高考物理万有引力定律的应用模拟试题及解析

合集下载

高考物理万有引力定律的应用专项训练及答案及解析

高考物理万有引力定律的应用专项训练及答案及解析

高考物理万有引力定律的应用专项训练及答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求:(1)小球抛出的初速度v o(2)该星球表面的重力加速度g(3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4)t 【解析】(1)小球做平抛运动,在水平方向:x=vt ,解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m ,由万有引力等于物体的重力得:mg=2Mm G R 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R= 重力等于万有引力,即mg=2Mm G R,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMm E r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (22122GM GM v R h R +-+32GM R【解析】【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解;(2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能;【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动 即:22mM v G m R R= 则飞船的动能为2122k GMm E mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R -=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GM v v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm G mv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.如图所示是一种测量重力加速度g 的装置。

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k G k k δρ==--3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.一名宇航员抵达半径为R、密度均匀的某星球表面,做以下实验:用不行伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽视各样阻力.求:(1)星球表面的重力加快度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)(F1 F2)R F1 F2【答案】(1)g6m (3)6m8 GmR【分析】【剖析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mv22mg①l在最低点:F1mv12mg②l由机械能守恒定律,得1mv12mg 2l 1mv22③22由①②③,解得F1 F2 g6m(2)GMmmg R2GMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④M星球密度:⑤V由④⑤,解得F1F2 8 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳索的拉力与重力的协力供给向心力,由牛顿第二定律能够求出重力加快度;万有引力等于重力,等于在星球表面飞翔的卫星的向心力,求出星球的第一宇宙速度;而后由密度公式求出星球的密度.3.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为常量为 G,行星半径为求:r,周期为T,引力(1)行星的质量M;(2)行星表面的重力加快度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【分析】【详解】(1)设宇宙飞船的质量为m,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】1s 2 g0(3)T1s2(1) g星= g0 (2) v04H[1] mg0 4L42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0ts2g0解得v0H L4v2(3)由牛顿定律,在最低点时:T mg星= mL1s2解得:T1mg042( H L)L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.5.在地球大将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体 P 置于弹簧上端,用力压到弹簧形变量为3x0 处后由静止开释,从开释点上涨的最大高度为4.5x0,上涨过程中物体 P 的加快度 a 与弹簧的压缩量 x 间的关系如图中实线所示。

