实变函数复习题

合集下载

实变函数本科试题及答案

实变函数本科试题及答案

实变函数本科试题及答案一、选择题(每题3分,共30分)1. 实数集R上的开区间(a, b)是一个开集,这是因为它满足:A. 任意点的邻域性质B. 包含所有有理数C. 包含所有整数D. 包含所有实数答案:A2. 下列哪个选项不是实数集R的子集?A. 空集B. (0, 1)C. 整数集ZD. 实数集R本身答案:C3. 一个函数在某点连续的充要条件是:A. 在该点导数存在B. 该点的左极限等于右极限C. 在该点的极限存在且等于函数值D. 在该点的振幅为零答案:C4. Lebesgue可测集的定义是基于:A. 开区间B. 闭区间C. 开集D. 半开半闭区间答案:A5. 如果一个实值函数在区间[a, b]上单调增加且有界,则根据Weierstrass定理,该函数必定:A. 有最大值和最小值B. 仅在有限点处不连续C. 仅在至多可数点处不连续D. 在区间[a, b]上连续答案:A6. 一个函数在某点的导数为0,这意味着该点是函数的:A. 驻点B. 极值点C. 拐点D. 渐近点答案:A7. 集合的外测度是:A. 集合所有开覆盖的体积的上确界B. 集合所有闭覆盖的体积的下确界C. 集合所有开覆盖的体积的下确界D. 集合所有闭覆盖的体积的上确界答案:A8. 如果一个函数在区间[a, b]上可积,则它的积分值:A. 必须为正B. 必须为负C. 可以是任意实数D. 必须为零答案:C9. 一个函数在某区间上一致连续的定义是:A. 该区间内任意两点的函数值之差的绝对值有界B. 该区间内任意两点的函数值之差的绝对值无界C. 函数在该区间的任意子区间上连续D. 函数在该区间的端点处的极限存在答案:A10. 根据Riemann积分的定义,如果一个函数在区间[a, b]上的积分存在,则:A. 该函数在该区间上必定连续B. 该函数在该区间上必定有界C. 该函数在该区间上必定单调增加D. 该函数在该区间上必定一致连续答案:B二、填空题(每题4分,共20分)11. 如果函数f(x)在点x=c处的左极限为L,则记为______。

实变函数期末复习 试卷

实变函数期末复习 试卷

nn
n→∞
An
= _________。
2 、 设 P 为 Cantor 集 , 则 P =
, mP = _____ ,
得分 阅卷人
o
P = ________。
复查人
∑ 3、设 {Si } 是一列可测集,则
m
⎛ ⎜⎝


i=1
S
i
⎞ ⎟⎠
______
∞ i=1
mSi
4、鲁津定理:______________________________________________________
(B) mP = 0
(C) P' = P

(D) P = P
此 3、下列说法不正确的是(

(A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测
(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测
4、设{ fn (x)} 是 E 上的 a.e.有限的可测函数列,则下面不成立的是(
)
线
(第 1页,共 24页)
_________________________________,则称 E 是 L可测的
4、叶果洛夫定理:
_________________________________________________________
5、设 f (x) 在 E 上可测,则 f (x) 在 E 上可积的
条件是| f (x) |在 E 上可
(C) f (x) 在[a, b] 上 L 可积
(D) f (x) 是有界变差函数
得分
二. 填空题(3 分×5=15 分)
1、设集合 N ⊂ M ,则 M − ( M − N) =

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。

实变函数复习题

实变函数复习题

复习题1 一、判断1、若N 是自然数集,e N 为正偶数集,则N 与e N 对等。

(对)2、由直线上互不相交的开间隔所成之集是至多可列集。

(对)3、若12,,,n A A A 是1R 上的有限个集,则下式()1212n n A A A A A A ''''+++=+++成立。

(对)4、任意多个开集的交集一定是开集。

(错)5、有限点集和可列点集都可测。

(对)6、可列个零测集之并不是零测集。

(对)7、若开集1G 是开集2G 的真子集,则一定有12mG mG <。

(错) 8、对于有界集1ER ⊆,必有*m E <+∞。

(对)9、任何点集E 上的常数函数()f x =C ,x E ∈是可测函数。

(错)10、由()f x 在()1,2,k E k = 上可测可以推出()f x 在1kk E E ∞==∑上可测。

(对)二、填空1、区间(0,1)和全体实数R 对等,只需对每个()0,1x ∈,令 ()tan()2x x πϕπ=-2、任何无限集合都至少包含一个 可数子集3、设12,S S 都可测,则12S S ⋃也可测,并且当12S S ⋂为空集时,对于任意集合T 总有***1212[()]()()m T S S m T S m T S ⋂⋃=⋂+⋂4、设E 是任一可测集,则一定存在F ∂型集F ,使F E ⊂,且 ()0m E F -=5、可测集n ER ⊂上的 连续函数 是可测函数。

