专题10 一元一次不等式(组)(含解析)
中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题

专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。
用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。
【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。
《一元一次不等式的整数解》专题训练及答案

《一元一次不等式的整数解》专题训练一.选择题(共10小题)1.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 2.不等式2x﹣1≥3x﹣3的正整数解的个数是()A.1个 B.2个 C.3个 D.4个3.不等式+1<的负整数解有()A.1个 B.2个 C.3个 D.4个4.使不等式4x+3<x+6成立的最大整数解是()A.﹣1 B.0 C.1 D.以上都不对5.下列说法中错误的是()A.不等式x+1≤4的整数解有无数个B.不等式x+4<5的解集是x<1C.不等式x<4的正整数解为有限个D.0是不等式3x<﹣1的解6.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个 B.2个 C.3个 D.4个7.不等式>﹣1的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8.不等式3(x﹣2)<7的正整数解有()A.2个 B.3个 C.4个 D.5个9.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0 B.0,1 C.﹣1,0 D.不存在10.不等式4(x﹣2)>2(3x+5)的非负整数解的个数为()A.0个 B.1个 C.2个 D.3个二.填空题(共10小题)11.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.12.不等式2x<4x﹣6的最小整数解为.13.不等式﹣x+2>0的最大正整数解是.14.不等式2x﹣7<5﹣2x的非负整数解的个数为个.15.如果不等式2x﹣m≥0的负整数解是﹣1,﹣2,则m的取值范围是.16.不等式4﹣x>1的正整数解为.17.已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为.18.不等式5x﹣3<3x+5的所有正整数解的和是.19.不等式3x﹣4<x的正整数解是.20.不等式﹣4x≥﹣12的正整数解为.三.解答题(共10小题)21.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.22.解不等式<1﹣,并求出它的非负整数解.23.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?24.解不等式,并把它的解集表示在数轴上,再写出它的最小整数解.25.解不等式:,并写出它的所有正整数解.26.求不等式≥的正整数解.27.解不等式:1﹣≥,并写出它的所有正整数解.28.求不等式组的最小整数解.29.若关于x,y的二元一次方程组的解满足x﹣y>﹣3.5,求出满足条件的m的所有正整数解.30.解不等式,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.参考答案与试题解析一.选择题(共10小题)1.(2017•兴化市校级一模)关于x的不等式x﹣b≥0恰有两个负整数解,则b 的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【分析】解不等式可得x≥b,根据不等式的两个负整数解为﹣1、﹣2即可得b 的范围.【解答】解:解不等式x﹣b≥0得x≥b,∵不等式x﹣b≥0恰有两个负整数解,∴不等式的两个负整数解为﹣1、﹣2,∴﹣3<b≤﹣2,故选:B.【点评】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解集的具体取值范围.2.(2017春•南安市期中)不等式2x﹣1≥3x﹣3的正整数解的个数是()A.1个 B.2个 C.3个 D.4个【分析】移项、合并同类项,然后系数化成1即可求得不等式组的解集,然后确定正整数解即可.【解答】解:移项,得:2x﹣3x≥﹣3+1,合并同类项,得:﹣x≥﹣2,则x≤2.则正整数解是:1,2.故选B.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.3.