数a 的取值范围为__________. 【答案】[)0,4【分析】转化条件为无论x 取何值,210ax ax -+>恒成立,按照a =0、0a ≠分类,即可得解.【详解】由题意,无论x 取何值,210ax ax -+>恒成立,当a =0时,10>恒成立,符合题意;当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,[)0,4a ∈. 故答案为:[)0,4.14.已知{||1|}A x x a =-≤,若A 只有1个整数元素,则实数a 的取值范围是________ 【答案】[0,1)【分析】解绝对值不等式得{|11}A x a x a =-≤≤+,且0a ≥,结合条件可得1A ∈,进而得011112a a <-≤⎧⎨≤+<⎩,从而得解.【详解】由{||1|}A x x a =-≤得{|1}{|11}A x a x a x a x a =-≤-≤=-≤≤+,且0a ≥ 若A 只有1个整数元素,又111a a -≤≤+,所以1A ∈,所以011112a a <-≤⎧⎨≤+<⎩,解得01a ≤<. 故答案为:[0,1).15.设a R ∈,若关于x 的不等式2236x x a a --+<-有解,则a 的取值范围是________. 【答案】(,1)(5,)-∞+∞【分析】令()|2||3|f x x x =--+并得到其分段函数形式,由题设不等式有解,即2min 6()a a f x ->即可,解一元二次不等式即可求a 的范围.【详解】由235,3()|2||3|2321,32235,2x x x f x x x x x x x x x x -++=≤-⎧⎪=--+=---=---<≤⎨⎪---=->⎩,∴要使不等式2236x x a a --+<-有解,仅需2min 6()5a a f x ->=-即可,∴2650a a -+>,解得1x <或5x >. 故答案为:(,1)(5,)-∞+∞.16.已知()f x 是定义域为R 的单调函数,且对任意实数x ,都有32()415x f f x ⎡⎤+=⎢⎥+⎣⎦,则()2log 3f =________. 【答案】710【分析】令02()5f x =,由题意知0001()41x x f x =++,可求出0x ,又22log 332[(log 3)]415f f +=+,即有023(log 3)10x f =+,进而可求()2log 3f . 【详解】若02()5f x =,则0032[()]415x f f x +=+,又()f x 是定义域为R 的单调函数,∴0032415x x -=+,得01x =, 又222log 3332[(log 3)][(log 3)]41105f f f f +=+=+, ∴023(log 3)110x f =+=,则()27log 310f =. 故答案为:710. 【点睛】关键点点睛:利用函数的单调性,以及恒等式成立,求02()5f x =时的0x 值,再利用恒等式求目标函数值.三、解答题17.已知函数()|2|f x x a a =-+.(1)当a=2时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 【答案】(1){|13}x x -≤≤;(2)[2,)+∞. 【详解】试题分析:(1)当2a =时⇒()|22|2f x x =-+⇒|22|26x -+≤⇒13x -≤≤;(2)由()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+⇒()()3f x g x +≥等价于|1|3a a -+≥,解之得2a ≥.试题解析: (1)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤,得13x -≤≤. 因此,()6f x ≤的解集为.(2)当x ∈R 时,()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+,当12x =时等号成立, 所以当x ∈R 时,()()3f x g x +≥等价于|1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥. 所以a 的取值范围是[2,)+∞. 【解析】不等式选讲.18.设0a >,0b >,且11a b a b+=+. 证明:(1) 2a b +≥;(2) 22a a +<与22b b +<不可能同时成立. 【答案】(1)见解析. (2)见解析.【详解】试题分析:本题考查基本不等式和反证法,结合转化思想证明不等式,意在考查考生对基本不等式的掌握和反证法的应用.(i)构造基本不等式求出代数式的最值,直接证明不等式成立;(ii)直接证明较难,假设两个不等式同时成立,利用(i)的结论,得出矛盾,则假设不成立. 试题解析: 由11a b a b a b ab++=+=,0,0a b >>,得1ab =. (1)由基本不等式及1ab =,有22a b ab +≥=,即2a b +≥(2)假设22a a +<与22b b +<同时成立,则由22a a +<及a>0得0<a<1;同理得0<b<1,从而ab<1,这与ab=1矛盾. 故22a a +<与22b b +<不可能同时成立.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 19.已知函数()33xxf x a -=-⋅,其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =; (2)判断函数()f x 的奇偶性,并说明理由.【答案】(1)1x =或3log 2(2)当1a =时,函数为奇函数,当1a =-时,函数为偶函数,当1a ≠±时,函数为非奇非偶函数,见解析【分析】(1)根据()07f =,代入可求得a 的值.即可得()f x 的解析式,进而得方程.解指数形式的二次方程,即可求得解.(2)表示出()f x -.根据奇偶性定义即可求得a 的值,即可判断奇偶性. 【详解】(1)因为()07f = 代入可得17a -=,解得6a =- 所以()363xxf x -=+⋅则()5f x =可化为3635x x -+⋅= 化简可得()235360x x -⋅+=即()()32330xx--= 解得3log 2x =或1x = (2)()33xxf x a -=-⋅则()33xxf x a --=-⋅当1a =时,()33xxf x -=-,()33xx f x --=-此时()()f x f x =--,函数()f x 为奇函数当1a =-时,()33x x f x -=+,()33x x f x --=+,此时()()f x f x =-,函数()f x 为偶函数当1a ≠±时,()()f x f x =--与()()f x f x =-都不能成立,所以函数()f x 为非奇非偶函数综上可知, 当1a =时,()f x 为奇函数;当1a =-时,()f x 为偶函数;当1a ≠±时, 函数()f x 为非奇非偶函数.