《数据仓库与数据挖掘》课程设计报告模板

合集下载

数据仓库与数据挖掘原理及应用第二版课程设计

数据仓库与数据挖掘原理及应用第二版课程设计

数据仓库与数据挖掘原理及应用第二版课程设计1. 项目背景随着互联网的高速发展,数据的规模也在不断增加。

对于海量的数据进行有效分析和应用已经成为了当今互联网领域中的一项重要任务。

数据仓库和数据挖掘技术是实现这一目标的核心技术之一。

本次课程设计旨在通过构建一个数据仓库,学习数据挖掘的相关原理和应用。

2. 项目目标本次课程设计的目标是:•了解数据仓库和数据挖掘的概念和基本原理。

•掌握数据仓库和数据挖掘工具的使用方法,包括ETL工具、OLAP工具、挖掘算法等。

•深入了解数据挖掘的典型应用场景,包括用户行为分析、社交网络分析、推荐系统、预测分析等。

•完成一个基于数据仓库和数据挖掘技术的实际应用案例设计,并能够运用挖掘模型进行数据分析和应用。

3. 课程设计内容与计划课程设计包括以下内容:3.1 数据仓库建设在数据仓库建设中,应该了解数据仓库的构建流程,掌握ETL工具的使用方法,并针对所选的应用场景进行数据建模。

预计时间:2周3.2 数据仓库分析与应用在数据仓库分析与应用阶段,应使用OLAP工具进行数据分析,并进行相关的数据挖掘模型构建和分析测试。

预计时间:2周3.3 应用案例设计在应用案例设计阶段,应根据所选的应用场景设计一个完整的应用案例,并运用已学习的数据挖掘技术进行数据分析和应用。

预计时间:4周4. 考核方式本次课程设计将会采用以下考核方式:•课程设计报告:60%•课程设计答辩:40%5. 参考文献•王珊,萨师煊,曹小青. 数据挖掘导论[M]. 北京:电子工业出版社,2018.•吴恩达. 机器学习[M]. 北京:机械工业出版社,2016.•Kimball R, Ross M. The Data Warehouse Toolkit[M]. John Wiley & Sons, 2013.6. 总结通过本次课程设计,学生们将会掌握数据仓库和数据挖掘的基本原理和工具使用方法,并能够在实际应用场景中进行数据建模、数据分析和数据挖掘模型构建等工作。

数据仓库与数据挖掘实验报告【范本模板】

数据仓库与数据挖掘实验报告【范本模板】

一、上机目的及内容目的:1.理解数据挖掘的基本概念及其过程;2.理解数据挖掘与数据仓库、OLAP之间的关系3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。

内容:将创建一个数据挖掘模型以训练销售数据,并使用“Microsoft 决策树”算法在客户群中找出购买自行车模式。

请将要挖掘的维度(事例维度)设置为客户,再将客户的属性设置为数据挖掘算法识别模式时要使用的信息.然后算法将使用决策树从中确定模式。

下一步需要训练模型,以便能够浏览树视图并从中读取模式。

市场部将根据这些模式选择潜在的客户发送自行车促销信息。

要求:利用实验室和指导教师提供的实验软件,认真完成规定的实验内容,真实地记录实验中遇到的各种问题和解决的方法与过程,并根据实验案例绘出模型及操作过程。

实验完成后,应根据实验情况写出实验报告。

二、实验原理及基本技术路线图(方框原理图或程序流程图)关联分析:关联分析是从数据库中发现知识的一类重要方法。

时序模式:通过时间序列搜索出重复发生概率较高的模式。

分类:分类是在聚类的基础上对已确定的类找出该类别的概念描述,代表了这类数据的整体信息,既该类的内涵描述,一般用规则或决策树模式表示.三、所用仪器、材料(设备名称、型号、规格等或使用软件)1台PC及Microsoft SQL Server套件四、实验方法、步骤(或:程序代码或操作过程)及实验过程原始记录( 测试数据、图表、计算等)创建Analysis Services 项目1.打开Business Intelligence Development Studio.2.在“文件”菜单上,指向“新建”,然后选择“项目”。