(2017春•蚌埠期中)不等式+1<的负整数解有()A.1个 B.2个 C.3个 D.4个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:x﹣9+2<3x﹣2,移项、合并,得:﹣2x<5,系数化为1,得:x>﹣,∴不等式的负整数解为﹣2、﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.(2017春•诸城市校级月考)使不等式4x+3<x+6成立的最大整数解是()A.﹣1 B.0 C.1 D.以上都不对【分析】移项、合并同类项、系数化为1得出不等式的解集,总而得出答案.【解答】解:∵4x﹣x<6﹣3,∴3x<3,∴x<1,则不等式的最大整数解为0,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(2017春•禹会区月考)下列说法中错误的是()A.不等式x+1≤4的整数解有无数个B.不等式x+4<5的解集是x<1C.不等式x<4的正整数解为有限个D.0是不等式3x<﹣1的解【分析】根据不等式的基本性质分别判断可得.【解答】解:A、由x+1≤4得x≤3知不等式的整数解有无数个,故此选项正确;B、不等式x+4<5的解集是x<1,故此选项正确;C、不等式x<4的正整数解有1、2、3,为有限个,故此选项正确;D、由3x<﹣1可得x>﹣知0不是该不等式的解,故此选项错误;故选:D.【点评】本题主要考查不等式的解集和整数解,掌握不等式的基本性质是解题的关键.6.(2016•怀化)不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个 B.2个 C.3个 D.4个【分析】根据解不等式得基本步骤依次去括号、移项、合并同类项求得不等式的解集,在解集内找到非负整数即可.【解答】解:去括号,得:3x﹣3≤5﹣x,移项、合并,得:4x≤8,系数化为1,得:x≤2,∴不等式的非负整数解有0、1、2这3个,故选:C.【点评】本题主要考查解不等式得基本技能和不等式的整数解,求出不等式的解集是解题的关键.7.(2016•南充)不等式>﹣1的正整数解的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,即可得其正整数解.【解答】解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5,故不等式的正整数解有1、2、3、4这4个,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.(2016•临沭县二模)不等式3(x﹣2)<7的正整数解有()A.2个 B.3个 C.4个 D.5个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<,故不等式3(x﹣2)<7的正整数解为1,2,3,4,共4个.故选C.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.(2016•山西模拟)使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0 B.0,1 C.﹣1,0 D.不存在【分析】首先解每个不等式,然后确定两个不等式的公共部分,从而确定整数值.【解答】解:解不等式x﹣2≥﹣3得x≥﹣1,解2x+3<5得x<1.则公共部分是:﹣1≤x<1.则整数值是﹣1,0.故选C.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.10.(2016秋•贵港期末)不等式4(x﹣2)>2(3x+5)的非负整数解的个数为()A.0个 B.1个 C.2个 D.3个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:解不等式4(x﹣2)>2(3x+5)的解集是x<﹣9,因而不等式的非负整数解不存在.故选A.【点评】正确解出不等式的解集是解决本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.二.填空题(共10小题)11.(2017•仁寿县模拟)如果不等式3x﹣m≤0的正整数解是1,2,3,那么m 的范围是9≤m<12.【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式3x﹣m≤0得到:x≤,∵正整数解为1,2,3,∴3≤<4,解得9≤m<12.故答案为:9≤m<12.【点评】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.12.(2017•南雄市校级模拟)不等式2x<4x﹣6的最小整数解为4.