第15讲 一元一次不等式组培优专题
一元一次不等式组含参培优专题

一元一次不等式组含参培优专题1.若关于x 的不等式组0721x m x -⎧⎨-⎩<≤的整数解共有3个,则m 的取值范围是( ) A .56m << B .56m ≤< C .56m ≤≤ D .67m ≤<2.已知关于x 的不等式组:2123x a x b +⎧⎨-⎩<>的解集是32x -<<,则a b +的值为( ) A .3- B .2 C .0 D .6-3.如果不等式组2223x a x b ⎧+⎪⎨⎪-⎩≥<的解集是03x ≤<,那么a b 的值为____________. 4.关于x 的不等式组352x a x a -⎧⎨-⎩><无解,则a 的取值范围是____________. 5.若关于x 的不等式组01321x m x -⎧⎨-⎩>≥的所有整数解的和是15,则m 的取值范围是____________.6.关于x 的不等式组30340x x a -⎧⎨+⎩<<的解集中为3x <,则a 的取值范围是____________. 7.不等式组1726m x m x ++⎧⎨⎩<<<<有解且解集是27x m +<<,则m 的取值范围为____________.8.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y -<<,则k 的取值范围____________. 9.已知关于x 的不等式组211x m n x m ++⎧⎨--⎩><,的解集为12x -<<,则2020()m n +的值是____________.10.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<有解,则m 的取值范围为____________. 11.若关于x 的一元一次不等式组1020x x a -⎧⎨-⎩><有2个整数解,则a 的取值范围是____________.12.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<无解,则m 的取值范围是____________. 13.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<有解,则m 的取值范围为____________. 14.若不等式组420x a x ⎧⎨-⎩><的解集是x a >,则a 的取值范围是____________. 15.若关于x 的不等式组6050x a x b ⎧-⎨-⎩≥<的整数解仅有1,2,3,则a b +的最大值为____________. 16.若x 为实数,定义:[]x 表示不大于x 的最大整数.(1)例如[1.6]1=,[]π= ,[ 2.82]-= .(请填空)(2)[]1x +是大于x 的最小整数,对于任意的实数x 都满足不等式[][]1x x x +≤<,利用这个不等式,求出满足[]21x x =-的所有解.17.已知方程组317x y a x y a -=+⎧⎨+=--⎩. (1)求方程组的解(用含有a 的代数式表示);(2)若方程组的解x 为负数,y 为非正数,且4a b +=,求b 的取值范围.18.已知关于x、y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y⎧+⎨+⎩≤>,求满足条件的m的整数解.19.若关于x的不等式组23(3)1324x xxx a-+⎧⎪⎨++⎪⎩<>有四个整数解,求a的取值范围.20.对x ,y 定义一种新的运算A ,规定:()()()ax by x y A x y ay bx x y ⎧+⎪=⎨+⎪⎩,当时,,当时≥<,(其中0ab ≠).已知(11)0A =,,(02)2A =,.(1)求a ,b 的值;(2)若关于正数p 的不等式组(321)4(132)A p p A p p m -⎧⎨---⎩,,>≤恰好有2个整数解,求m 的取值范围; (3)请直接写出()()22220A x y A y x +=,,时,满足条件的x ,y 的关系.21.对x 、y 定义一种新运算T ,记为:()T x y ,.(1)若()21T x y x y =+-,,如:(01)02111T =+⨯-=,,则(13)T =, ;(2)若()1T x y ax by =+-,,(其中a 、b 为常数),且(11)2T -=-,,(42)3T =,. ①求a 、b 的值;②若关于m 的不等式组(254)4(32)T m m T m m P ⎧-⎨-⎩,,≤>恰好有2个整数解,求实数P 的取值范围.。