3.确保已选中“模板”窗格中的“Analysis Services 项目"。

4.在“名称”框中,将新项目命名为AdventureWorks.5.单击“确定”。

更改存储数据挖掘对象的实例1.在Business Intelligence Development Studio 的“项目”菜单中,选择“属性”。

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告一、实验目的和意义数据仓库和数据挖掘是现代大数据时代中关键的技术与方法,本实验旨在通过实践操作,了解数据仓库和数据挖掘的基本概念、流程和方法,并基于实验数据进行数据仓库与数据挖掘的实际应用。

二、实验内容及步骤本实验基于某电商平台的网购数据,通过数据仓库的建立和数据挖掘的过程,探索和发现隐藏在数据中的有价值信息。

具体步骤如下:1. 数据收集和预处理获取电商网购数据集,对数据进行清洗和预处理,如缺失值处理、异常值处理和数据集整合等,以保证数据的质量和可用性。

2. 数据仓库的建立基于处理后的数据,进行数据仓库的建立。

根据业务需求和分析目标,确定维度表和事实表的建模方法和关联关系,设计和构建星型或雪花模式的数据仓库。

3. 数据挖掘的实践基于已建立的数据仓库,进行数据挖掘的实践,包括关联规则挖掘、分类与预测、聚类分析、异常检测等。

通过使用数据挖掘工具,如R、Python中的Scikit-learn等,进行模型构建和算法实施,得到数据挖掘结果。

4. 结果分析与应用对数据挖掘结果进行分析和解读,发现和总结其中的规律和知识,得到业务价值和应用建议,为业务决策和目标达成提供支持和参考。

三、实验结果与分析本实验得到了以下数据挖掘结果:1. 关联规则挖掘通过关联规则挖掘的过程,发现了一些有趣和有用的关系,如购买商品A的用户有70%的概率也会购买商品B,可以利用这些关联规则进行交叉销售和推荐。

2. 分类与预测通过构建分类和预测模型,成功预测了用户的购买行为,可以预测出用户未来可能会购买的商品,为精准市场营销和库存管理提供决策支持。

3. 聚类分析通过聚类分析,将用户分为不同的群体,可以对不同群体采取不同的营销策略,提高用户满意度和购买转化率。

4. 异常检测通过异常检测,发现了一些异常行为和欺诈行为,可以及时进行监控和防范,保护用户权益和平台安全。

此外,还通过数据可视化的方式,将分析结果展示出来,如通过柱状图、折线图、散点图等方式进行可视化展示,直观地呈现数据的分布和关系。

数据仓库与数据挖掘教案

数据仓库与数据挖掘教案

数据仓库与数据挖掘教案教案:数据仓库与数据挖掘一、教学目标1. 理解数据仓库和数据挖掘的基本概念和作用;2. 掌握数据仓库的设计原则和构建过程;3. 了解数据挖掘的常见技术和应用领域;4. 能够利用数据仓库和数据挖掘技术进行数据分析和决策支持。

二、教学内容1. 数据仓库的概念和特点;2. 数据仓库的设计原则和构建过程;3. 数据挖掘的基本任务和流程;4. 数据挖掘的常见技术和应用案例;5. 数据仓库与数据挖掘在决策支持中的应用。

三、教学过程第一节:数据仓库的概念和特点(30分钟)1. 数据仓库的定义和作用;2. 数据仓库与传统数据库的区别;3. 数据仓库的特点和优势。

第二节:数据仓库的设计原则和构建过程(60分钟)1. 数据仓库的设计原则:一致性、稳定性、易用性等;2. 数据仓库的构建过程:需求分析、数据抽取、数据转换、数据加载等;3. 数据仓库的体系结构和组成要素。

第三节:数据挖掘的基本任务和流程(40分钟)1. 数据挖掘的概念和作用;2. 数据挖掘的基本任务:预测建模、分类、聚类、关联规则挖掘等;3. 数据挖掘的流程:数据清洗、特征选择、模型训练和评估等。

第四节:数据挖掘的常见技术和应用案例(60分钟)1. 数据挖掘的常见技术:决策树、神经网络、聚类分析、关联规则挖掘等;2. 数据挖掘在商业领域的应用案例:市场篮子分析、客户细分、欺诈检测等。