【分析】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.【解答】解:∵2x<4x﹣6,∴2x﹣4x<﹣6,∴﹣2x<﹣6,∴x>3,∴不等式2x<4x﹣6的最小整数解为4,故答案为:4.【点评】本题考查了一元一次不等式的整数解和解一元一次不等式,关键是求出不等式的解集.13.(2017•新城区校级模拟)不等式﹣x+2>0的最大正整数解是5.【分析】先求出不等式的解集,在取值范围内可以找到最大正整数解.【解答】解:﹣x+2>0,移项,得:﹣x>﹣2,系数化为1,得:x<6,故不等式﹣x+2>0的最大正整数解是5.故答案为:5.【点评】本题考查解不等式的能力,解答此题要先求出不等式的解集,再确定正整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.(2017•呼和浩特模拟)不等式2x﹣7<5﹣2x的非负整数解的个数为3个.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得不等式的解集,从而得出答案.【解答】解:∵2x+2x<5+7,∴4x<12,∴x<3,则不等式的非负整数解有0、1、2这3个,故答案为:3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.(2017春•宝丰县期中)如果不等式2x﹣m≥0的负整数解是﹣1,﹣2,则m 的取值范围是﹣6<m≤﹣4.【分析】首先解不等式,然后根据不等式有负整数解是﹣1,﹣2即可得到一个关于m的不等式,即可求得m的范围.【解答】解:解不等式得:x≥,∵负整数解是﹣1,﹣2,∴﹣3<≤﹣2.∴﹣6<m≤﹣4.【点评】本题考查了一元一次不等式的整数解,正确确定关于m的不等式是关键.16.(2016•中山市一模)不等式4﹣x>1的正整数解为1,2.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<3,故不等式4﹣x>1的正整数解为1,2.故答案为1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.17.(2016•乌审旗模拟)已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为.【分析】首先解不等式求得不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.故答案是:.【点评】本题考查了一元一次不等式的解法以及方程的解的定义,正确解不等式求得x的值是关键.18.(2016•新县校级模拟)不等式5x﹣3<3x+5的所有正整数解的和是6.【分析】先根据不等式的性质求出不等式的解集,再根据不等式的解集找出所有正整数解即可.【解答】解:移项,得:5x﹣3x<5+3,合并同类项,得:2x<8,系数化为1,得:x<4,∴不等式所有正整数解得和为:1+2+3=6,故答案为:6.【点评】本题考查了不等式的性质,解一元一次不等式,一元一次不等式的整数解的应用,解此题的关键是求出不等式的解集.19.(2016•嵊州市一模)不等式3x﹣4<x的正整数解是1.【分析】先求出不等式的解集,再找出答案即可.【解答】解:3x﹣4<x,3x﹣x<4,2x<4,x<2,所以不等式3x﹣4<x的正整数解是1,故答案为:1.【点评】本题考查了解一元一次不等式的应用,能根据不等式的性质求出不等式的解集是解此题的关键.20.(2016春•德州期末)不等式﹣4x≥﹣12的正整数解为1,2,3.【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式﹣4x≥﹣12的解集是x≤3,因而不等式﹣4x≥﹣12的正整数解为1,2,3.故答案为:1,2,3.【点评】正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.三.解答题(共10小题)21.(2017春•崇仁县校级月考)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.【点评】本题考查了一元一次不等式的整数解,解方程,关键是根据题意求得x 的最小整数.22.(2017春•萧山区校级月考)解不等式<1﹣,并求出它的非负整数解.【分析】去分母、去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的非负整数解即可.【解答】解:去分母得:2x<6﹣(x﹣3),去括号,得2x<6﹣x+3,移项,得x+2x<6+3,合并同类项,得3x<9,系数化为1得:x<3.所以,非负整数解:0,1,2.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.23.