【点睛】本题考查了指数方程的解法,利用奇偶性定义判定函数奇偶性,属于基础题. 20.小张在淘宝网上开一家商店,他以10元每条的价格购进某品牌积压围巾2000条.定价前,小张先搜索了淘宝网上的其它网店,发现:A 商店以30元每条的价格销售,平均每日销售量为10条;B 商店以25元每条的价格销售,平均每日销售量为20条.假定这种围巾的销售量t (条)是售价x (元)x Z +∈()的一次函数,且各个商店间的售价、销售量等方面不会互相影响.(1)试写出围巾销售每日的毛利润y (元)关于售价x (元)x Z +∈()的函数关系式(不必写出定义域),并帮助小张定价,使得每日的毛利润最高(每日的毛利润为每日卖出商品的进货价与销售价之间的差价);(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润-总管理、仓储等费用)?【答案】(1)2=290700y x x -+-;定价为22元或23元(2)25元【分析】(1)根据题意先求出销售量t 与售价x 之间的关系式,再利用毛利润为每日卖出商品的进货价与销售价之间的差价,确定毛利润y (元)关于售价x (元)x Z +∈()的函数关系式,利用二次函数求最值的方法可求;(2)根据总利润=总毛利润-总管理、仓储等费用,构建函数关系,利用基本不等式可求最值.【详解】设t kx b =+,∴3010{ 2520k b k b ⋅+=⋅+=,解得2k =-,b=70,∴702t x =-. (1)21010702290700y x t x x x x =-=--=-+-()()(), ∵9012242=+,∴围巾定价为22元或23元时,每日的利润最高. (2)设售价x (元)时总利润为z (元),∴2000200010200702z x x=---() ,1002000?25352000251000035x x =--+≤-=-((()))( 元, 当1003535x x-=-时,即25x =时,取得等号, ∴小张的这批围巾定价为25元时,这批围巾的总利润最高.【点睛】本题以实际问题为载体,考查二次函数模型的构建,考查配方法求最值及基本不等式求最值,关键是函数式的构建.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答. 21.已知函数||()x a f x x -=(0)a >,且满足1()12f =. (1)判断函数()f x 在(1,)+∞上的单调性,并用定义证明;(2)设函数()()f x g x x =,求()g x 在区间1[,4]2上的最大值; (3)若存在实数m ,使得关于x 的方程222()||20x a x x a mx ---+=恰有4个不同的正根,求实数m 的取值范围.【答案】(1)见解析(2) 1=2x 时,max ()=2g x . (3) 1(0,)16【详解】试题分析:(1)根据112f ⎛⎫=⎪⎝⎭确定a.再任取两数,作差,通分并根据分子分母符号确定差的符号,最后根据定义确定函数单调性(2)先根据绝对值定义将函数化为分段函数,都可化为二次函数,再根据对称轴与定义区间位置关系确定最值,最后取两个最大值中较大值(3)先对方程变形得()()2220f x f x m -+=,设()t f x =,转化为方程方程2220t t m -+=在()0,1有两个不等的根12,t t ,根据二次函数图像,得实根分布条件,解得实数m 的取值范围. 试题解析:(1) 由112=1122a f -⎛⎫= ⎪⎝⎭,得1a =或0. 因为0a >,所以1a =,所以()|1|x f x x -=. 当1x >时,()11=1x f x x x-=-,任取()12,1,x x ∈+∞,且12x x <,则()()()()1221121212121111=x x x x x x f x f x x x x x ------=- ()()1221221211=x x x x x x --- 1212=x x x x -, 因为121x x <<,则1212<0,0x x x x ->,()()120f x f x -<, 所以()f x 在()1,+∞上为增函数;(2)()()2221,141==11,12x x f x x x g x x x x x x -⎧≤≤⎪-⎪=⎨-⎪≤<⎪⎩, 当14x ≤≤时,()222111111=24x g x x x x x -⎛⎫==---+ ⎪⎝⎭, 因为1114x ≤≤,所以当11=2x 时,()max 1=4g x ; 当112x ≤<时,()222111111=24x g x x x x x -⎛⎫==--- ⎪⎝⎭, 因为112x ≤<时,所以112x <≤,所以当1=2x时,()max =2g x ; 综上,当1=2x 即1=2x 时,()max =2g x . (3)由(1)可知,()f x 在()1,+∞上为增函数,当()1,x ∈+∞时,()()1=10,1f x x -∈. 同理可得()f x 在()0,1上为减函数,当()0,1x ∈时,()()1=10,f x x -∈+∞. 方程()2221120x x x mx ---+=可化为221|1|220x x m x x---+=, 即()()2220f x f x m -+=.设()t f x =,方程可化为2220t t m -+=. 要使原方程有4个不同的正根,则方程2220t t m -+=在()0,1有两个不等的根12,t t ,则有211602021120m m m ->⎧⎪>⎨⎪⨯-+>⎩,解得1016m <<, 所以实数m 的取值范围为10,16⎛⎫ ⎪⎝⎭.。

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。

高一数学上学期期末试卷含答案

高一数学上学期期末试卷含答案