第五节:数据仓库与数据挖掘在决策支持中的应用(30分钟)1. 数据仓库与决策支持系统的关系;2. 数据仓库和数据挖掘在决策支持中的应用实例。

1. 讲授相结合的方式,通过概念讲解和实例分析,深入浅出地介绍数据仓库与数据挖掘的相关知识;2. 基于案例的学习,引导学生运用数据仓库和数据挖掘的技术进行实际问题的分析解决;3. 学生小组讨论和展示,促进学生的互动和合作。

五、教学评价1. 课堂参与度(10%):学生积极回答问题和提出自己的见解;2. 课堂练习与作业(30%):课堂练习和作业涵盖概念理解和应用实践;3. 课程设计项目(40%):小组合作设计一个数据仓库与数据挖掘的实际项目,包括需求分析、数据抽取、模型建立和结果评估等环节;4. 个人报告(20%):学生针对设计项目进行个人报告,展示理解和技术应用能力。

数据仓库与数据挖掘课程设计报告书

数据仓库与数据挖掘课程设计报告书

目录21. 绪论 ........................................................................21.1项目背景 ...................................................................21.2 提出问题................................................................22 数据库仓库与数据集的概念介绍 .................................................22.1数据仓库................................................................2.2数据集..................................................................233 数据仓库 ....................................................................33.1 数据仓库的设计..........................................................3.1.1数据仓库的概念模型设计.............................................333.1.2数据仓库的逻辑模型设计.............................................3.2 数据仓库的建立..........................................................333.2.1数据仓库数据集.....................................................43.2.2建立维表...........................................................4.数据挖掘操作 .................................................................444.1数据预处理..............................................................44.1.1描述性数据汇总.....................................................44.2决策树..................................................................125、实验心得 ...................................................................126、大总结 .....................................................................1. 绪论1.1项目背景在现在大数据时代,各行各业需要对商品及相关关节的数据进行收集处理,尤其零售行业,于企业对产品的市场需求进行科学合理的分析,从而预测出将来的市场,制定出高效的决策,给企业带来经济收益。

数据仓库与数据挖掘课程设计报告模板

数据仓库与数据挖掘课程设计报告模板

江西理工大学应用科学学院《数据仓库与数据挖掘》课程设计报告题目:某超市数据集的OLAP分析及数据挖掘系别:班级:姓名:二〇一二年六月目录一、建立数据仓库数据库结构和设置数据源 (1)1.任务描述 (2)2.建立数据仓库数据库 .................................................................................................................3.设置数据源 .................................................................................................................................二、销售数据OLAP分析..............................................................................................1.任务描述.....................................................................................................................................2.设计星型架构多维数据集(Sales) ..............................................................................................3.设计存储和数据集处理 .............................................................................................................4.OLAP分析..................................................................................................................................三、人力资源数据OLAP分析......................................................................................1.任务描述.....................................................................................................................................2.设计父子维度的多维数据集(HR) .............................................................................................3.修改多维数据集(HR)的结构.....................................................................................................4.设计存储和数据集处理.............................................................................................................5.OLAP分析 .................................................................................................................................四、数据仓库及多维数据集其它操作 ..........................................................................1.任务描述.....................................................................................................................................2.设置数据仓库及多维数据集角色及权限.................................................................................3.查看元数据.................................................................................................................................4.创建对策.....................................................................................................................................5.钻取.............................................................................................................................................6.建立远程Internet 连接 ............................................................................................................五、数据仓库高级操作 ..................................................................................................1.任务描述.....................................................................................................................................2.创建分区.....................................................................................................................................3.创建虚拟多维数据集 .................................................................................................................4.DTS调度多维数据集处理.........................................................................................................5.备份/还原数据仓库..................................................................................................................六、数据挖掘 ..................................................................................................................1.任务描述.....................................................................................................................................2.创建揭示客户模式的决策树挖掘模型 .....................................................................................3.决策树挖掘结果分析 .................................................................................................................4.创建聚类挖掘模型 .....................................................................................................................5.聚类挖掘结果分析 .....................................................................................................................6.创建基于关系数据表的决策树挖掘模型 .................................................................................7.浏览“相关性网络”视图 .........................................................................................................一、建立数据仓库数据库结构和设置数据源1、任务描述数据仓库数据库是将要在其中存放多维数据集、角色、数据源、共享维度和挖掘模型的一种结构。