(2016•十堰)x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(2016•门头沟区一模)解不等式,并把它的解集表示在数轴上,再写出它的最小整数解.【分析】首先分母,然后去括号,移项、合并同类项、系数化成1即可求得x的范围,然后确定最小整数解即可.【解答】解:去分母,得3(x+1)≤4x﹣6,去括号,得3x+3≤4x﹣6,移项,得3x﹣4x≤﹣6﹣3,合并同类项,得﹣x≤﹣9,系数化为1得x≥9.,最小的整数解是9.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.25.(2016•顺义区一模)解不等式:,并写出它的所有正整数解.集,然后确定正整数解即可.【解答】解:去分母,得3(x+3)﹣2(2x﹣1)>6,去括号,得3x+9﹣4x+2>6,移项,得3x﹣4x>6﹣9﹣2,合并同类项,得﹣x>﹣5,系数化成1得x<5.则正整数解是1,2,3,4.【点评】本题考查了一元一次不等式的解法,如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.26.(2016•雅安校级模拟)求不等式≥的正整数解.【分析】根据解一元一次不等式的方法可以求得不等式的解集,从而可以解答本题.【解答】解:≥去分母,得2﹣8x≥6﹣6x﹣9移项及合并同类项,得﹣2x≥﹣5系数化为1,得x≤2.5故不等式≥的正整数解是1,2.【点评】本题考查一元一次不等式的整数解,解题的关键是明确一元一次不等式的解法.27.(2016•南京联合体二模)解不等式:1﹣≥,并写出它的所有正整数解.集,然后确定正整数解即可.【解答】解:去分母,得:6﹣2(2x﹣1)≥3(1﹣x),去括号,得:6﹣4x+2≥3﹣3x,移项,合并同类项得:﹣x≥﹣5,系数化为1得:x≤5.它的所有正整数解1,2,3,4,5.【点评】本题考查了一元一次不等式的解法,如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.化系数为1可能用到不等式的性质3,即可能变不等号方向,其他都不会改变不等号方向.28.(2016•江西模拟)求不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,结合解集即可得最小整数解.【解答】解:解不等式x﹣1≥0,得:x≥1,解不等式1﹣x>0,得:x<2,∴不等式组的解集为:1≤x<2,则该不等式组的最小整数解为x=1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.29.(2016•杭州模拟)若关于x,y的二元一次方程组的解满足x﹣y>﹣3.5,求出满足条件的m的所有正整数解.【分析】两方程相减,即可得出不等式,求出不等式的解集,即可得出答案.【解答】解:由方程组的两个方程相减得:x﹣y=﹣0.5m﹣2∴﹣0.5m﹣2>﹣3.5,∴m<3,∴满足条件的m的所有正整数解为m=1,m=2.【点评】本题考查了解二元一次方程组,解一元一次不等式,一元一次不等式的整数解的应用,能得出关于m的不等式是解此题的关键.30.(2016春•兴化市校级期末)解不等式,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式的解集,将解集表示在数轴上后可知其负整数解.【解答】解:去分母,得:2(2x﹣1)﹣(9x+2)≤6,去括号,得:4x﹣2﹣9x﹣2≤6,移项,得:4x﹣9x≤6+2+2,合并同类项,得:﹣5x≤10,系数化为1,得:x≥﹣2,将不等式解集表示在数轴上如下:由数轴可知该不等式的负整数解为﹣2、﹣1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.。
中考数学专题知识点10 一元一次不等式(组)2021

一、选择题6.(2021·贵港)不等式1231x x <-<+的解集是( ) A .12x << B .23x <<C .24x <<D .45x <<C7.(2021·包头7题) 定义新运算“⨂”,规定:a ⨂b =a -2b .若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( ) A .-1B .-2C .1D .2{答案}B 【解析】∵a ⨂b =a -2b ,x ⨂m >3,∴x -2m >3,∴x >2m +3. 又∵x ⨂m >3的解集为x >-1,∴2m +3=-1,解得m =-2.8.(2021·南通)若关于x 的不等式组{2x +3>12,x -a ≤0恰有3个整数解,则实数a 的取值范围是A .7<a <8B .7<a ≤8C .7≤a <8D .7≤a ≤88.C 解析:先求出不等式组的解集4.5<x ≤a ,由于解集中包含3个整数解,所以这三个整数解为5,6,7,所以7≤a <8.7.