七年级下册——不等式专题培优

七年级下册——不等式专题培优
七年级下册最难的章节莫过于方程组和不等式组的运用,以前教七年级的时候,很多同学都表示这一块没有思路,七年级下册——不等式专题培优
目录1
目录2
解一元一次不等式组时,可通过数轴来直观表示各不等式的解集,其公共部分即为不等式组的解集,也可通过口诀来确定不等式组的解集,口诀内容是:“同大取大,同小取小,大小小大中间找,大大小小找不到。
”
列一元一次不等式解应用题的关键是先根据题意找不等关系,列不等式,然后解不等式,求出未知数的解集,再根据题目的实际意义选择适合题意的未知数的值。
找不等关系时,要关注题中的关键词,如:超过、最多、不少于、至少、合算等等,特别是在设元时,如果能运用一定的技巧,可让问题化难为易,达到事半功倍的效果。
666
转发,赠送此文讲义。
(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料

一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。
初一下册数学讲义: 一元一次不等式(组)复习培优

初一数学讲义一元一次不等式(组)一.教学衔接1.检查上周练习,并复习回顾考点。
2.引入新课。
课前检测1.若不等式组⎩⎨⎧ax x 3的解集是a x ,则a 的取值范围是( )A.3 a B 3=a . C.3 a D.3≥a2.不等式()()0352 x x -+的解集是( )A.253- x x 且B.253 x x 或-C.325 x -D.253 x - 3.若不等式组⎩⎨⎧b x a x 无解,则不等式组⎩⎨⎧--bx a x 22 的解集是( )A.a x b --22B.22--a x bC.b x a --22D.无解4.某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表: 型号A 型B 型 成本(元/台)2200 2600 售价(元/台) 2800 3000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.二.本章知识梳理1.基本概念(1)不等式、不等式的解和不等式的解集、解不等式;(2)不等式的性质;(3)一元一次不等式、一元一次不等式组、不等式组的解集、解不等式组.2.方法与思考(1)解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、(未知数)系数化为1.注意当去分母、系数化为1时,两边都乘以或除以负数时,不等号的方向要改变.(2)解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求这几个不等式解集的公共部分.在数轴上表示不等式(组)的解集一方面要注意射线的方向,另外,解集中有等号时,用实心点表示,无等号时用空心圈表示.(3)列一元一次不等式(组)解决实际问题的方法步骤:①设未知数;②根据不等关系列出一元一次不等式(组);③解一元一次不等式(组);④对解的结果进行解释和检验,写出答案.三.例题解析1、不等式4(x -2)>2(3x + 5)的非负整数解的个数为( )A .0个B .1个C .2个D .3个2、已知关于x 的方程x a x 34122-=+的解是非正数,求a 的取值范围.3、当a 在什么范围取值时,方程组 ⎩⎨⎧-=-=+123232a y x a y x 的解都是正数?4、若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a -3|+(b -4)=0,c 是不等式组⎪⎪⎩⎪⎪⎨⎧++--21632433x x x x <> 的最大整数解,求△ABC 的周长。
第15讲 一元一次不等式组培优专题