高一数学上学期期末试卷含答案一、选择题1.设全集{0,1,2,3,4}U =,集合{21}A x U x =∈-≥‖∣则UA( )A .{13}xx <<∣ B .{13}xx ≤≤∣ C .{2}D .{}1,2,3-2.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],3.若角β满足条件sin cos 0ββ<,且cos sin 0ββ-<,则β是第( )象限角 A .一B .二C .三D .四4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P --,则2sin sin 2αα+=( )A .58B .85C D5.已知函数()ln 3f x x x =+-,则()f x 的零点所在的大致区间为( ) A .()0,1B .()1,2C .()2,3D .()3,46.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +==( )A .2B .4C .D .7.若()f x 是奇函数,且在区间(0,)+∞上是增函数,(2)0f =,则2()0xf x ->的解集是( )A .(2,0)(0,2)-B .(,2)(0,2)-∞-⋃C .(,2)(2,)-∞-+∞D .(2,0)(2,)-+∞8.已知函数3cos 2y x ππ⎛⎫=+⎪⎝⎭,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭既有最小值也有最大值,则实数t 的取值范围是( )A .31326t <≤ B .32t >C .31326t <≤或52t > D .52t >二、填空题9.已知函数()f x 满足(3)()f x f x +=,且(1)2f =,则下列结论正确的是( ) A .()11f -= B .(0)0f = C .(4)2f = D .(10)2f = 10.21x ≤的一个充分不必要条件是( )A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+ 12.记函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象为曲线F ,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增C .曲线F 关于直线12x π=-对称D .将函数sin 2y x =的图象向右平移3π个单位长度,得到曲线F 三、多选题13.设集合{}260,M xx mx x R =-+=∈∣,且{2,3}M M =,则实数m 的取值范围是____.14.已知实数x 、y ,正数a 、b 满足2x y a b ==,且213x y +=-,则1a b-的最小值为_________.15.已知函数f (x )=2x ,1()()()g x f x f x =-,若1()(2)()(2)h x f x tg x f x =++(t 为实数)在(0,+∞)上有两个不同的零点x 1、x 2,则x 1+x 2的取值范围为_______16.如图,直线l 是函数y x =的图象,曲线C 是函数12log y x =图象,1P 为曲线C 上纵坐标为1的点.过1P 作y 轴的平行线交l 于2,Q 过2Q 作y 轴的垂线交曲线C 于2P ;再过2P 作y 轴的平行线交l 于点Q 3,过Q 3作y 轴的垂线交曲线C 于3P ;…设点123,,,,P P P n P 的横坐标分别为123,,,,.n x x x x 若201812log ,x a =则2020x =_____(用a 表示)四、解答题17.在“①A B =∅,②A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤. (Ⅰ)若0a =,求A B ;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答记分.18.设函数()y f x =的表达式为()()2cos cos 3244f x x x x ππωωω⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,其中常数0>ω.(1)求函数()y f x =的值域; (2)设实数1x ,2x 满足122x x ππω-=<,若对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,求ω的值以及方程1f x 在闭区间[]0,π上的解.19.已知函数3()1f x x =-. (1)画出函数的草图,并用定义证明函数的单调性; (2)若[]2,7x ∈,求函数的最大值和最小值. 20.如图,现有一块半径为2m ,圆心角为3π的扇形木板,按如下方式切割一平行四边形:在弧AB 上任取一点P (异于A 、B ),过点P 分别作PC 、PD 平行于OB 、OA ,交OA 、OB 分别于C 、D 两点,记AOP α∠=.(1)当点P 位于何处时,使得平行四边形OCPD 的周长最大?求出最大值;(2)试问平行四边形OCPD 的面积是否存在最大值?若存在,求出最大值以及相应的α的值;若不存在,请说明理由.21.已知函数()xf x a =(0a >,且1a ≠).(1)证明:()()()1212222f x f x f x x +≥+;(2)若()12f x =,()23f x =,()128f x x =,求a 的值; (3)x ∀∈R ,()212xx f x -+≤恒成立,求a 的取值范围.22.已知{0M x R x =∈≠且}1x ≠,()(1,2)n f x n =是定义在M 上的一系列函数,满足:1()f x x =,()11()i i x f x f i N x ++-⎛⎫=∈ ⎪⎝⎭.(1)求()3f x ,()4f x 的解析式;(2)若()g x 为定义在M 上的函数,且1()1x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()22(21)2(1)()318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.【参考答案】一、选择题 1.C 【分析】先求出集合A ,再根据补集定义即可求出. 【详解】{0,1,2,3,4}U =,{}21={1A x U x x U x ∴=∈-≥∈≤或}{}30,1,3,4x ≥=,{}2U A ∴=.故选:C. 2.A 【分析】先根据函数(1)f x +的定义域为[0 1],,求出112x ≤+≤,再令1lg 2x ≤≤即可求求解. 【详解】因为函数(1)f x +的定义域为[0 1],, 所以112x ≤+≤, 所以1lg 2x ≤≤, 解得:10100x ≤≤,所以(lg )f x 的定义域为[10 100],, 故选:A. 3.B 【分析】由sin cos 0ββ<可知sin ,cos ββ的值异号,再由cos sin 0ββ-<可知sin 0,cos 0ββ><,从而可判断其所在的象限 【详解】解:因为sin cos 0ββ<,所以sin ,cos ββ异号, 因为cos sin 0ββ-<,即cos sin ββ<, 所以sin 0,cos 0ββ><, 所以β是第二象限的角, 故选:B 4.B 【分析】先由正弦、余弦函数的定义得到sinαα==,再求值即可. 