过程装备与控制工程专业英语翻译6

合集下载

过程装备与控制工程专业英语

过程装备与控制工程专业英语

5
The design of chemical reactors is probably the one activity which is unique to chemical engineering, and it is probably this function more than anything else which justifies the existence of chemical engineering as a distinct branch of engineering.
Physical treatment Steps
Produces

Recycle
1
The raw materials undergo a number of physical treatment steps to put them in the form in which they can be reacted chemically. They then pass through the reactor.The products of the reaction must then undergo further physical treatment- separations, purifications, etc. - for the final desired product to be obtained. 原料进行了一些物理处理的步骤,使它们能够发 生化学反应。然后让他们通过反应器。产物要经 历进一步的物理处理——分离,净化提纯等等, 以获得期望的最终产品。
只有……才有的 化学反应器的设计也许是一种只有化学工程领域才涉及 的工作。并且可能正是因为这种功能才奠定了化学工程 作为工程领域的一个特殊分支而存在的合理性

过程装备与控制工程专业英语

过程装备与控制工程专业英语

######Manufacturing Engineering Processes1.Classification of Manufacturing ProcessesThe following table shows the classification of manufacturing engineering processes used in shaping materials. Note that only typical examples are mentioned in the table.2.Examples of Manufacturing ProcessesForging .Forging can be characterized as: mass conserving, solid state of work material (metal), mechanical primary basic process-plastic deformation. A wide variety of forging processes is used .The most common type of forging is drop forging .The metal is heated to a suitable working temperature and placed in the lower die cavity .The upper die is then lower so that the metal is forced to fill the cavity. Excess material is squeezed out between the die faces at the periphery as flash, which is removed in a later trimming process. When the term gorging is used, it usually means hot gorging. The material loss in forging processes is usually quite small. Normally, forged components require some subsequent machining, since thetolerances and surfaces obtainable are not usually satisfactory a finished product. Forging machines include drop hammers and forging presses with mechanical or hydraulic drives. Es involve simple .The machines involve simple translatory motions.Rolling Rolling can be characterized as: mass conserving, solid state of material, mechanical primary basic process-plastic deformation. Rolling is extensively used in the manufacturing of plates, sheets, structural beams, and so on. An ingot is produced in casting, and then, in several stages of rolling it is reduced in thickness, usually while hot. Since the width of the work material is kept constant, its length is increased according to the reduction. After the last hot-rolling stage, a final stage is carried out cold to improve surface quality and tolerances and to increase strength. In rolling, the profiles of the rolls designed to produce the desired geometry.Powder Compaction Powder compaction can be characterized as; mass conserving, granular state of material, mechanical primary basic process-flow and plastic deformation. In this context, only compaction of metal powder is mentioned, but generally compaction of molding sand, ceramic materials, and so on, also belong in this category.In the compaction of metal powders, the die cavity is filled with a measured volume of powder and compacted at pressures typically around 500N/mm2. During this pressing phase, the particles are packed together and plastically deformed. Typical densities after compaction are 80% of the density of the solid material. Because of the plastic deformation, the particles are”welded” together, giving sufficient strength to withstand handling. After compaction, the components are heat-treated—sintered—normally at 70%~80% of the melting temperature of the material. The atmosphere for sintering must be controlled to prevent oxidation. The duration of the sintering process varies between 30 min and 2h. The strength of the components after sintering can, depend on the material and the process parameters closely approach the strength of corresponding solid material.The die cavity, in the closed position, corresponds to the desired geometry. Compaction machinery includes both mechanical and hydraulic presses. The production rates vary between 6 and 100 components per minute.加工工艺过程1.加工工艺过程的分类2.锻造工艺过程分类锻造锻造过程的特性可表述如下,质量守恒,工作材料为固态,力学基本过程为塑性变形过程。