6、设E 是一个有界的无限集合,则E 至少有一 个聚点。

7、设π是一个与集合E 的点x 有关的命题,如果存在E 的子集M ,适合mM=0,使得π在E\M 上恒成立,也就是说,E\E[π成立]= 零测度集 ,则我们称π在E 上几乎处处成立。

8、E 为闭集的充要条件是'(E E)E E ⊂∂⊂或 。

9、设A 、B 是两个非空集合,若,A B B A ≤≤,则有 A =B。

三、证明 1、证明:若A B ⊂,且~A A C ⋃,则有~B B C ⋃。

实变函数复习题.docx

实变函数复习题.docx

《实变函数》 一、单项或多项选择题1、下列正确的是(234(3) (?1UB )\C = ?1U (B C UC )C 2、下列正确的是(24)(1) 无理数集是可数集;(2) 超越数构成的集合是不可数集;(3) 若/?屮两个Lebesgue 可测集A 和B 的基数相等,则它们的测度也相等;(4) 0表示全体有理数集,则Q?。

也是可数集.3、在R 中令A = {1,丄丄…丄,…},则(2 3 n6、设几九 wM(X),则(12 3 4(3) /2 G M(X)7、若/在[0,1]上乙可积,则下列成立的是8、设= 1,2,3,…)是X 上儿乎处处有限的可测函数,则下列结论正确的是(1(1)若人 则£—/,心.;(1) A\(B\C) = (A\B)\C(2) AU(BAC) =(AUB )n (AUC )(4)⑷B)\C = A\(BUC )(1) A 为闭集 (2) A 为开集 (3) 几{0}(4) A 为疏集4、设 AuR 满足 mA = 0 ,贝 ij ( 1 3 (1) A 为Lebesgue 可测集)(2)(3)任意可测函数/在A 上可积(4) 4为疏集5、在/?上定义/(%),当兀为有理数时, f(x) = 1 ,当x 为无理数时,/(x) = 0,贝ij( 3(1) /儿乎处处连续 (2) /不是可测函数(3)/在上处处不连续(4) /在/?上为可测函数⑴\f <+oo 在[0,1 ]上儿乎处处成立 (2) |.f|在[0,1]上厶可积 (3) /在[0,1]±几乎处处连续(4)兀在[of 上非厶可积(2) 若九 T/,d.e.,则九(3) 若 f n —> f ,a.u.,则 f n T f ; (4) 若 f 厶 f,则£->/•,“.・9、若{A“}为降列,且 M = 2,贝(4 )n —>oc、“8 、(1) 0(2) 0(3) “U4(4) “CM1心10、有界实函数/在区间[G , /?]± Riemann 可积的充要条件是/的不连续点集为( 4 )11、设f eBV [a,b ]f 则下列成立的是(1 416、超越数的个数为(3(1) 2 (2) a (3) c (4) 2C(1)空集(2)有限集 (3)可数集 (4)零测度集(1) 于在[a 问上有界; (2) /在[a 问上连续; (3) /在[a 问上可微; (4) /是两个增函数Z 差.12、整数集 的内部和闭包分别为(1)(3) 0,(1) 0, (2) (4)13. 设/(%) =x,xe[0,l]2-x,x w(l ,2]' 令 A = <x\f(x)(1) 0(2) 1(3) 2(4)14、下列哪些集合是测度为零的不可数集(3 )(4)(1) 031O )XEB(2) 1 ,则(1(3) 2 ⑷3100,XG [0,1]\17、f G AC[0,1],/(O) = 2,Kf = 0,a.e , B'J/(x)=_318、 设A ,%是R 的可测集,且A 0A 2,则下列正确的是( 2 4 )(1)< mA.(2) mA l <mA 2(3) mA x -mA 2 =\ A 2)(4) mA x =777(71^X2) + mA 219、 当/在[1,+00)上连续且Lebesgue 可积时,则lim f(x)=1L7X->4<0(1) 0 (2) 1 (3) -1 (4) +0020、 人2”-1=[°」],A” =[°,2],(斤= 1,2,…),则limA “和lim 人分别为" >1(I) [0,1],[0,2] ⑶[0,2],[0,1]21、下列正确的是(1 4 )(1) (4UB )\C =(A\C )U (B\C ) (3) A\(B\C) = (A\B)\C ⑵[0,1],[0,2](4) [0,2],[0,2](2) ACl(BUC) =(4nB )UC (4) (A\B)\C = A\(BUC ))⑵ r 1 2 3(Aus )=r ,(A )ur 1(5) ⑷ /-i (An5)=r i (A )ny 1(B )2 3 )24、 设人是[0,1]上所有有理数构成的集合,则川二(3 )(1) A (2) [0,l]\A (3) El(4)以上都不对25、 下列说法正确的是(12 3)1 A =(3) B = P 7(B )23、下列与 有相同基数的集合是( (1) [0,1] (2)3(4)(1) 0(2) 1 (3) 2 (4) 322、设f:X —X 是一个映射,4,B u X ,下列正确的是(2 4(2)上的开集都可以表示成互不相交的开区间的并(4) 的了集不是开集就是闭集 26、 下列正确的是(1 ) (1) 有理数集是可数集;(2) 代数数构成的集合是不可数集;(3) 若中两个Lebesgue 可测集A 和B 的测度相等,则它们的基数也相等; (4) [0,2]内包含的点比[0,1]内包含的点多。