数据仓库与挖掘课程设计

数据仓库与挖掘课程设计

数据仓库与挖掘课程设计一、课程目标知识目标:1. 理解数据仓库的基本概念、作用和结构,掌握数据仓库的设计原则和构建流程;2. 掌握数据挖掘的基本任务、方法和算法,了解其在实际应用中的价值;3. 了解数据预处理、数据清洗和数据集成等数据处理技术,并能运用到实际项目中;4. 掌握使用至少一种数据挖掘工具进行数据处理和分析。

技能目标:1. 能够独立设计并实现一个简单的数据仓库系统;2. 能够运用数据挖掘技术对给定数据集进行分析,提取有价值的信息;3. 能够运用数据处理技术对数据进行预处理,提高数据挖掘的质量和效率;4. 能够撰写数据分析报告,清晰表达分析结果和结论。

情感态度价值观目标:1. 培养学生对数据分析的兴趣和热情,激发他们主动探索数据背后规律的欲望;2. 培养学生具备团队协作精神,学会与他人共同解决问题;3. 培养学生具备良好的数据伦理意识,尊重数据隐私,遵循数据使用规范;4. 培养学生具备批判性思维,敢于质疑和挑战现有数据分析方法和结论。

本课程针对高年级学生,结合学科特点和教学要求,注重理论知识与实践操作的相结合。

通过本课程的学习,使学生能够掌握数据仓库与数据挖掘的基本知识和技能,为未来从事相关领域工作打下坚实基础。

同时,培养学生具备良好的情感态度和价值观,成为具有创新精神和实践能力的高素质人才。

二、教学内容1. 数据仓库基础- 数据仓库概念、作用和结构- 数据仓库设计原则和构建流程- 数据仓库与数据库的区别与联系2. 数据挖掘技术- 数据挖掘的基本任务、方法和算法- 分类、聚类、关联规则挖掘等经典算法- 数据挖掘在实际应用中的案例分析3. 数据处理技术- 数据预处理、数据清洗和数据集成- 数据转换和归一化方法- 数据降维和特征选择4. 数据挖掘工具与应用- 常见数据挖掘工具的介绍与比较- 数据挖掘工具的操作与使用- 实际数据集的数据挖掘与分析5. 实践项目与案例分析- 案例分析:行业数据仓库与挖掘项目- 实践项目:设计并实现一个简单的数据仓库系统- 实践项目:利用数据挖掘技术对给定数据集进行分析教学内容根据课程目标进行科学性和系统性组织,涵盖数据仓库与挖掘的基础知识、方法、技术和实践应用。

数据仓库与数据挖掘1实验报告册汽院科院2

数据仓库与数据挖掘1实验报告册汽院科院2

《数据仓库与数据挖掘》实验报告册20 - 20 学年第学期班级: 学号: 姓名:目录实验一 Microsoft SQL Server Analysis Services的使用 (3)实验二使用WEKA进行分类与预测 (7)实验三使用WEKA进行关联规则与聚类分析 (8)实验四数据挖掘算法的程序实现 (8)实验一 Microsoft SQL Server Analysis Services的使用实验类型: 验证性实验学时: 4实验目的:学习并掌握Analysis Services的操作, 加深理解数据仓库中涉及的一些概念, 如多维数据集, 事实表, 维表, 星型模型, 雪花模型, 联机分析处理等。

实验内容:在实验之前, 先通读自学SQL SERVER自带的Analysis Manager概念与教程。

按照自学教程的步骤, 完成对FoodMart数据源的联机分析。

建立、编辑多维数据集, 进行OLAP操作, 看懂OLAP的分析数据。

1、实验步骤:启动联机分析管理器:2、建立系统数据源连接。

建立数据库和数据源, 多维数据集编辑多维数据集3、设计存储和处理多维数据集4、浏览多维数据集中的数据按时间筛选数据实验小结:实验二使用WEKA进行分类与预测实验类型: 综合性实验学时: 4实验目的:掌握数据挖掘平台WEKA的使用。