新疆大学各个学院各个专业的英语翻译

新疆大学各个学院各个专业的英语翻译

新疆大学各个学院各个专业的英语翻译。

希望能够对大家有所帮助。

水平有限,希望大家在浏览的同时帮忙校正,不甚感激……化学化工学院College of Chemistry and Chemical Engineering化学工程与工艺Chemical Engineering and Technics材料化学Materials Chemistry高分子材料Multimolecular Materials环境工程Environmental Engineering化学Chemical应用化学Applied Chemical过程装备与控制工程Processing Units and Control Engineering新闻与传播学院College of Journalism and Communication新闻学Journalism广告学Advertising广播电视新闻学Radio and TV Journalism生命科学与技术学院College of Life Science and Technology生物工程Bioengineering生物技术Biotechnology生物科学Biological Science食品科学与工程Food Science and Engineering数学与系统科学学院College of Mathematics and Systems Science数学与应用数学Mathematics and Applied Mathematics信息与计算科学Information and Computation Science资源与环境科学学院College of Resources and Environmental Science地理信息系统Geographic Information System资源环境与城乡规划管理Resources Environment and the Management of Urban and Rural Planning地理科学Geography生态学Ecology环境科学Environmental Science物理科学与技术学院College of Physical Science and Technology物理学Physics应用物理学Applied Physics信息科学与工程学院College of Information Science and Engineering电子信息科学与技术Sience and Technology of Electronic Information电子信息工程Electronic and Information Engineering通信工程Communication Engineering计算机科学与技术Computer Sience and Technology外国语学院College of Foreign Languages英语English俄语Russian日语Japanese人文学院College of Humanities文学Literature中国少数民族语言文学(维汉双语翻译)Chinese Minority Languages and Literatures (Uigur-Chinese Interpretation & Translation)中国少数民族语言文学(哈文学方向)Chinese Minority Linguistics & Literature (Kazakhstan Literature)中国少数民族语言文学(维文学方向)Chinese Minority Linguistics & Literature (Uigur Literature)中国少数民族语言文学(维现代文秘方向)Chinese Minority Linguistics & Literature (Uigur Modern Secretary)中国少数民族语言文学(维吾尔语言)Chinese Minority Linguistics & Literature(Uigur)汉语言文学(现代文秘方向)Chinese Linguistics & Literature (Modern Secretary)汉语言文学(文学方向)Chinese Linguistics & Literature (Literature)汉语言文学(影视文学方向)Chinese Linguistics & Literature (Television Literature)汉语言Chinese地质与勘察工程学院 College of Geosciences and Reconnaaissance Engineering资源勘察工程Resource Reconnaissance Engineering机械工程学院 College of Mechanical Engineering工业工程Industrial Engineering机械设计制造及其自动化 Mechanical Designing and Manufacturing Automation机械类Mechanical交通工程Traffic Engineering工业设计Industrial Designing电气工程学院College of Electrical Engineering电气工程及其自动化Electrical Engineering and Automation电子信息工程Electronic Information Engineering热能与动力工程Heat Energy and Dynamical Engineering自动化Automation建筑工程学院College of Civil Engineering and Architecture工程管理Engineering Management城市规划Urban Planning建筑学Architecture土木工程(交通土建)Civil Engineering(Civil Traffic)建筑环境与设备工程 Architectural Environment Equipment Engineering土木工程(建筑工程方向)Civil Engineering(Architecture Engineering)艺术设计学院Colleage of Arts Design服装设计与工程(服装设计)Fashion Design and Engineering(Fashion Design) 艺术设计(装潢艺术设计)Arts Design (Decorative Painting Arts Design)艺术设计(电脑艺术设计)Arts Design (Computer Arts Design)软件学院College of Software计算机科学与技术Computer Science and Technology高等职业与技术学院College of Altitude V ocation and Technology汉语Chinese计算机网络技术Computer Network Technology旅游管理Tourism Management社区管理与服务Community Management and Services文秘Secretary英语English市场营销Marketing经济与管理学院College of Economic and Management工商管理Business Administration国际经济与贸易International economic and trade金融学Finance经济学Economics信息管理与信息系统Information Management and Information System市场营销Marketing法学院College of law法学Law Study政治与公共管理学院College of Politics and Public Management行政管理Administration公共管理Public Management社会工作Social Work社会学Sociology政治学Political Science旅游学院College of Tourism旅游管理Tourism Management。