高考物理万有引力定律的应用试题(有答案和解析)及解析

高考物理万有引力定律的应用试题(有答案和解析)及解析

高考物理万有引力定律的应用试题( 有答案和分析 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射 18 颗北斗三号卫星,为“一带一路”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T,地球质量为 M、半径为 R,引力常量为 G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布平均的正球体,请比较h1和 h2的大小,并说出你的原因.【答案】( 1)=2π3GMT 212;( 2)h1=4 2R( 3) h = h T【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T 解得:h =3GMT 2R124π( 3)如下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T ,依据牛顿运动定律,GMm2=m(R h 2 )(2) 2( R h 2 )T解得: h 2 = 3 GMT 2R42所以 h 1= h 2.1) =2π GMT2R (3) h 1= h 2故此题答案是:(;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.2. 如下图,假定某星球表面上有一倾角为 θ= 37° m = 2.0 kg的小的固定斜面,一质量为 物块从斜面底端以速度 9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰巧为零 .已知小物 块和斜面间的动摩擦因数为 0.25,该星球半径为3= 0.6°, cosR = 1.2 ×10km. 试求: (sin 37 37°= 0.8)(1) 该星球表面上的重力加快度 g 的大小 .(2) 该星球的第一宇宙速度 .【答案】 (1) g=7.5m/s 23( 2) 3× 10m/s【分析】【剖析】【详解】(1)小物块沿斜面向上运动过程0 v 0 at解得: a 6m/s 2又有: mgsinmgcos ma解得: g 7.5m/s 2(2)设星球的第一宇宙速度为 v ,依据万有引力等于重力,重力供给向心力,则有:mgmv 2RvgR 3 103 m/s3. 由三颗星体构成的系统,忽视其余星体对它们的影响,存在着一种运动形式:三颗星体在互相之间的万有引力作用下,分别位于等边三角形的三个极点上,绕某一共同的圆心 O 在三角形所在的平面内做角速度同样的圆周运动(图示为 A 、B 、 C 三颗星体质量不同样时的一般状况)若 A 星体的质量为 2m , B 、 C 两星体的质量均为 m ,三角形的边长为 a ,求:( 1) A 星体所受协力的大小 F A ; ( 2) B 星体所受协力的大小 F B ; ( 3) C 星体的轨道半径 R C ;( 4)三星体做圆周运动的周期T .Gm 27Gm 273( 3)(4) T πa【答案】 (1) 2 32( 2)2a aa4Gm【分析】【剖析】【详解】(1)由万有引力定律, A 星体所受 B 、 C 星体引力大小为F R4Gm AmBG 2m 2F CA , r 2a 2则协力大小为2m(2)同上, B 星体所受 A 、 C 星体引力大小分别为F ABGm A m BG 2m 2r 2 a 2FCBGm CmBG m 2r 2a 2则协力大小为FBxF AB cos60F CB 2G m 2a 2FByF AB sin 603G m 2 .a 2可得F B F Bx 2F By 27G m 2a 2(3)经过剖析可知,圆心O 在中垂线 AD 的中点,22R C3 a1 a 7 a424(4)三星体运动周期同样,对C 星体,由m22F CF B 7Gm2a 2 R CT可得a 2TGm 24. 某课外小组经长久观察,发现凑近某行星四周有众多卫星,且相对平均地散布于行星四周,假定全部卫星绕该行星的运动都是匀速圆周运动,经过天文观察,测得离行星近来的一颗卫星的运动半径为 R 1,周期为 T 1,已知万有引力常量为 G 。

高中物理万有引力定律的应用模拟试题及解析

高中物理万有引力定律的应用模拟试题及解析

高中物理万有引力定律的应用模拟试题及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.【答案】(1)126F F g m -=(212()6F F R m-(3) 128F F GmR ρπ-= 【解析】【分析】【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:222mv F mg l+= ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMm mg R= 2GMm R =2mv R两式联立得:12()6F F R m-(3)在星球表面:2GMm mg R = ④ 星球密度:M Vρ= ⑤ 由④⑤,解得128F F GmRρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求:(1)行星的质量M ;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v .【答案】(1)(2) (3)【解析】【详解】 (1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

高中物理万有引力定律的应用真题汇编(含答案)含解析

高中物理万有引力定律的应用真题汇编(含答案)含解析

高中物理万有引力定律的应用真题汇编(含答案)含解析高中物理万有引力定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求:(1)地球的密度; (2)地球的第一宇宙速度v ;(3)“天宫一号”距离地球表面的高度.【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =,地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+,据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g =9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字).【答案】(1)1.54V (2)不能(3)5410m ? 【解析】【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.(3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.4.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理万有引力定律的应用模拟试题及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能;【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。

(1)2018年12月27日中国北斗卫星导航系统开始提供全球服务,标志着北斗系统正式迈入全球时代。

覆盖全球的北斗卫星导航系统由静止轨道卫星(即地球同步卫星)和非静止轨道卫星共35颗组成的。

卫星绕地球近似做匀速圆周运动。

已知其中一颗地球同步卫星距离地球表面的高度为h ,地球质量为M e ,地球半径为R ,引力常量为G 。

a.求该同步卫星绕地球运动的速度v 的大小;b.如图所示,O 点为地球的球心,P 点处有一颗地球同步卫星,P 点所在的虚线圆轨道为同步卫星绕地球运动的轨道。

已知h = 5.6R 。

忽略大气等一切影响因素,请论证说明要使卫星通讯覆盖全球,至少需要几颗地球同步卫星?(cos81= 0.15︒,sin810.99︒=)(2)今年年初上映的中国首部科幻电影《流浪地球》引发全球热议。