综合运用数据预处理、分类与预测的挖掘算法、结果的解释等知识进行数据挖掘。

从而加深理解课程中的相关知识点。

实验内容:阅读并理解WEKA的相关中英文资料, 熟悉数据挖掘平台WEKA, 针对实际数据, 能够使用WEKA进行数据的预处理, 能选择合适的分类与预测算法对数据进行分析, 并能解释分析结果。

实验步骤:1.在开始->程序->启动WEKA, 进入Explorer界面, 熟悉WEKA的界面功能。

2.选择数据集(实验中的数据可以从网络获取), 如泰坦尼克号数据集, 将要处理的数据集转换成WEKA能处理的格式, 如.ARFF格式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西理工大学应用科学学院《数据仓库与数据挖掘》课程设计报告题目:某超市数据集的OLAP分析及数据挖掘系别:班级:姓名:二〇一二年六月目录一、建立数据仓库数据库结构和设置数据源 (1)1.任务描述 (2)2.建立数据仓库数据库 ................................................................................................................3.设置数据源 ................................................................................................................................二、销售数据OLAP分析...............................................................................................1.任务描述 ....................................................................................................................................2.设计星型架构多维数据集(Sales) .............................................................................................3.设计存储和数据集处理 ............................................................................................................4.OLAP分析.................................................................................................................................三、人力资源数据OLAP分析.......................................................................................1.任务描述....................................................................................................................................2.设计父子维度的多维数据集(HR) ............................................................................................3.修改多维数据集(HR)的结构....................................................................................................4.设计存储和数据集处理............................................................................................................5.OLAP分析 ................................................................................................................................四、数据仓库及多维数据集其它操作 ...........................................................................1.任务描述....................................................................................................................................2.设置数据仓库及多维数据集角色及权限 ................................................................................3.查看元数据................................................................................................................................4.创建对策....................................................................................................................................5.钻取............................................................................................................................................6.建立远程Internet 连接............................................................................................................五、数据仓库高级操作 ...................................................................................................1.任务描述 ....................................................................................................................................2.创建分区 ....................................................................................................................................3.创建虚拟多维数据集 ................................................................................................................4.DTS调度多维数据集处理........................................................................................................5.备份/还原数据仓库 .................................................................................................................六、数据挖掘 ...................................................................................................................1.任务描述 ....................................................................................................................................2.创建揭示客户模式的决策树挖掘模型 ....................................................................................3.决策树挖掘结果分析 ................................................................................................................4.创建聚类挖掘模型 ....................................................................................................................5.聚类挖掘结果分析 ....................................................................................................................6.创建基于关系数据表的决策树挖掘模型 ................................................................................7.浏览“相关性网络”视图 ........................................................................................................一、建立数据仓库数据库结构和设置数据源1、任务描述数据仓库数据库是将要在其中存放多维数据集、角色、数据源、共享维度和挖掘模型的一种结构。

然后跟预先设置好的ODBC数据源建立连接。

2、建立数据仓库数据库(1)展开树视图的Analysis Servers;(2)单击服务器名或右击选择连接,与Analysis Servers建立连接;(3)右击服务器名,然后单击“新建数据库”命令;(4)在“数据库”对话框中输入数据库名“教程DW”,单击<确定>;3、设置数据源(5)展开刚创建的“教程DW”数据库,可看到如下项目:数据源、多维数据集、共享维度、挖掘模型、数据库角色(6)右击“教程DW”数据库下的“数据源”文件夹,然后单击“新数据源”命令;(7)在“数据链接属性”对话框中,单击“提供程序”选项卡,选择“Microsoft OLE DB Provider for ODBC Drivers”;(8)单击“连接”选项卡,选择建好的ODBC数据源“FoodMart 2000”;(9)单击<确定>按钮关闭“数据链接属性”对话框图表 1 连接数据源二、销售数据OLAP分析1.任务描述以多维方式建立数据模型可简化联机业务分析,提高查询性能。

相关文档
最新文档