过程装备与控制工程专业英语翻译

过程装备与控制工程专业英语翻译

Heat exchangers are equipment primarily for transferring heat between hot and cold have separate passages for the two streams and operate most versatile and widely used exchangers are the shell-and-tube types but various plate and other types are valuable and economically competitive or superior in some other types will be discussed briefly but most of the space following will be devoted to the shell-and-tube types primarily because of their importance but also because they are most completely documented in the they can be designed with a degree of confidence to fit into a other types are largely proprietary and for the most part must be process designed by their manufacturers.Plate-and-Frame Exchangers Plate-and-frame exchangers are assemblies of pressed corrugated plates on a frame. Gaskets in grooves around the periphery contain the fluids and direct the flows into and out of the spaces between the spacing and the presence of the corrugations result in high coefficients on both sides several times those of shell-and­ tube equipment and fouling factors are accessibility of the heat exchange surface for cleaning makes them particularly suitable for fouling services and where a high degree of sanitation is required as in food and pharmaceutical pressures and temperatures are limited by the natures of the available gasketing materials with usual maxima of 300 psig and 400 F.Since plate-and-frame exchangers are made by comparatively few concerns most process design information about them is proprietary but may be made available to serious factors and heat transfer coefficients vary with the plate spacing and the kinds of costs per unit of heat transfer are said to be lower than for shell-and-tube stainless steel construction the plate-and-frame construction cot is 50%-70% that of the shell-and-tube.Spiral Heat Exchangers In spiral heat exchangers the hot fluid enters at the center of the spiral element and flows to the periphery; flow of the cold liquid is countercurrent entering at the periphery and leaving at the transfer coefficients are high on both sides and there is no correction to the log mean temperature difference because of the true countercurrent'action. These factors may lead to surface requirements 20% or so less than those of shell-and-tube exchangers. Spiral types generally may be superior with highly viscous fluids at moderate pressures.Compact (Plate-Fin) Exchangers Compact exchangers are used primarily for gas they have surfaces of the order of 1200 m2 /m3 corrugation height mm corrugation thickness mm and fin density 230-700 fins/ large extended surface permits about four times the heat transfer rate per unit volume that can be achieved with shell-and-tube have been designed for pressiIres up to 80 atm or close spacings militate against fouling compact exchangers are used in cryogenic services and also forheat recovery at high temperatures in connection with gas mobile units as in motor vehicles compact exchangers have the great merits of compactness and light kind of arrangement of cross and countercurrent flows is feasible and three or more different streams can be accommodated in the same drop heat transfer relations and other aspects of design are well documented.Air Coolers In such equipment the process fluid flows through finned tubes and cooling air is blown across them with fans. The economics of application of air coolers favors services that allow 25-40 1" temperature difference between ambient air and process the range above 10 Mbtu/l air coolers can be e conomically competítíve with watercoolers when water of adequate quality is available in su Hicient amountDouble-Pipe Exchangers This kind of exchanger consísts of a central pipe supported withín a larger one by packíng glands. The straight length is limited to a maximum of about 20 ft;otherwise the center pipe wi1l sag and cause poor distribution in the is customary to operate with the high pressure high temperature high density and corrosive fluid in the inner pipe and the less demanding one in the annulus. The inner surface can be provide with scrapers as in dewaxing of oils or crystallization from longitudinal fins in the annular space can be used to improve heat transfer with gases or viscous greater heat transfer surfaces are needed several double-pipes can be stacked in any combination of series or parallel.Double-pipe exchangers have largely lost out to shell-and-tube units in recent may be worth considering in these situations:1. When the shell-side coefficient is less than half that of the tubeside;the annular side coeHicient can be made comparable to the tube side.2. Temperature crosses that require multishell shell-and-tube units can be avoided by the inherent true countercurrent flow in double pipes.3. High pressures can be accommodated more economically in the annulus than they can in a larger diameter shell.4. At duties requiring only 100~200 sqft of surface the double-pipe may be more economical even in comparison with off-the-shell unts.Shell-and-Tube Exchangers This type of exchangers will be discussed in the following section.(Selected from: Stanley Chemical Process Equiment Butterworth Publishers 1988.)Words and Expressionsn.通道,通过a.多用途的,通用的a.专利的,私有的v.成波纹状,起波纹;corrugation nn.沟,槽n.系数n.密封垫片v.弄脏,堵塞;fouling factor 污垢系数n.卫生a.制药的;药物的n. ; a.逆流n.翅片;v.装翅片v.妨碍,起作用a.冷冻的,低温的n.恢复,回收,再生n.填料盖,密封套v.下垂,下沉n.环状空间; annular a环形的.v.脱蜡n.结晶,结晶体n.堆积,烟囱α.内在的,固有的v.调节,适度,容纳Unit 19 换热器的种类换热器起初是为了在热流和冷流中传热。