(2021·威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是( )A .B .C .D .A6.(2021·永州)在一元一次不等式组21050x x +⎧⎨-≤⎩>的解集中,整数解的个数是( )A .4B .5C .6D .7{答案}C12.(2021·北部经济区)定义一种运算:a *b =,,a a bb a b ≥⎧⎨<⎩,则不等式(2x +1)*(2-x )>3的解集是( )A .x >1或x <13 B .-1<x <13 C .x >1或x <-1 D .x >13或x <-1 {答案} C 【解析】由题意得212213x x x +≥-⎧⎨+>⎩或21223x xx +<-⎧⎨->⎩,解得x >1或x <-1.故选C .2.(2021•常德)若a >b ,下列不等式不一定成立的是( ) A .a ﹣5>b ﹣5 B .﹣5a <﹣5bC .ac>bcD .a +c >b +cC3.(2021•河北3题)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A.>B.<C.≥D.=B7.(2021·铜仁)不等式组930725xx->⎧⎨-≤⎩的解集在以下数轴表示中正确的是()A.B.C.D.B4.(2021•金华)一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<0 B3.(2021•湖州)不等式3x﹣1>5的解集是()A.x>2 B.x<2 C.x>43D.x<43A【解析】不等式3x﹣1>5,移项合并得:3x>6,解得:x>2.故选:A.5.(2021•丽水)若﹣3a>1,两边都除以﹣3,得()A.a<−13B.a>−13C.a<﹣3 D.a>﹣3A4.(2021•岳阳)已知不等式组{x−1<02x≥−4,其解集在数轴上表示正确的是()A.B.C.D.D6.(2021·济宁) 不等式组的解集在数轴上表示正确的是()A.B.C.D.{答案}B9.(2021·娄底)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则解集为()A.﹣4<x<2 B.x<﹣4 C.x>2 D.x<﹣4或x>2{答案}A3.(2021•重庆A卷)不等式x≤2在数轴上表示正确的是()A.B.C.D.D11.(2021•重庆A卷)若关于x的一元一次不等式组{3x−2≥2(x+2)a−2x<−5的解集为x≥6,且关于y的分式方程y+2ay−1+3y−81−y=2的解是正整数,则所有满足条件的整数a的值之和是()A.5 B.8 C.12 D.15B【解析】{3x−2≥2(x+2)①a−2x<−5②,解不等式①得:x≥6,解不等式②得:x>a+52,∵不等式组的解集为x≥6,∴a+52<6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=a+52,∵方程的解是正整数,∴a+52>0,∴a>﹣5;∵y﹣1≠0,∴a+52≠1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使a+52是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.2.(2021•重庆B卷)不等式x>5的解集在数轴上表示正确的是()A.B.C.D.A7.(2021•临沂)不等式x−13<x+1的解集在数轴上表示正确的是()A.B.C.D.B【解析】去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:13.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则1a <1b,其中正确的个数是()A.1 B.2 C.3 D.4 A【解析】∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,∴当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴1a <1b,故④结论正确;∴正确的个数是1个.7.(2021•遂宁)不等式组{2−x>0x−12≥−1的解集在数轴上表示正确的是()A.B.C.D.C【解析】解不等式2﹣x>0,得:x<2,解不等式x−12≥−1,得:x≥﹣1,不等式组的解集为﹣1≤x<2,在数轴上表示为:13.