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2

xn E, f ( xn ) a ………………… .3 分

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。

实变函数(复习资料,带答案)

实变函数(复习资料,带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习题1 一、判断1、若N 是自然数集,e N 为正偶数集,则N 与e N 对等。

(对)2、由直线上互不相交的开间隔所成之集是至多可列集。

(对)3、若12,,,n A A A 是1R 上的有限个集,则下式()1212n n A A A A A A ''''+++=+++成立。

(对)4、任意多个开集的交集一定是开集。

(错)5、有限点集和可列点集都可测。

(对)6、可列个零测集之并不是零测集。

(对)7、若开集1G 是开集2G 的真子集,则一定有12mG mG <。

(错) 8、对于有界集1ER ⊆,必有*m E <+∞。

(对)9、任何点集E 上的常数函数()f x =C ,x E ∈是可测函数。

(错) 10、由()f x 在()1,2,k E k =上可测可以推出()f x 在1k k E E ∞==∑上可测。

(对) 二、填空1、区间(0,1)和全体实数R 对等,只需对每个()0,1x ∈,令 ()tan()2x x πϕπ=-2、任何无限集合都至少包含一个 可数子集3、设12,S S 都可测,则12S S ⋃也可测,并且当12S S ⋂为空集时,对于任意集合T 总有***1212[()]()()m T S S m T S m T S ⋂⋃=⋂+⋂4、设E 是任一可测集,则一定存在F ∂型集F ,使F E ⊂,且 ()0m E F -=5、可测集n ER ⊂上的 连续函数 是可测函数。

6、设E 是一个有界的无限集合,则E 至少有一 个聚点。

7、设π是一个与集合E 的点x 有关的命题,如果存在E 的子集M ,适合mM=0,使得π在E\M 上恒成立,也就是说,E\E[π成立]= 零测度集 ,则我们称π在E 上几乎处处成立。

8、E 为闭集的充要条件是'(E E)E E ⊂∂⊂或 。

9、设A 、B 是两个非空集合,若,A B B A ≤≤,则有 A =B。

三、证明 1、证明:若A B ⊂,且~A A C ⋃,则有~B B C ⋃。

证明:由条件易得,()B A B A =⋃- (1) [()]()B C A C B B A ⋃=⋃-⋃- (2)由于()A B A ⋂-=∅,[()]()A C B B A ⋃-⋂-=∅,而 ()A A C B A C ⊂⋃-⊂⋃,已知~A A C ⋃,所以~()A A C B ⋃-.而 ~B A B A--,由(1)(2)得~B B C ⋃。

2、设()f x 为1R 上的连续函数,则对任意的1a R ∈,[]()E f x a ≥、[]()E f x a ≤为闭集1()E R = 证: 先证[()]E f x a ≥是闭集。

设0x 是[()]E f x a ≥的一个极限点,则[()]E f x a ≥中有点列{}n x ,使0()n x x n →→∞.由[]()n x Ef x a ∈≤知()n f x a ≥.又由()f x 的连续性及极限不等性可得0()lim ()n x f x f x a →∞=≥.∴ 0[()]x E f x a ∈≥.即 '([()])[()]E f x a E f x a ≥⊆≥.故 [()]E f x a ≥为闭集.4、设}{nf 是E 上的可测函数列,则其收敛点集与发散点集都是可测的。

证: 显然,{}n f 的收敛点集可表示为0[lim ()lim ()]n n x x E E x f x f x →∞→∞===11[lim lim ]n nx x k E f f k ∞→∞→∞=-<∏. 由n f 可测lim n x f →∞及lim n x f →∞都可测,所以lim lim n nx x f f →∞→∞-在E 上可测。