【详解】由正弦、余弦函数的定义有sin α==,cos α==, 所以2248sin sin 2sin 2sin cos 2((55ααααα+=+=+⨯⨯=. 故选:B.5.C 【分析】首先判断函数的单调性,再根据零点存在性定理判断. 【详解】ln y x =和3y x =-都是增函数,所以()ln 3f x x x =+-是增函数,()120f =-<,()2ln 2230f =+-<,()3ln3330f =+->,()()230f f <,所以函数()f x 的零点在区间()2,3内. 故选:C 6.C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C 7.A 【分析】由题意,可知2()0xf x ->等价于2()0xf x <,然后结合函数的单调性与奇偶性分别讨论0x >与0x <的两种情况.【详解】由题意,()f x 是奇函数,所以2()0xf x ->等价于2()0xf x <,当0x >时,()0f x <,此时()f x 在(0,)+∞上是增函数,且(2)0f =,所以解得02x <<;当0x <时,()0f x >,因为()f x 是奇函数,所以解得20x -<<,所以2()0xf x ->的解集为(2,0)(0,2)-.故选:A 8.C 【分析】根据题意得到31326t πππ<≤或52t ππ<,计算得到答案. 【详解】3cos sin 2y x x πππ⎛⎫=+= ⎪⎝⎭,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭则55,66x t t πππ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭函数有最小值也有最大值 则3133132626t t πππ<≤∴<≤或5522t t ππ<∴< 故选:C 【点睛】本题考查了三角函数的最值问题,漏解是容易发生的错误.二、填空题9.CD 【分析】根据函数的周期,计算求值. 【详解】由条件()()3f x f x +=,可知函数的周期3T =, 因为()12f =,则()()4102f f ==. 故选:CD 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.AD 【分析】根据不等式的性质及作差法判断即可. 【详解】解:对于A ,()()()()111111b a a b b b b aa a a a a a +-++--==+++0a b >>,所以0a b ->,所以()01b aa a -<+,所以11b b a a +<+,故选项A 一定不成立;对于B ,不妨取2a =,1b =,则11a b a b +>+,故选项B 可能成立; 对于C ,不妨取2a =,1b =,则11a b b a+>+,故选项C 可能成立; 对于D ,222(2)(2)02(2)(2)a b a a b b a a b b a a b b b a b b a b ++-+--==<+++,故22a b aa b b+<+,故选项D 一定不成立; 故选:AD . 12.ABC 【分析】求出周期即可判断A ;由222232k x k πππππ-+≤-≤+求出单调性可判断B ;求出12f π⎛⎫- ⎪⎝⎭即可判断C ;求出sin 2y x =平移后的解析式即可判断D. 【详解】函数()f x 的最小正周期为22ππ=,故A 选项正确; 由222232k x k πππππ-+≤-≤+,解得()51212k x k k ππππ-+≤≤+∈Z ,所以函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 选项正确; 由于sin 2sin 1121232f ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以直线12x π=-是曲线F 的一条对称轴,故C 选项正确:sin 2y x =向右平移3π个单位长度得到2sin 2sin 233y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 选项错误. 故选:ABC.三、多选题13.({}5m ∈-【分析】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,按集合M 中元素的个数,结合根与系数之间的关系,分类讨论即可求解. 【详解】由题意{}2,3MM =,可得M 是集合{}2,3的子集,又{}260,M x x mx x R =-+=∈,当M 是空集时,即方程260x mx -+=无解,则满足()2460m ∆=--⨯<,解得m -<<(m ∈-,此时显然符合题意;当M 中只有一个元素时,即方程260x mx -+=只有一个实数根,此时()2460m ∆=--⨯=,解得m =±x =x ={}2,3的子集中的元素,不符合题意,舍去; 当M 中有两个元素时,则2,3M,此时方程260x mx -+=的解为12x =,23x =,由根与系数之间的关系,可得两根之和为5,故235m =+=;当5m =时,可解得2,3M ,符合题意.综上m 的取值范围为({}5m ∈-.故答案为:({}5m ∈-【点睛】方法点睛:根据集合的运算求参数问题的方法:1、要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;2、若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;3、若集合表示的不等式的解集,常依据数轴转化为不等式(组)求解,此时需要注意端点值是否取到.14.132-【分析】利用指数与对数的互化,换底公式以及对数的运算得出218a b =,可得出218a a a b-=-,利用二次函数的基本性质可求得1a b-的最小值.【详解】已知实数x 、y ,正数a 、b 满足2x y a b ==,则log 2a x =,log 2b y =,由换底公式可得()2222212log log log 3a b a b x y +=+==-,可得218a b =,则218a b=,因为0a >,则22111188163232a a a a b ⎛⎫-=-=--≥- ⎪⎝⎭,当且仅当116a =时,等号成立,因此,1a b -的最小值为132-.故答案为:132-. 【点睛】关键点点睛:本题考查代数式最值的求解,解题的关键就是利用指数与对数的互化、换底公式以及对数的运算得出a 、b 所满足的关系式,再结合函数的基本性质来求解.15.