过程装备与控制工程专业英语课文全部翻译

过程装备与控制工程专业英语课文全部翻译

材料力学是应用力学的一个分支,涉及受不同类型载荷的固体的性能。这是一个有多种名称的研究领域,包括: “材料强度” , “易变形体 的力学” 。本书中研究的固体包括受轴向载荷的杆,轴,梁,圆柱和由这些零件装配的机构。一般情况下,我们研究的目的是测定因受载而引 起的应力,应变和变形;如果当所有负荷量达到破坏载荷时,能够测得这些物理量,我们就可能得到一份完整的固体力学性能图。 在材料力学的研究中,理论分析和实验研究同等重要。很多情况下,我们通过逻辑推导来获得预测力学性能的公式和方程,但同时我 们必须认识到,这些公式不能用于实际情况中,除非材料的特性是已知的。只有在实验室中做过适当的实验之后我们才能使用这些特性。并 且,当工程中的重要的问题用逻辑推导方式不能有效的解决时,实验测量就成为一种实际需要。材料力学的发展历史是一个理论与实验极有 趣的结合,在一些情况下,是实验指出了得出正确结果的方式,在另一些情况下确是理论来做这些事。例如,著名的达芬奇(1452-1519)和伽 利略(1564-1642)通过做实验测定钢丝,杆,梁的强度,尽管在当时对他们的测试结果并没有充足的理论支持(以现代的标准) 。相反,著名的 数学家欧拉(1707-1783) ,在 1744 年就提出了柱体的数学理论并计算其极限载荷,而过了很久才有实验证明其结果的正确性。 因此,欧拉的 理论结果在很多年里仍然未被采用,但今天,它们奠定了圆柱理论的基础。 随着研究的不断深入,把理论推导和在实验上已确定的材料性质结合起来研究的重要性将是显然的。在这一节,首先。我们讨论一些基 本概念,如应力和应变,然后研究受拉伸,压缩和剪切的简单构件的性能。 1. Stress 应力 通过对等截面杆拉伸的研究初步解释应力和应变的概念[如图 1.4(a)]。 等截面杆是一个具有恒定截面的直线轴。这里,假设在杆的末端 施加轴向力 P,产生均匀的伸展或拉伸。假设沿垂直于轴线的方向切割杆,我们就能把杆的一部分当作自由体隔离出来[图 1.4(b)]。 张力 P 作用于杆的右端,在另一端就会出现一些力来代表杆被切除的那一部分。 这些力连续的分布在横截面上,类似于作用在被淹没物体表面的 连续的静水压力。力的密度,也就是单位面积上的力的大小称为应力,一般用 表示。假设应力是均匀分布在横截面上[如图 1.4(b)],我 们很容易得出它的大小等于密度 乘以杆的横截面积 A。而且,通过图 1.4(b)中所示物体的平衡,我们也能得到它与力 P 等大反向。因此, 我们得到

过程装备与控制工程专业英语词汇.

过程装备与控制工程专业英语词汇.