(2021•自贡)请写出一个满足不等式x+√2>7的整数解.6(答案不唯一)【解析】∵x+√2>7,∴x>7−√2,∵1<√2<2,∴﹣2<−√2<−1,∴7﹣2<7−√2<−1+7,∴5<7−√2<6,故满足不等式x+√2>7的整数解可以为:6(答案不唯一).1.(2021•南充)满足x≤3的最大整数x是()A.1 B.2 C.3 D.4 C15.(2021•河北15题)由(1+c2+c−12)值的正负可以比较A=1+c2+c与12的大小,下列正确的是()A.当c=﹣2时,A=12B.当c=0时,A≠12C.当c<﹣2时,A>12D.当c<0时,A<12C 【解析】A 选项,当c =﹣2时,A =1−22+2=−14,故该选项不符合题意;B 选项,当c =0时,A =12,故该选项不符合题意;C 选项,1+c 2+c−12=2+2c 2(2+c)−2+c2(2+c)=c2(2+c),∵c <﹣2,∴2+c <0,c <0,∴2(2+c )<0, ∴c 2(2+c)>0,∴A >12,故该选项符合题意;D 选项,当c <0时,∵2(2+c )的正负无法确定,∴A 与12的大小就无法确定,故该选项不符合题意;故选C .8.(2021•怀化)不等式组{2x +1≥x −1−12x >−1的解集表示在数轴上正确的是( ) A . B .C .D .C7.(2021•株洲)不等式组{x −2≤0−x +1>0的解集为( )A .x <1B .x ≤2C .1<x ≤2D .无解A 【解析】解不等式x ﹣2≤0,得x ≤2,解不等式﹣x +1>0,得x <1,则不等式组的解集为x <1. 5. (2021·大庆)已知0b a >>,则分式a b 与11a b ++的大小关系是( ) A. 11a ab b +<+ B.11a a b b +=+ C.11a ab b +>+ D. 不能确定A【解析】()()()()111111a b b a a a a bb b b b b b +-++--==+++,∵0b a >>,∴()1011a a a b b b b b +--=<++,∴11a ab b +<+,故选A .3.(2021•吉林)不等式2x ﹣1>3的解集是( ) A .x >1 B .x >2 C .x <1 D .x <2B5.(2021·呼和浩特)已知关于x 的不等式组{−2x −3≥1x 4−1≥a−12无实数解,则a 的取值范围是( )A .a ≥−52B .a ≥﹣2C .a >−52D .a >﹣25.D 解析:解不等式﹣2x ﹣3≥1得:x ≤﹣2,解不等式x4−1≥a−12得:x ≥2a +2.∵关于x 的不等式组{−2x −3≥1x 4−1≥a−12无实数解,∴不等式的解集为2a +2>﹣2.解得a >﹣2.二、填空题12.(2021·衢州)不等式2(y +1)<y +3的解为 . {答案}y <19.(2021•常德)不等式2x ﹣3>x 的解集是 . x >310.(2021·上海)不等式2x-12<0的解集是 . x <612.(2021•甘肃省卷12题)关于x 的不等式13x ﹣1>12的解集是 . x >92【解析】移项,得:13x >1+12,合并同类项,得:13x >32, 系数化为1,得:x >92.11.(2021•新疆)不等式2x ﹣1>3的解集是 . x >212.(2021·张家界)不等式2217x x ⎧⎨⎩>+≤的正整数解为 .{答案}315.(2021·荆门)如果不等式组()3,1213x a x x --⎧⎪⎨+-⎪⎩<≥恰有两个整数解,则a 的取值范围是______.{答案}5≤a <6{解析}原不等式组的解集是a -3<x ≤4.∵此解集包括两个整数解,∴2≤a -3<3.解得5≤a <6.15.(2021•泸州)关于x 的不等式组{2x −3>0x −2a <3恰好有2个整数解,则实数a 的取值范围是 .0<a ≤0.5【解析】解不等式2x ﹣3>0,得:x >1.5, 解不等式x ﹣2a <3,得:x <2a +3, ∵不等式组恰好有2个整数解, ∴3<2a +3≤4,解得0<a ≤0.5. 15.(2021•成都)(2)解不等式组:{5x −2>3(x +1)①12x −1≤7−32x ②. 解:(2)由①得:x >2.5,由②得:x ≤4, 则不等式组的解集为2.5<x ≤4.16.(2021•眉山)若关于x 的不等式x +m <1只有3个正整数解,则m 的取值范围是 . ﹣3≤m <2【解析】解不等式x +m <1得:x <1﹣m , 根据题意得:3<1﹣m ≤4,即﹣3≤m <2.10.(2021·长春) 不等式组的所有整数解为.0,1{解析} 解不等式2x >-1,得x >-0.5,则不等式组的解集为-0.5<x ≤1,∴不等式组的整数解为0、1.15.(2021·通辽)若关于x 的不等式组32125x x a -≥⎧⎨-<⎩,有且只有2个整数解,则a 的取值范围是__________.