(()2log 2,+∞【分析】通过换元将方程转化为一元二次方程的问题,利用韦达定理建立两根的等量关系,再利用基本不等式建立不等式关系求范围. 【详解】令()0h x =,则221122022xx x xt ⎛⎫++-= ⎪⎝⎭,即211222022x x x x t ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,令122x x m =-,则220m tm ++=,因为函数122x x y =-在()0,∞+单调递增,所以m 与x 一一对应,所以220m tm ++=有两个不相等的实数根12,m m ,由韦达定理知122m m =,所以12121122222x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得1212122112222222x x x x x x x x ++⎛⎫+-+= ⎪⎝⎭,因为12x x ≠,所以122122222x x x x +>,所以121212222x x x x +++->,令1220x x n +=>,则2410n n -+>,解得2n >1222x x +>(122log 2x x +>.故答案为:(()2log 2,+∞. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 16.12a⎛⎫⎪⎝⎭【分析】设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,,所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭,由201812log ,x a =则21log 201912ax a ⎛⎫== ⎪⎝⎭,从而可得答案.【详解】1P 为曲线C 上纵坐标为1的点,则11,12P ⎛⎫⎪⎝⎭ 过1P 作y 轴的平行线交l 于2,Q 则21122Q ⎛⎫⎪⎝⎭,过2Q 作y 轴的垂线交曲线C 于2P ,设2212P x ⎛⎫ ⎪⎝⎭,,则1221log 2x =,则12212x ⎛⎫= ⎪⎝⎭,所以1221122P ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭, 过2P 作y 轴的平行线交l 于3,Q 则112231122Q ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 过3Q 作y 轴的垂线交曲线C 于3P ,设123312P x ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,则121321log 2x ⎛⎫= ⎪⎝⎭,即1212312x ⎛⎫ ⎪⎝⎭⎛⎫= ⎪⎝⎭ 设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,, 所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭由201812log ,x a =则21log 201912ax a ⎛⎫== ⎪⎝⎭所以201920201122a ax ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:12a⎛⎫⎪⎝⎭【点睛】关键点睛:本题考查数列的递推公式的推导,解答本题的关键是先计算出点123,,,P P P 的坐标得出一般的处理方法,再设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,,所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭,属于中档题.四、解答题17.(1){|31}x x -<≤;(2)若选①,(,1][2,)-∞-+∞;若选②,()1,2- 【分析】(1)由0a =得到{|31}A x x =-<<,然后利用并集运算求解.(2)若选A B =∅,分A =∅和A ≠∅两种情况讨论求解; 若选A B ⋂≠∅,则由23123110a a a a -<+⎧⎪-<⎨⎪+>⎩求解. 【详解】(1)当0a =时,{|31}A x x =-<<,{|01}B x x =<≤; 所以{|31}A B x x =-<≤ (2)若选①,A B =∅,当A =∅时,231a a -≥+,解得4a ≥, 当A ≠∅时,4231a a <⎧⎨-≥⎩或410a a <⎧⎨+≤⎩,解得:24a ≤<或1a ≤-,综上:实数a 的取值范围(,1][2,)-∞-+∞. 若选②,A B ⋂≠∅,则23123110a a a a -<+⎧⎪-<⎨⎪+>⎩,即421a a a <⎧⎪<⎨⎪>-⎩,解得:1a 2-<<, 所以实数a 的取值范围()1,2-. 【点睛】易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)[]2,2-;(2)1ω=,0x =或 3x π=或x π=.【分析】(1)先利用三角函数恒等变换公式对函数化简得()2sin 26f x x πω⎛⎫=+ ⎪⎝⎭,从而可求出函数的值域;(2)对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,可得()12f x =-,()22f x =,从而可得112262x k ππωπ+=-,222262x k ππωπ+=+,12,k k Z ∈,再由122x x ππω-=<可求出1ω=,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,然后由1sin 262x π⎛⎫+= ⎪⎝⎭解方程使其解在区间[]0,π上即可【详解】 (1)()()()()2sin cos 22cos 22sin 2446f x x x x x x x πππωωωωωω⎛⎫⎛⎫⎛⎫=--+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()[]2sin 22,26f x x πω⎛⎫=+∈- ⎪⎝⎭,所以函数()y f x =的值域[]2,2-;(2)对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,()12f x =-,()22f x = 所以112262x k ππωπ+=-,222262x k ππωπ+=+,12,k k Z ∈ 所以()1212122222222k k k k x x πππππππωωω-----===<,可得12222k k -=,1ω=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭因为[]0,x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦()2sin 216f x x π⎛⎫=+= ⎪⎝⎭,所以1sin 262x π⎛⎫+= ⎪⎝⎭所以266x ππ+=或 5266x ππ+=或 13266x ππ+=,即0x =或 3x π=或x π=所以方程1f x在闭区间[]0,π上的解为0x =或 3x π=或x π=19.