根据量子理论,每个光子动量大小h pλ=(h为普朗克常数,λ为光子的波长)。

当光照射到物体表面时将产生持续的压力。

设有一质量为m的飞行器,其帆面始终与太阳光垂直,且光帆能将太阳光全部反射。

已知引力常量为G,光速为c,太阳质量为M s,太阳单位时间辐射的总能量为E。

若以太阳光对飞行器光帆的撞击力为动力,使飞行器始终朝着远离太阳的方向运动,成为“流浪飞行器”。

请论证:随着飞行器与太阳的距离越来越远,是否需要改变光帆的最小面积s0。

(忽略其他星体对飞行器的引力)【答案】(1)a.eGMvR h=+b.至少需要3颗地球同步卫星才能覆盖全球(2)随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s0【解析】【详解】(1)a.设卫星的质量为m。

由牛顿第二定律()2e2M m vG mR hR h=++,得eGMvR h=+b.如答图所示,设P点处地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ,至少需要N颗地球同步卫星才能覆盖全球。

由直角三角形函数关系cosRR hθ=+,h= 5.6 R,得θ= 81°。

所以1颗地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ = 162°360=2.22Nθ︒≥所以,N = 3,即至少需要3颗地球同步卫星才能覆盖全球(2)若使飞行器始终朝着远离太阳的方向运动,当飞行器与太阳距离为r时,光帆受到太阳光的压力F与太阳对飞行器的引力大小关系,有s2M mF Gr≥设光帆对太阳光子的力为F',根据牛顿第三定律F' =F设t∆时间内太阳光照射到光帆的光子数为n,根据动量定理:'2hF t nλ∆=设t∆时间内太阳辐射的光子数为N,则E tNchλ∆=设光帆面积为s ,24n s N r π= 当s 2=M m F Gr 时,得最小面积s 02cGM ms Eπ= 由上式可知,s 0和飞行器与太阳距离r 无关,所以随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s 0。

4.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

已知地球质量为M ,半径为R ,万有引力常量为G 。

(1)求质量为m 的飞船在距地面高度为h 的圆轨道运行时的向心力和向心加速度大小。

(2)若飞船停泊于赤道上,考虑地球的自转因素,自转周期为T 0,求飞船内质量为m 0的小物体所受重力大小G 0。

(3)发射同一卫星到地球同步轨道时,航天发射场一般选取低纬度还是高纬度发射基地更为合理?原因是什么?【答案】(1)(2)(3) 借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能【解析】 【详解】(1)根据万有引力定律和牛顿第二定律有解得(2)根据万有引力定律及向心力公式,有及解得(3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能。

5.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。

(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。

已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。

【答案】(1) 322m r T gR = (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R = 解得 322m r T gR =(2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天6.一颗绕地球做匀速圆周运动的人造卫星,离地高度为h .已知地球半径为R ,地球表面的重力加速度为g ,万有引力常量为G .求: (1)地球的质量;(2)卫星绕地球运动的线速度.【答案】(1) 2gR G(2)gR h +【解析】【详解】(1)地表的物体受到的万有引力与物体的重力近似相等即:2 GMmmg R= 解得:M =2gR G(2)根据22Mm v G m r r = 其中GgR M 2=,r=R+h解得gv RR h=+7.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】223LR M =【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220(3)(2)L h v t -=,联立解得:3h L =,23g t =,在星球表面:2Mm G mg R =,解得:223M t G=8.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To ,运行速度为0v ,地球半径为R ,引力常量为.G 假设“天宫一号”环绕地球做匀速圖周运动,求:()1“天宫号”的轨道高度h . ()2地球的质量M .【答案】(1)00 2v T h R π=- (2)300 2v T M Gπ=【解析】 【详解】(1)设“天宫一号”的轨道半径为r ,则有:002rv T π=“天宫一号”的轨道高度为:h r R =- 即为:002v T h R π=- (2)对“天宫一号”有:22204Mm G m r r T π=所以有:3002v T M Gπ=【点睛】万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.9.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。

相关文档
最新文档