abrasiveness 研磨;腐蚀absolute 绝对的accumulate 堆积;积累acid 酸;酸性的,酸味的actuator 执行机构adjust 调整;调节agitation 搅拌air preheater 空气预热器air register 空气调节器airflow 气流alkali 碱allowance 公差,容差,容许量alloy 合金alternating current 交流电angle 角度,角apparatus 装置,仪器,仪表application 应用artificial 人造的;仿造的assembly 装配atmospheric 大气的,大气层的austenite 奥氏体automation 自动化,自动操作auxiliary 辅助设备,附属机构backflow 回流baffle 挡板;折流板;隔板batch 一批,批量bearing 轴承bellow 波纹管belt 带;腰带;地带blade 叶片blower 鼓风机boiler 锅炉bolt 螺栓bonnet 阀盖,阀帽,机罩box furnace 箱式炉brittle 易碎的,脆弱的burner 燃烧器bushing 轴衬;套管butterfly valve 蝶阀capacity 容积carbon steel 碳钢,碳素钢casing 机壳cast 浇铸catalyst 催化剂category 分类,种类cavity 腔;洞,凹处centrifugal force 离心力chamber 腔,室,船舱check valve 止回阀checklist 检查表,清单classify 分类;分等clockwise 顺时针方向的- 1 -coating 涂层,覆盖层coefficient 系数coil 盘管,线圈coking 结焦,焦化column 圆柱,柱形物combination 结合combustion 燃烧,氧化component 成分;组件;零件composition 组成,成分compressor 压缩机concentration 浓度concentric 同轴的,同心的condense 浓缩;凝结condenser 冷凝器;凝汽器conduction 传导cone roof 锥形顶constant 常量,常数contract 缩小,收缩contrast 对比,形成对照controller 控制器convection 对流convert 使转变;转换。

过程装备与控制工程专业英语

过程装备与控制工程专业英语

过程装备与控制工程专业英语学院:化学化工学院1.Static Analysis of Beams⑴ A bar that is subjected to forces acting trasverse to its axis is called a beam. In this section weconsider only a few of the simplest types of beams, such as those shown in Flag.1.2. In every instance it is assumed that the beam has a plane of symmetry that is parallel to the plane of the figure itself. Thus , the cross section of the beam has a vertical axis of symmetry .Also,it is assumed that the applied loads act in the plane of symmetry ,and hence bending of the beam occurs in that plane. Later we will consider a more general kind of bending in which the beam may have an unsymmetrical cross section.⑵ The beam in Fig.1.2, with a pin support at one end and a roller support at the other, is calleda simply support beam ,or a simple beam . The essential feature of a simple beam is that both ends of the beam may rotate freely during bending, but the cannot translate in lateral direction. Also ,one end of the beam can move freely in the axial direction (that is, horizontal). The supports of a simple beam may sustain vertical reactions acting either upward or downward .⑶ The beam in Flg.1.2(b) which is built-in or fixed at one end and free at the other end, iscalled a cantilever beam. At the fixed support the beam can neither rotate nor translate, while at the free end it may do both. The third example in the figure shows a beam with an overhang. This beam is simply supported at A and B and has a free at C.⑷ Loads on a beam may be concentrated forces, such as P1 and P2 in Fig.1.2(a) and (c), ordistributed loads loads, such as the the load q in Fig.1.2(b), the intesity. Distributed along the axis of the beam. For a uniformly distributed load, illustrated in Fig.1.2(b),the intensity is constant; a varying load, on the other hand, is one in which the intensity varies as a function of distance along the axis of the beam.⑸ The beams shown in Fig.1.2 are statically determinate because all their reactions can bedetermined from equations of static equilibrium. For instance ,in the case of the simple beam supporting the load P 1 [Fig.1.2(a)], both reactions are vertical, and tehir magnitudes can be found by summing moments about the ends; thus,we findL a L P R A )(1-= LL P R B 1= The reactions for the beam with an overhang [Fig.1.2 (c)]can be found the same manner.⑹ For the cantilever beam[Fig.1.2(b)], the action of the applied load q is equilibrated by avertical force RA and a couple MA acting at the fixed support, as shown in the figure. From a summation of forces in certical direction , we include thatqb R A =, And ,from a summation of moments about point A, we find)2(b a qb M A +=, The reactive moment MA acts counterclockwise as shown in the figure.⑺ The preceding examples illustrate how the reactions(forces and moments) of staticallydeterminate beams requires a considerition of the bending of the beams , and hence this subject will be postponed.⑻ The idealized support conditions shown in Fig.1.2 are encountered only occasionally inpractice. As an example ,long-span beams in bridges sometimes are constructionn with pin and roller supports at the ends. However, in beams of shorter span ,there is usually some restraint against horizonal movement of the supports. Under most conditions this restraint has little effect on the action of the beam and can be neglected. However, if the beam is very flexible, and if the horizonal restraints at the ends are very rigid , it may be necessary to consider their effects.⑼ Example Find the reactions at the supports for a simple beam loaded as shown infig.1.3(a ). Neglect the weight of the beam.⑽ Solution The loading of the beam is already given in diagrammatic form. The nature of thesupports is examined next and the unknow components of reactions are boldly indicated on the diagram. The beam , with the unknow reaction components and all the applied forces, is redrawn in Fig.1.3(b) to deliberately emphasiz this important step in constructing a free-body diagram. At A, two unknow reaction components may exist , since roller. The points of application of all forces are carefully noted. After a free-body diagram of the beam is made, the equations of statics are applied to abtain the sollution.∑=0x F ,R Ax =0∑+=0A M ,2000+100(10)+160(15)—R B =0,R B =+2700lb ↑∑+=0BM ,RAY(20)+2000—100(10)—160(5)=0,RAY=—10lb ↓ Check :∑+↑=0FX ,—10—100—160+270=0 ⑾ Note that ∑=0x F uses up one of the three independent equations of statics, thus only twoadditional reaction compones may be determinated from statics. If more unknow reaction components or moment exist at the support, the problem becomes statically indeterminate. ⑿ Note that the concentrated moment applied at C enters only the expressions for summationmoments. The positive sign of RB indicates that the direction of RB has been correctly assumed in Fig.1.3(b). The inverse is the case of RAY ,and the vertical reaction at a is downward. Noted that a check on the arithmetical work is available if the caculations aremade as shown.横梁的静态分析⑴ 一条绕其轴水平放置的棒就是所谓的横梁,本章节我们将研究最简单的横梁模型形式,如图1.2所示。