第15讲 一元一次不等式组培优专题一、含参不等式(组)有关的问题1. 探讨不等式组的解集(写出,a b 满足的关系式)(1)关于x 的不等式组x a x b >⎧⎨<⎩有解,则a b < (2)关于x 的不等式组x a x b>⎧⎨<⎩无解,则(3)关于x 的不等式组x a x b ≥⎧⎨<⎩有解,则 (4)关于x 的不等式组x a x b≥⎧⎨<⎩无解,则(5)关于x 的不等式组x a x b ≥⎧⎨≤⎩有解,则 (6)关于x 的不等式组x a x b ≥⎧⎨≤⎩无解,则变式:(1)若不等式组⎩⎨⎧>≤11x m x 无解,则m 的取值范围是(2)若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是(3)若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是(4)如果关于x 的不等式组x a x b >⎧⎨<⎩无解,则关于y 的不等式组11y a y b +>⎧⎨+<⎩的解如何?2. (1)若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______(2)如果关于x 的不等式组7060x m x n -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的整数对(),m n 共有 对.(3)已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围3.已知不等式13a x ->的每一个解都是21122x -<的解,求a 的取值范围变式:如果关于x的不等式组224x ax a>-⎧⎨<-⎩有解,并且所有解都是不等式组-6<x≤5的解,求a的取值范围.4. 若关于x的不等式组2113xxx k-⎧>-⎪⎨⎪-<⎩的解集为2x<,求k的取值范围5.不等式组1235a x ax-<<+⎧⎨<<⎩的解集是3x<<2a+,求a的取值范围6.已知不等式组111x x x k >-⎧⎪<⎨⎪<-⎩(1)当2k =-时,不等式组的解集是__ ___,当3k =时,不等式组的解集是___ __;(2)由(1)可知,不等式组的解集是随数k 的值的变化而变化.当k 为任意有理数时,写出不等式组的解集.二、不等式(组)与方程(组)7.已知关于x 的方程23x k kx -=-无负数解,求k 的取值范围.变式:已知关于x 的方程20142014a x x -=只有负数解,求a 的取值范围8.已知非负实数x ,y ,z 满足123234x y z ---==,记345W x y z =++,求W 的最大值与最小值.三.绝对值不等式(1)若x a <(0)a >,则a x a -<< 不等式2x <的解集为(2)若x a >(0)a >,则x a >或x a <- 不等式>5x 的解集为。
一元一次不等式(公开课优秀课件)

预算管理
使用不等式来控制开销,在 有限预算内实现最大化利用。
运动训练
通过不等式来设定目标和限 制,实现效果最优的运动训 练计划。
投资决策
运用不等式进行资产配置和 投资决策,最大化回报并保 持风险可控。
一元一次不等式的综合应用
实际问题求解
强化练习题目演练
完成总结和回顾
运用所学不等式解决实际问题, 如最优化、限制条件下的优化等。
减法法
2
பைடு நூலகம்
未知数的系数为1。
通过逐步减去等式两边的数值来求解不
等式,使得未知数的系数为1。
3
乘法法
通过逐步乘以一个合适的数来求解不等
分类讨论法
4
式,使得未知数的系数为1。
通过将不等式条件分为不同情况进行讨 论,求解得到最终解集。
一元一次不等式的生活应用
发现不等式在生活中的实际应用,从解决日常问题到优化方案,学习如何将数学知识运用于实际场景。
一元一次不等式(公开课 优秀课件)
在本课中,我们将探索一元一次不等式的基本概念、解决方法和实际应用。 通过丰富的例子和图像,让我们一起追寻这个有趣的数学领域。
一元一次不等式的基本概念
了解一元一次不等式的定义和解集,并探索不等式的性质。通过实例分析和图像解释,深入理解这一重要概念。
不等式的定义
一元一次不等式是一个包含一个 未知数的线性不等式,用于表示 数值之间的不等关系。
通过大量练习题和实例分析,提 高对一元一次不等式的运用能力。
总结所学知识,回顾解题思路, 巩固对一元一次不等式的理解和 应用。
不等式的解集
解集是满足给定不等式条件的所 有数值的集合。
不等式的性质
不等式具有传递性、加法性和乘 法性等性质,我们将一一探究它 们。
一元一次不等式组含参培优专题-教师版