(1)图象见解析,证明见解析;(2)最大值为3,最小值为12. 【分析】(1)画出()f x 图象,利用定义法,证明()()120f x f x ->,结合()f x 的定义域,证得()f x 的单调区间.(2)结合()f x 的单调性来求得()f x 在区间[]2,7上的最大值和最小值. 【详解】(1)()f x 的图象如下图所示:()f x 的定义域为{}|1x x ≠,当1x <时,任取121x x <<,()()()()211212123331111x x f x f x x x x x --=-=⨯----,其中21120,10,10x x x x ->-<-<,所以()()120f x f x ->,所以()f x 在区间(),1-∞上递减. 同理可证得()f x 在区间()1,+∞上递减. (2)由(1)得()f x 在区间[]2,7上递减, 所以2x =时,()f x 取得最大值为3321=-, 当7x =时,()f x 取得最小值为31712=-. 20.(1)点P 位于弧AB 的中点时,使得平行四边形OCPD 83;(223【分析】过P 点作OC 的垂线,垂足为H ,从而可得PH =2sin α,OH =2cos α,43sin PC α=23sin CH α=,得出23sin 2cos OC OH CH αα=-=(1)平行四边形OCPD 的周长为f (α) 83sin 33πα⎛⎫=+ ⎪⎝⎭,利用三角函数的性质即可求解. (2)4323()sin 2363S OC PH παα⎛⎫=⋅=+- ⎪⎝⎭,利用三角函数的性质即可求解. 【详解】过P 点作OC 的垂线,垂足为H ,因为OP =2,∠AOP =α,则PH =2sin α,OH =2cos α,2sin 43sin sin3PC ααπ=,123sin 2CH PC α== 所以23sin 2cos OC OH CH αα=-= (1)设平行四边形OCPD 的周长为f (α), 则43sin 83sin 43sin ()2()4cos 4cos f OC PC αααααα=+=833πα⎛⎫+ ⎪⎝⎭, 因为点P 异于A 、B 两点,所以03πα<<,所以当6πα=,即点P 位于弧AB 的中点时,使得平行四边形OCPD 83. (2)设平行四边形OCPD 的面积为S (α),则23sin ()2cos 2sin S OC PH αααα⎛=⋅=⋅ ⎝⎭243sin 4sin cos ααα=23(1cos 2)2sin 2αα-=432326πα⎛⎫+ ⎪⎝⎭, 由(1)得,03πα<<,所以52666πππα<+<, 所以当262ππα+=,即6πα=,也就是点P 位于弧AB 的中点时,使得平行四边形OCPD21.(1)见详解;(23)(]1,11,28⎡⎫⎪⎢⎣⎭【分析】(1)根据函数解析式,直接作差比较()()1222f x f x +与()122f x x +的大小,即可证明结论成立;(2)根据题中条件,由指数幂运算性质,直接计算,即可得出结果; (3)先由不等式恒成立,得到x ∀∈R ,212x xx a -+≤恒成立;不等式两边同时取对数,得到x ∀∈R ,22log 1x a x x ≤-+恒成立,讨论0x =,0x >,0x <三种情况,分别求出对应的a 的范围,再求交集,即可得出结果.【详解】(1)因为()xf x a =,所以()()()()111222222121222220x x x x x x f x f x f x x a a a a a ++-+=+-=-≥显然恒成立, 所以()()()1212222f x f x f x x +≥+;(2)由()12f x =,()23f x =得1223x x a a ⎧=⎨=⎩,所以()212122x x x x x a a ==,又()1221228x x xf x x a ===,所以23x =,则233x a a ==,因此a =(3)若x ∀∈R ,()212xx f x -+≤恒成立,即x ∀∈R ,212x xx a -+≤恒成立;则x ∀∈R ,2122log log 2x xx a -+≤恒成立,即x ∀∈R ,22log 1x a x x ≤-+恒成立,当0x =时,不等式可化为01<,显然恒成立;所以0a >,且1a ≠;当0x >时,不等式可化为21log 1a x x ≤+-,而1111y x x =+-≥=在0x >上恒成立,当且仅当1x =时,取等号;所以只需2log 1a ≤,解得12a <≤或01a <<; 当0x <时,不等式可化为21log 1a x x≥+-,而()111113y x x x x ⎡⎤⎛⎫=+-=--+--≤-=- ⎪⎢⎥⎝⎭⎣⎦在0x <上恒成立,当且仅当1x =-时,取等号;所以只需2log 3a ≥-,解得118a ≤<或1a >,综上,118a ≤<或12a <≤,即a 的取值范围是(]1,11,28⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:求解本题第三问的关键在于将不等式两边同时取对数,化为22log 1x a x x ≤-+恒成立,再对x 分段讨论,求解a 的范围,即可得解.22.(1)23411),1()(()f x f x x xx x f -=-==。

高一数学上学期期末试卷及答案

高一数学上学期期末试卷及答案