过程装备与控制工程专业英语

过程装备与控制工程专业英语

Reading Material 16Pressure Vessel Codes①History of Pressure Vessel Codes in the United States Through the late 1800s and early 1900s, explosions in boilers and pressure vessels were frequent. A firetube boiler explosion on the Mississippi River steamboat Sultana on April 27, 1865, resulted in the boat's sinking within 20 minuted and the death of 1500 soldiers going home after the Civil War. This type of catastrophe continued unabated into the early 1900s. In 1905, a destructive explosion of a firetube boiler in a shoe factory in Brockton, Massachusetts, killed 58 people, injured 117 others, and did $400000 in property damage. In 1906, another explosion in a shoe factory in Lynn, Massachusetts, resulted in death, injury, and extensive property damage. After this accident, the Massachusetts governor directed the formation of a Board of Boiler Rules. The first set of rules for the design and construction of boilers was approved in Massachusetts on August 30, 1907. This code was three pages long.②In 1911, Colonel E. D. Meier, the president of the American Society of Mechanical Engineers, established a committee to write a set of rules for the design and construction of boilers and pressure vessels. On February 13, 1915, the first ASMEBoiler Code was issued. It was entitled "Boiler Construction Code, 1914 Edition". This was the beginning of the various sections of the ASME Boiler and Pressure Vessel Code, which ultimately became Section 1, Power Boilers.③The first ASME Code for pressure vessels was issued as "Rules for the Construction of Unfired Pressure V essels", Section Ⅷ, 1925 edition. The rules applied to vessels over 6 in. indiameter, volume over 1.5 3ft, and pressure over 30 psi. In December 1931, a Joint API-ASMECommittee was formed to develop an unfired pressure vessel code for the petroleum industry. The first edition was issued in 1934. For the nest 17 years, two separated unfired pressure vessel codes existed. In 1951, the last API-ASME Code was issued as a separated document. In 1952, the two codes were consolidated into one code----the ASME Unfired Pressure Vessel Code, Section Ⅷ. This continued until the 1968 edition. At that time, the original code became Section Ⅷ, Division 1, Pressure Vessels, and another new part was issued, which was Section Ⅷ, Division 2, Alternative Rules for Pressure Vessels.④The ANSI/ASME Boiler and Pressure Vessel Code is issued by the American Society of Mechanical Engineers with approval by the American National Standards Institute (ANSI) as an ANSI/ASME document. One or more sections of the ANSI/ASME Boiler and Pressure Vessel Code have been established as the legal requirements in 47 states in the United Stated and in all provinces of Canada. Also, in many other countries of the world, the ASME Boiler and Pressure Vessel Code is used to construct boilers and pressure vessels.⑤Organization of the ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code is divided into many sections, divisions, parts, and subparts. Some of these sections relate to a specific kind of equipment and application; others relate to specific materials and methods for application and control of equipment; and others relate to care and inspection of installed equipment. The following Sections specifically relate to boiler and pressure vessel design and construction.Section ⅠPower Boilers (1 volume)Section ⅢDivision 1 Nuclear Power Plant Components (7 volumes)Division 2 Concrete Reactor Vessels and Containment (1 volume)Code Case Case 1 Components in Elevated Temperature service (in Nuclear Code N-47Case book)Section ⅣHeating Boilers (1 volume)Section ⅧDivision 1Pressure Vessels (1 volume)Division 2 Alternative Rules for Pressure Vessels (1 volume)Section ⅩFiberglass-Reinforced Plastic Pressure Vessels (1 volume)⑥A new edition of the ASME Boiler and Pressure Vessel Code is issued on July 1 every three years and new addenda are issued every six months on January 1 and July 1. The new edition of the code becomes mandatory when it appears. The addenda are permissive at the date of issuance and become mandatory six months after that date.