从而,对任一自然数k ,1[lim lim ]nn x x E f f k→∞→∞-<可测。

故011[lim lim ]n n x x k E E f f k ∞→∞→∞==-<∏可测。

既然收敛点集0E 可测,那么发散点集0E E -也可测。

实变函数复习题2一、判断题(判断正确、错误,请在括号中填“对”或“错”。

共10小题,每题 1.5分,共10×1.5=15分)1、中全体子集构成一个代数。

( √ )2、存在闭集使其余集仍为闭集。

( √ )3、若是可测集,是的可测子集,则 。

( × )4、无限集中存在基数最大的集合,也存在基数最小的集合。

( × )5、可数个可数集的并集是可数集。

( √ )6、、可数个集的交集不一定是集。

( × )7、若是可测集,是上的实函数,则在上可测的充要条件是:存在实数,使是可测集。

( × )8、若是可测集,是的可测子集,则 。

( × )9、若是可测集,是上的非负可测函数,则在上一定可积。

( × )10、若是可测集,是上的非负简单函数,则一定存在。

( √ )二、选择题。

(每道题只有一个答案正确,多选或者不选均为零分,每道题1.5分,共15分) 1、下列集合关系成立的是( A ) (A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃=(C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆2、若n ER ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '=3、设是有理数,则下列正确的是( B )A . [0,1]>; B.[0,1]<; C.[0,1]=; D.以上都不正确。

4.、设E 是nR 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥(C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠5、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数 6、设()f z 是[,]a b 的单调函数,则( C )(A )()f z 不是[,]a b 的有界变差函数 (B )()f z 不是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 不在[,]a b 上几乎处处可导7、若1ER ⊂至少有一个内点,则( D ) (A )*m E 可以等于零 (B )E 是可数集(C )E 可能是可数集 (D )*0m E >8、设E 是[0,1]中的无理点全体,则(C )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0*<E m9、设()f x 在可测集E 上L 可积,则( D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -不都在E 上L 可积(C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积10、设[,]Ea b ⊂是可测集,则E 的特征函数()E X x 是 ( B )(A )在[,]a b 上不是简单函数 (B )在[,]a b 上的可测函数 (C )在E 上不是连续函数 (D )[,]a b 上的连续函数三、填空题(将正确的答案填在横线上,每道题1分,共10分)1、设X为全集,A ,B 为X的两个子集,则\A B =C A B ⋂ 。

2、设n E R ⊂,如果E 满足E E '⊂,则E 是 闭 集。

3、若开区间(,)αβ是直线上开集G的一个构成区间,则(,)αβ满足(,)Gαβ⊂、,G Gαβ∉∉。

4、设A 是无限集,则A 的基数A ≥a (其中a 表示可数基数)。

5、设1E ,2E 为可测集,2mE <+∞,则12(\)m E E ≥12mE mE -。

6、设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是 可测集 ,则称()f x 是可测集E 上的可测函数。

7、设0x 是1ER ⊂的内点,则*m E >0。

8、设函数列{()}n f x 为可测集E 上的可测函数列,且()()()n f x f x x E ⇒∈,则由黎斯定理可得,存在{()}n f x 的子列{()}kn f x ,使得()kn f x ..a e →()()f x x E ∈。

9、设()f x 是E 上的可测函数,则()f x 在E 上的L 积分不一定存在,且()f x 在E 上 不一定L可积。

10、若()f x 是[,]a b 上的绝对连续函数,则()f x 一定 是 [,]a b 上的有界变差函数。

四、证明题。

又因为A 为开集 所以为A C 闭集。

因此B-A 为闭集。

3、设A,B P R ⊂且+∞<B m *,若A 是可测集,证明)(B A m B m mA B A m **)(*-+= 证明:因为A 是可测集,所以由卡拉泰奥多里条件得))((**)(*A C B A m A B A m B A m +=))(()(*A B m mA -+= (I) +∞<+=)(*)(**A C B m A B m B m于是)(**)(*B A m B m A B m -=- (II)将(II)代入(I)得)(B A m B m mA B A m **)(*-+= 4、设q R E⊂,存在两侧两列可测集{n A },{n B },使得n A ⊂ E ⊂n B 且m (n A -n B )→0,(n →∝)则E 可测. 证明:对于任意i ,i n n B B ⊂∞=1,所以 E B E B i n n -⊂∞=-1又因为E A i ⊂ ,i i i A B E B -⊂-所以对于任意i ,)(**1E B m E B m i n n -≤-∞=)( )(*i i A B m -≤)(i i A B m -=令i →∝ ,由)(i iA B m -→0 得0*1=-∞=)(E B m n n所以E B n n -∞=1是可测的又由于n B 可测,有n n B ∞=1 也是可测的所以)(11E B B En n n n --=∞=∞= 是可测的。

实变函数复习题3一、证明题: 1、设在E 上()()n f x f x ⇒,而()()n n f x g x =..a e 成立,1,2n =,则有()()ng x f x ⇒2、 证明:开集减闭集后的差集仍是开集;闭集减开集后的差集仍然是闭集。

相关文档
最新文档