上学期期末考试高一数学试卷一、选择题(12分×5=60分)1.设集合x x M ≤-=4|{<2},集合xx N 3|{=<}91,则N M 中所含整数的个数为( ) A .4 B .3C .2D .12.下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( )A.1y x -= B.ln y x = C.||y x = D.3y x =3.设8.012.1og a =,8.017.0og b =,8.02.1=c ,则a ,b ,c 的大小关系是( )A.a b c <<B.b a c <<C.a c b <<D.c a b <<4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m m αβαβ若则‖‖‖C .,,m n m n αα若则‖‖‖D .,,m n m nαα⊥⊥若则‖5.两条直线3)1(:1=++y a ax l ,2)23()1(:2=-++y a x a l 互相垂直,则a 的值是A .3B .1-C .1- 或3D .0 或 36.若函数⎩⎨⎧≥-<+-=)0()24()0()(2x a x a ax x x f x是R 上的单调函数,则实数a 的取值范围是( )A.)2,0[B.)2,23( C.]2,1[ D.]1,0[7已知a ,b ,c 为直角三角形中的三边长,c 为斜边长,若点),(n m M 在直线03:=++c by ax l 上,则22n m +的最小值为( )A .2B .3C .4D .98.如图,在棱长为4的正四面体A­BCD 中,M 是BC 的中点,点P 在线段AM 上运动(P 不与A ,M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题: ①BC ⊥平面AMD ;②Q 点一定在直线DM 上; ③VC­AMD=4 2.其中正确命题的序号是( ).A .①②B .①③C .②③D .①②③9.已知圆1)2()(:221=-++y a x C 与圆4)2()(:222=-+-y b x C 相外切, ,a b 为正实数,则ab 的最大值为 ( )A. 23B.94 C. 32 D. 6210.已知函数()f x 是定义在R 上的偶函数,且在(]0-,∞上单调递减,若()10f -=,则不等式()210f x ->解集为( )A .()()6,01,3-B .()(),01,-∞+∞ C.()(),13,-∞+∞ D .()(),13,-∞-+∞11.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的 外接球表面积为A .29πB .30π C.29π2 D .216π12.已知幂函数2422)1()(+--=m m xm x f 在()0,+∞上单调递增,函数t x g x-=2)(,)6,1[1∈∀x 时,总存在)6,1[2∈x 使得()()12f x g x =,则t 的取值范围是( )A .∅B .128≤≥t t 或C .128<>t t 或D .128t ≤≤二、填空题(4分×5=20分)13.函数1()lg(5)2=+--f x x x 的定义域为 . 14.点A(1,a,0)和点B(1-a,2,1)的距离的最小值为________.15.三条直线12110230,50l x y l x y l x my +-=-+=--=:,::围成一个三角形,则m 的取值范围是 . 16. 已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x +-=的实根个数构成的集合为 .三、解答题(10分+12分×5=70分)17.集合(]2,3A =,()1,3B =,[),C m =+∞,全集为R . (1)求()R C A B ;(2)若()A B C ≠∅,求实数m 的取值范围.18.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,PA ⊥面ABCD ,PA =E ,F 分别为BC ,PA (1)求证://BF 面PDE ; (2)求点C 到面PDE 的距离.19.已知函数()4f x x x=+(1) 用函数单调性的定义证明()x f 在区间[)2,+∞上为增函数 (2) 解不等式:()()2247f x x f -+≤20.已知圆M 上一点A (1,-1)关于直线y x =的对称点仍在圆M 上,直线10x y +-=截得圆M 14(1)求圆M 的方程;(2)设P 是直线20x y ++=上的动点,PE PF 、是圆M 的两条切线,E F 、为切点,求四边形PEMF 面积的最小值.21. 如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;(2)设CD=1,求三棱锥A ﹣BFE 的体积.22.已知函数112()log x x f x -+=,()31g x ax a =+-,()()()h x f x g x =+.(1)当1a =时,判断函数()h x 在(1,)+∞上的单调性及零点个数;(2)若关于x 的方程2()log ()f x g x =有两个不相等实数根,求实数a 的取值范围.上学期期末考试高一数学试卷一、选择题(12分×5=60分)1.设集合x x M ≤-=4|{<2},集合xx N 3|{=<}91,则N M 中所含整数的个数为( C ) A .4 B .3C .2D .12.下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( D )A.1y x -= B.ln y x = C.||y x = D.3y x =3.设8.012.1og a =,8.017.0og b =,8.02.1=c ,则a ,b ,c 的大小关系是( A )A.a b c <<B.b a c <<C.a c b <<D.c a b <<4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( D )A .,,αγβγαβ⊥⊥若则‖B .,,m m αβαβ若则‖‖‖C .,,m n m n αα若则‖‖‖D .,,m n m nαα⊥⊥若则‖5.两条直线3)1(:1=++y a ax l ,2)23()1(:2=-++y a x a l 互相垂直,则a 的值是 (C)A .3B .1-C .1- 或3D .0 或 36.若函数⎩⎨⎧≥-<+-=)0()24()0()(2x a x a ax x x f x是R 上的单调函数,则实数a 的取值范围是( B )A.)2,0[B.)2,23( C.]2,1[ D.]1,0[7已知a ,b ,c 为直角三角形中的三边长,c 为斜边长,若点),(n m M 在直线03:=++c by ax l 上,则22n m +的最小值为( D )A .2B .3C .4D .98.如图,在棱长为4的正四面体A ­BCD 中,M 是BC 的中点,点P 在线段AM 上运动(P 不与A ,M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题: ①BC ⊥平面AMD ;②Q 点一定在直线DM 上; ③V C ­AMD =4 2.其中正确命题的序号是( A ).A .①②B .①③C .②③D .①②③9.已知圆1)2()(:221=-++y a x C 与圆4)2()(:222=-+-y b x C 相外切, ,a b 为正实数,则ab 的最大值为 ( B )A. 23B.94 C. 32 D. 6210.