⑦Worldwide Pressure Vessel Codes In addition to the ASME Boiler and Pressure Vessel Code, which is used worldwide, many other pressure vessel codes have been legally adopted in various countries. Difficulty often occurs when vessels are designed in one country, built in another country, and installed in still a different country. With this worldwide construction this is often the case.⑧The following list is a partial summary of some of the various codes used in different countries:Australia Australian Code for Boilers and Pressure Vessels, SAA Boiler Code (Series AS 1200):AS 1210, Unfired Pressure Vessels and Class 1 H, Pressure Vessels of Advanced Design and Construction, Standards Association of Australia.France Construction Code Calculation Rules for Unfired Pressure Vessels, Syndicat National de la Chaudronnerie et de la Tuyauterie Industrielle (SNCT), Paris, France.United Kingdom British Code BS. 5500, British Standards Institution, London, England.Japan Japanese Pressure V essel Code, Ministry of Labour, published by Japan Boiler Association, Tokyo, Japan; Japanese Standard, Construction of Pressure Vessels, JIS B 8243, published by the Japan Standards Association, Tokyo, Japan; Japanese High Pressure Gas Control Law, Ministry of International Trade and Industry, published by The Institution for Safety of High Pressure Gas Engineering, Tokyo, Japan.Italy Italian Pressure Vessel Code, National Association for Combustion Control (ANNCC), Milan, Italy.Belgium Code for Good Practice for the Construction of Pressure Vessels, Belgian Standard Institute (IBN), Brussels, Belgium.Sweden Swedish Pressure Vessel Code, Tryckkarls kommissioner, the Swedish Pressure Vessel Commission, Stockholm, Sweden.压力容器准则①美国的压力容器规范历史在19世纪和20世纪初期,锅炉和压力容器频繁发生爆炸事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Reading Material 6Stainless SteelStainless steels do not rust in the atmosphere as most other steels do. The term "stainless" implies a resistance to staining, rusting, and pitting in the air, moist and polluted as it is, and generally defines a chromium content in excess of 11 % but less than 30%. And the fact that the stuff is "steel" means that the base is iron.Stainless steels have room-temperature yield strengths that range from 205 MPa (30 ksi) to more than 1725 MPa (250 ksi). Operating temperatures around 750 C (1400 F) are reached. At the other extreme of temperature some stainless steels maintain their toughness down to temperatures approaching absolute zero.With specific restrictions in certain types, the stainless steels can be shaped and fabricated in conventional ways. They can be produced and used in the as-cast condition; shapes can be produced by powder-metallurgy techniques; cast ingots can be rolled or forged (and this accounts for the greatest tonnage by far). The rolled product can be drawn, bent, extruded, or spun. Stainless steel can be further shaped by machining, and it can be joined by soldering, brazing, and welding. It can be used as an integral cladding on plain carbon or low-alloy steels.The generic term "stainless steel" covers scores of standard compositions as well as variations bearing company trade names and special alloys made for particular applications. Stainless steels vary in their composition from a fairly simple alloy of, essentially, iron with 11% chromium, to complex alloys that include 30% chromium, substantial quantities of nickel, and half a dozen other effective elements. At the high-chromium, high-nickel end of the range they merge into other groups of heat-resisting alloys, and one has to be arbitrary about a cutoff point. If the alloy content is so high that the iron content is about half, however, the alloy falls outside the stainless family. Even with these imposed restrictions on composition, the range is great, and naturally, the properties that affect fabrication and use vary enormously. It is obviously not enough to specify simply a "stainless steel.”Classification the various specifying bodies categorize stainless steels according to chemical composition and other properties. However, all the stainless steels, whatever specifications they conform to, can be conveniently classified into six major classes that represent three distinct types of alloy constitution, or structure. These classes are ferritic, martensitic, austenitic, manganese-substituted austenitic, duplex austenitic ferritic, and precipitation-hardening. Each class is briefly described below.