一元一次不等式组含参培优专题1.若关于x 的不等式组0721x m x -⎧⎨-⎩<≤的整数解共有3个,则m 的取值范围是( ) A .56m <<B .56m ≤<C .56m ≤≤D .67m ≤<【答案】B 2.已知关于x 的不等式组:2123x a x b +⎧⎨-⎩<>的解集是32x -<<,则a b +的值为( ) A .3-B .2C .0D .6-【答案】D 3.如果不等式组2223x a x b ⎧+⎪⎨⎪-⎩≥<的解集是03x ≤<,那么a b 的值为____________. 【答案】94.关于x 的不等式组352x a x a -⎧⎨-⎩><无解,则a 的取值范围是____________. 【答案】12a -≤ 5.若关于x 的不等式组01321x m x -⎧⎨-⎩>≥的所有整数解的和是15,则m 的取值范围是____________.【答案】34m ≤<或43m --≤<【解析】解:解不等式组01321x m x ->⎧⎨-⎩得:6m x <, 所有整数解的和是15,15654=++, 6x ∴=,5,4,因此不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,1-,2-,3-,34m ∴<或43m -<-;故答案为:34m <或43m -<-.6.关于x 的不等式组30340x x a -⎧⎨+⎩<<的解集中为3x <,则a 的取值范围是____________. 【答案】94a -≤ 7.不等式组1726m x m x ++⎧⎨⎩<<<<有解且解集是27x m +<<,则m 的取值范围为____________.【答案】51m --≤<8.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y -<<,则k 的取值范围____________. 【答案】112k << 9.已知关于x 的不等式组211x m n x m ++⎧⎨--⎩><,的解集为12x -<<,则2020()m n +的值是____________.【答案】110.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<有解,则m 的取值范围为____________. 【答案】2m >11.若关于x 的一元一次不等式组1020x x a -⎧⎨-⎩><有2个整数解,则a 的取值范围是____________.【答案】68a <≤12.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<无解,则m 的取值范围是____________. 【答案】2m ≤13.若不等式组11324x x x m+⎧-⎪⎨⎪⎩<<有解,则m 的取值范围为____________. 【答案】2m >14.若不等式组420x a x ⎧⎨-⎩><的解集是x a >,则a 的取值范围是____________. 【答案】2a ≥15.若关于x 的不等式组6050x a x b ⎧-⎨-⎩≥<的整数解仅有1,2,3,则a b +的最大值为____________. 【答案】26【解析】解:6050x a x b -⎧⎨-<⎩①②, 解不等式①得:6a x, 解不等式②得:5b x <, ∴不等式组的解集为65a b x <, 关于x 的不等式组6050x a x b -⎧⎨-<⎩的整数解仅有1,2,3, 016a ∴<,345b <, 解得:06a <,1520b <a ∴的最大值为6,b 的最大值为20, a b ∴+的最大值为26.16.若x 为实数,定义:[]x 表示不大于x 的最大整数.(1)例如[1.6]1=,[]π= ,[ 2.82]-= .(请填空)(2)[]1x +是大于x 的最小整数,对于任意的实数x 都满足不等式[][]1x x x +≤<,利用这个不等式,求出满足[]21x x =-的所有解.【答案】解:(1)[]3π=,[ 2.82]3-=-.(2)对任意的实数x 都满足不等式[][]1x x x <+,[]21x x =-, 21211x x x ∴-<-+, 解得01x <,21x -是整数,0.5x ∴=或1x =,故答案为:3,3-.17.已知方程组317x y a x y a -=+⎧⎨+=--⎩. (1)求方程组的解(用含有a 的代数式表示);(2)若方程组的解x 为负数,y 为非正数,且4a b +=,求b 的取值范围.【答案】解:(1)317x y a x y a -=+⎧⎨+=--⎩①②, ①+②得:226x a =-,解得:3x a =-,②-①得:248y a =--,解得:24y a =--,所以方程组的解是:324x a y a =-⎧⎨=--⎩; (2)方程组的解x 为负数,y 为非正数, ∴30240a a -<⎧⎨--⎩, 解得:23a -<,∴乘以1-得:23a ->-,加上4得:641a ->,4a b +=,4b a ∴=-,b ∴的取值范围是16b <.18.