已知函数()f x 是定义在R 上的偶函数,且在(]0-,∞上单调递减,若()10f -=,则不等式()210f x ->解集为( B )A .()()6,01,3-B .()(),01,-∞+∞ C.()(),13,-∞+∞ D .()(),13,-∞-+∞11.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的 外接球表面积为AA .29πB .30π C.29π2 D .216π12.已知幂函数2422)1()(+--=m m xm x f 在()0,+∞上单调递增,函数t x g x-=2)(,)6,1[1∈∀x 时,总存在)6,1[2∈x 使得()()12f x g x =,则t 的取值范围是( D )A .∅B .128≤≥t t 或C .128<>t t 或D .128t ≤≤二、填空题(4分×5=20分)13.函数1()lg(5)2=+--f x x x 的定义域为 (2,5) . 14.点A(1,a,0)和点B(1-a,2,1)的距离的最小值为___3_____.15.三条直线12110230,50l x y l x y l x my +-=-+=--=:,::围成一个三角形,则m 的取值范围是 1,4,2m ≠-- .16. 已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x +-=的实根个数构成..的集合为....{}2,3,4,5,6,8三、解答题(10分+12分×5=70分)17.集合(]2,3A =,()1,3B =,[),C m =+∞,全集为R .(1)求()R C A B ;(2)若()AB C ≠∅,求实数m 的取值范围.17解:(1)(]1,2,(2)3m ≤18.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,PA ⊥面ABCD ,PA =E ,F 分别为BC ,PA (1)求证://BF 面PDE ; (2)求点C 到面PDE 的距离.18.解(1)如图所示,取PD 中点G ,连结GF ,GE ,∵E ,F 分别为BC ,PA 的中点,∴可证得//FG BE ,FG BE =,∴四边形BFGE 是平行四边形,∴//BF EG ,又∵EG ⊂平面PDE ,BF ⊄平面PDE ,∴ //BF 面PDE ;(2)∵P CDE C PDE V V --=,∴11213372CDE CDE PDE PDE S PA S PA S h h S ∆∆∆∆⨯⨯=⨯⇒=== 19.已知函数()4f x x x=+(1) 用函数单调性的定义证明()x f 在区间[)2,+∞上为增函数 (2) 解不等式:()()2247f x x f -+≤19解: (1) 略(2) 2242x x -+≥, 所以2247x x -+≤[]1,3x ⇒∈-20.已知圆M 上一点A (1,-1)关于直线y x =的对称点仍在圆M 上,直线10xy +-=截得圆M (1)求圆M 的方程;(2)设P 是直线20x y ++=上的动点,PE PF 、是圆M 的两条切线,E F 、为切点,求四边形PEMF 面积的最小值.20.解 (1)圆M 的方程为(x -1)2+(y -1)2=4.(2) |PM |min =22,得|PE |min =2.知四边形PEMF 面积的最小值为4.21. 如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1)求证:DC ⊥平面ABC ;(2)设CD=1,求三棱锥A ﹣BFE 的体积.21解:(1)证明:在图甲中,∵AB=BD ,且∠A=45°, ∴∠ADB=45°,∠ABC=90° 即AB ⊥BD .在图乙中,∵平面ABD ⊥平面BDC ,且平面ABD ∩平面BDC=BD , ∴AB ⊥底面BDC ,∴AB ⊥CD .又∠DCB=90°, ∴DC ⊥BC ,且AB ∩BC=B ,∴DC ⊥平面ABC . (2)31222.已知函数112()log x x f x -+=,()31g x ax a =+-,()()()h x f x g x =+.(1)当1a =时,判断函数()h x 在(1,)+∞上的单调性及零点个数;(2)若关于x 的方程2()log ()f x g x =有两个不相等实数根,求实数a 的取值范围.22解:(1)在(1,)+∞上为增函数,22(1.1) 3.3log 210,(2)6log 30h h =-<=->,所以有一个零点.(2) 方程2()log ()f x g x =化简为2(31)(1)x x a -=-+,画图可知24a->,解得a 的取值范围是1(,0)2-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021上海市高一数学上期末试卷(及答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>5.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞,6.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.下列函数中,在区间(1,1)-上为减函数的是A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______. 18.若函数()242xx f x aa =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围. 23.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少? 25.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭;(2)6log 332log log 2log 36⋅-- 26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞; 对于D :0x >,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.5.D解析:D试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.6.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A8.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

相关文档
最新文档