(1) Ferrous stainless steels: This class is so named because the crystal structure of the steel is the same as that of iron at room temperature. The alloys in the class are magnetic at room temperature and up to their Curie temperature (about 750 C; 1400 F). Common alloys in the ferrous class contain between 11% and 29% chromium, no nickel, and very little carbon in the wrought condition.(2)Martensitic stainless steels: Stainless steels of this class, whichnecessarily contain more than 11 % chromium, have such a great hardenability that substantial thickness will harden during air cooling, and nothing more drastic than oil quenching is ever required. The hardness of the as-quenched martensitic stainless steel depends on its carbon content. However, the development of mechanical properties through quenching and tempering is inevitably associated with increased susceptibility to corrosion.(3)Austenitic stainless steels: The traditional and familiar austeniticstainless steels have a composition that contains sufficient chromium to offer corrosion resistance, together with nickel to ensure austenite at room temperature and below. The basic austenitic composition is the familiar l8% chromium, 8% nickel alloy. Both chromium and nickel contents can be increased to improve corrosion resistance, and additional elements (most commonly molybdenum) can be added to further enhance corrosion resistance.(4)Manganese-substituted austenitic stainless steels: The austeniticstructure can be encouraged by elements other than nickel, and the substitution of manganese and nitrogen produces a c1ass that we believe is sufficiently different in its properties to be separated from the chromium-nickel austenitic class just described. The most important difference lies in the higher strength of the manganese-substituted alloys.(5) Duplex austenitic-ferrous stainless steels: The structure of these steels isa hybrid of the structures of ferrite and austenite; and the mechanical properties likewise combine qualities of each component steel type. The duplex steels combine desirable corrosion and mechanical properties, and their use is as a result increasing in both wrought and cast form.(6) Precipitation-hardening stainless steels: Stainless steels can be designed so that their composition is amenable to precipitation hardening. This class cuts across two of the other c1asses, to give us martensitic and austenitic precipitation-hardening stainless steels. In this class we find stainless steels with the greatest useful strength as well as the highest useful operating temperature.Properties In selection of stainless steels, three kinds of properties have to be considered: (1) Physical properties: density, thermal conductivity, electrical resistivity, and so on; (2) Mechanical properties: strength, ductility, hardness, creep resistance, fatigue, and so on; and (3) corrosion-resistant properties. Note that properties of stainless steels are substantially influenced by chemica1 composition and microstructure. Hence specifications include chemical composition, or, more correctly, an analysis of the most important elements (traces of unreported elements also may be present) as well as a heat treatment that provides the optimum structure.Applications Since stainless steels were first used in cutlery industry, the number of applications has increased dramatically. The relative importance of the major fields of application for flat and long stainless steel products is shown in Table 1. Chemical and power engineering is the largest market for both long and flat products. It began in about 1920 with the nitric acid industry. Today, it includesan extremely diversified range of service conditions, including nuclear reactor vessels, heat exchangers, oil industry tubular, components for the chemical processing and pulp and paper industries, furnace parts, and boilers used in fossil fuel electric power plants.Table 1阅读材料 6不锈钢不锈钢就像其他大多数的钢在空气中不会生锈,“不锈的”这个术语暗示了在空气中抵抗污点,生锈和腐蚀,还具有抵抗潮湿和腐蚀。

相关文档
最新文档