已知关于x 、y 的方程组22324x y m x y m -=⎧⎨+=+⎩的解满足不等式组3050x y x y ⎧+⎨+⎩≤>,求满足条件的m 的整数解.【答案】解:22324x y m x y m -=⎧⎨+=+⎩①②, ①+②,得:334x y m +=+,②-①,得:54x y m +=+,由3050x y x y +⎧⎨+>⎩可得34040m m +⎧⎨+>⎩,解得:443m -<-, 则满足条件的m 的整数解为3-、2-.19.若关于x 的不等式组23(3)1324x x x x a -+⎧⎪⎨++⎪⎩<>有四个整数解,求a 的取值范围. 【答案】解:由不等式①,得2391x x -<-+, 解得8x >,由不等式②,得3244x x a +>+,解得24x a <-,不等式组有四个整数解,即:9,10,11,12, 122413a ∴<-,解得11542a -<-. 20.对x ,y 定义一种新的运算A ,规定:()()()ax by x y A x y ay bx x y ⎧+⎪=⎨+⎪⎩,当时,,当时≥<,(其中0ab ≠).已知(11)0A =,,(02)2A =,.(1)求a ,b 的值;(2)若关于正数p 的不等式组(321)4(132)A p p A p p m -⎧⎨---⎩,,>≤恰好有2个整数解,求m 的取值范围; (3)请直接写出()()22220A x y A y x +=,,时,满足条件的x ,y 的关系.【答案】解:(1)根据题中的新定义得:022a b a +=⎧⎨=⎩, 解得:11a b =⎧⎨=-⎩; (2)由(1)化简得:(A x ,(),),()x y x y y y x x y ⎧-=⎨-<⎩当时当时, ∴在关于正数p 的不等式组(3,21)4(13,2)A p p A p p m->⎧⎨---⎩中,3(21)10p p p --=+>,13(2)10p p p ----=--<,(3,21)32114A p p p p p ∴-=-+=+>,(13,2)2131A p p p p p m ---=-++=+, 3p ∴>,1p m -恰好有2个整数解,2∴个整数解为4,5.516m ∴-<67m ∴<.答:m 的取值范围为67m <.(3)2(A x ,22)(y A y +,2)0x =, ∴当22x y 时,22220x y x y -+-=, 22x y ∴=,x y ∴=或x y =-;当22y x 时,22220y x y x -+-=,x y ∴=或x y =-.答:满足条件的x ,y 的关系为x y =或x y =-.21.对x 、y 定义一种新运算T ,记为:()T x y ,.(1)若()21T x y x y =+-,,如:(01)02111T =+⨯-=,,则(13)T =, ;(2)若()1T x y ax by =+-,,(其中a 、b 为常数),且(11)2T -=-,,(42)3T =,. ①求a 、b 的值;②若关于m 的不等式组(254)4(32)T m m T m m P ⎧-⎨-⎩,,≤>恰好有2个整数解,求实数P 的取值范围. 【答案】解:(1)(1,3)12316T =+⨯-=, 故答案为:6;(2)①由题意,得:124213a b a b --=-⎧⎨+-=⎩, 解得:1343a b ⎧=⎪⎪⎨⎪=⎪⎩;②由题意得()()45421433432133mmmmP-⎧+-⎪⎪⎨-⎪+->⎪⎩①②,解不等式①,得:514 m,解不等式②,得:937Pm-<,不等式组恰好有2个整数解,∴此整数解为1、2,则93237P-<,解得:543P-<-.。
一元一次不等式培优专题

一元一次不等式综合【例题求解】【例题1】(1)已知关于x 的不等式组⎩⎨⎧>-≥-0025a x x 无解,则a 的取值围是是___________。
思路点拨:从数轴上看,原不等式组种两个不等式的解集没有公共部分。
(2)已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值围是___________。
思路点拨:由题意,结合数轴,理解3a x ≤。
【例题2】如果关于x 的不等式组⎩⎨⎧<-≥-0607n x m x 的整数解仅为1、2、3,那么适合这个不等式组的整数m 和n 的值是多少。
思路点拨:借助数轴,分别建立m 、n 的不等式,确定整数m 、n 的值。
【例题3】解下列不等式(组)(1)n x m +<+332 (2)102≤-x(3)求不等式321≤-+-x x 的所有整数解。
思路点拨:与方程类似,解含有字母系数的不等式(组)需要对字幕系数进行讨论;解含有绝对值符号的不等式(组)的关键是去掉绝对值符号,化为一般的不等式求解。
【例题4】已知三个非负数a 、b 、c 满足132523=-+=++c b a c b a 和,若c b a m 73-+=。
求m 的最大值与最小值。
思路点拨:本体综合了方程、不等式组的丰富知识,解题的关键是通过解方程组,用含一个字母的代数式来表示m ,通过解不等式组,确定这个字母的取值围,在约束条件下,求m 的最大值与最小值。
【课堂练习】1、 若关于不等式组⎪⎩⎪⎨⎧<++>+01456m x x x 的解集为4<x ,则m 的取值围是______________。
2、 若不等式组⎩⎨⎧>-<-3212b x a x 的解集是11<<-x ,则)1)(1(-+b a 的值是_____________。
3、 已知0<a ,且a x a ≤,则262---x x 的最小值是______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲 一元一次不等式组培优专题
一、含参不等式(组)有关的问题
1. 探讨不等式组的解集(写出,a b 满足的关系式)
(1)关于x 的不等式组x a x b >⎧⎨<⎩
有解,则a b < (2)关于x 的不等式组x a x b
>⎧⎨<⎩无解,则
(3)关于x 的不等式组x a x b ≥⎧⎨<⎩
有解,则 (4)关于x 的不等式组x a x b
≥⎧⎨<⎩无解,则
(5)关于x 的不等式组x a x b ≥⎧⎨≤⎩
有解,则 (6)关于x 的不等式组x a x b ≥⎧⎨≤⎩无解,则
变式:(1)若不等式组⎩
⎨⎧>≤11x m x 无解,则m 的取值范围是
(2)若不等式组121
x m x m <+⎧⎨>-⎩无解,则m 的取值范围是
(3)若不等式组⎩⎨⎧>≤<k
x x ,21有解,则k 的取值范围是
(4)如果关于x 的不等式组x a x b >⎧⎨<⎩
无解,则关于y 的不等式组11y a y b +>⎧⎨+<⎩的解如何?
2. (1)若不等式组⎩
⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______
(2)如果关于x 的不等式组7060
x m x n -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的整数对
(),m n 共有 对.
(3)已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围
3.已知不等式
13a x ->的每一个解都是21122
x -<的解,求a 的取值范围
变式:如果关于x的不等式组
22
4
x a
x a
>-
⎧
⎨
<-
⎩
有解,并且所有解都是不等式组-6<x≤5的解,求a
的取值范围.
4. 若关于x的不等式组
21
1
3
x
x
x k
-
⎧
>-
⎪
⎨
⎪-<
⎩
的解集为2
x<,求k的取值范围
5.不等式组
12
35
a x a
x
-<<+
⎧
⎨
<<
⎩
的解集是3x
<<2
a+,求a的取值范围
6.已知不等式组111x x x k >-⎧⎪<⎨⎪<-⎩
(1)当2k =-时,不等式组的解集是__ ___,当3k =时,不等式组的解集是___ __;
(2)由(1)可知,不等式组的解集是随数k 的值的变化而变化.当k 为任意有理数时,写出不等式组的解集.
二、不等式(组)与方程(组)
7.已知关于x 的方程23x k kx -=-无负数解,求k 的取值范围.
变式:已知关于x 的方程
20142014
a x x -=只有负数解,求a 的取值范围
8.已知非负实数x ,y ,z 满足123234
x y z ---==,记345W x y z =++,求W 的最大值与最小值.
三.绝对值不等式
(1)若x a <(0)a >,则a x a -<< 不等式2x <的解集为
(2)若x a >(0)a >,则x a >或x a <- 不等式>5x 的解集为。