-1<a≤1{解析}解不等式3x-2≥1,得x ≥1,解不等式2x-a <5,得52a x +<.∵不等式组只有2个整数解,∴5232a +<≤,解得-1<a ≤1.13.(2021·宜宾)不等式2x ﹣1>1的解集是 . x>115.(2021·龙东)关于x 的一元一次不等式组20,345x a x ->⎧⎨-<⎩有解,则a 的取值范围是________.{答案} x <6【解析】解不等式组20,345x a x ->⎧⎨-<⎩得2a<x <3,因此本题的答案是x <6.15.(2021·柳州15题)如图,在数轴上表示x 的取值范围是__________.{答案} x >212.(2021·襄阳)不等式组24121x x x x+≥-⎧⎨>-⎩的解集是__________.13<x ≤1 【解析】不等式x +2≥4x -1的解集是x ≤1;不等式2x >1-x 的解集为x >13,所以原不等式组的解集为13<x ≤1. 14.(2021·东营) 不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩的解集是________.12x -≤<【解析】解不等式①,得x ≥﹣1;解不等式②,得x <2.∴不等式组的解集为﹣1≤x<2.三、解答题20.(2021·无锡) (1)(2)解不等式组:231113x xx -+≤⎧⎪⎨-<+⎪⎩. (2)解不等式231x -+≤,移项,得22x -≤-,不等号两边同除以-2,得1x ≥;解不等式113x x -<+,移项得113x x -<+,化简,得223x<,解得3x <所以原不等式组的31x >≥.17.(2021·海南)(2)解不等式组并把它的解集在数轴(如图)上表示出来.解:(2)②①⎪⎩⎪⎨⎧+≤-->612162x x x 解不等式①,得3->x ;解不等式②,得2≤x , ∴这个不等式组的解集是23≤<-x . 解集在数轴上表示如下:17.(2021•南京)解不等式1+2(x ﹣1)≤3,并在数轴上表示解集. 解:1+2(x ﹣1)≤3, 去括号,得1+2x ﹣2≤3. 移项、合并同类项,得2x ≤4. 化系数为1,得x ≤2. 表示在数轴上为:.17.(2021•绍兴)(2)解不等式:5x +3≥2(x +3). 解:(2)5x +3≥2(x +3), 去括号得:5x +3≥2x +6, 移项得:5x ﹣2x ≥6﹣3, 合并同类项得:3x ≥3, 解得:x ≥1.(2021·常州) 20.(2)⎩⎨⎧-<->+xx x 2063.解:(2)②①⎩⎨⎧-<->+xx x 2063解不等式①,得2->x , 解不等式②,得1<x ,∴这个不等式组的解集是12<<-x . 15.(2021•安徽15题)解不等式:x−13−1>0.解:x−13−1>0,去分母,得x ﹣1﹣3>0,移项及合并同类项,得x >4.14.(2021•江西14题)解不等式组:{2x −3≤1x+13>−1并将解集在数轴上表示出来.解:解不等式2x ﹣3≤1,得:x ≤2, 解不等式x+13>−1,得:x >﹣4,则不等式组的解集为﹣4<x ≤2,将不等式组的解集表示在数轴上如下:18.(2021·广东)解不等式组{2x −4>3(x −2)4x >x−72. 解:解不等式2x ﹣4>3(x ﹣2),得:x <2, 解不等式4x >x−72,得x >﹣1, 则不等式组的解集为﹣1<x <2.18.(2021•盐城)解不等式组:{3x −1≥x +14x −2<x +4.解:{3x −1≥x +1,①4x −2<x +4,②解不等式①得:x ≥1, 解不等式②得:x <2,在数轴上表示不等式①、②的解集(如图),∴不等式组的解集为1≤x <2.20.(2021•宿迁)解不等式组{x −1<05x+22≥x −1,并写出满足不等式组的所有整数解.解:解不等式x ﹣1<0,得:x <1, 解不等式5x+22≥x ﹣1,得:x ≥−43,则不等式组的解集为−43≤x <1, ∴不等式组的整数解为﹣1、0. 19.(2021·福建) 解不等式组:{x ≥3−2x ,①x−12−x−36<1.② {答案}解:解不等式①,得x ≥1.解不等式②,得x<3.所以原不等式组的解集是1≤x<3.18.(2021•北京18题)解不等式组:{4x −5>x +13x−42<x .解:解不等式4x ﹣5>x +1,得x >2, 解不等式3x−42<x ,得x <4,则不等式组的解集为2<x <4. 19.(2021•泰安)(2)解不等式:1−7x−18>3x−24.解:(2)去分母,得:8﹣(7x ﹣1)>2(3x ﹣2),去括号,得:8﹣7x +1>6x ﹣4, 移项,得:﹣7x ﹣6x >﹣4﹣1﹣8, 合并同类项,得:﹣13x >﹣13, 系数化1,得:x <1. 20.(2021·贺州)解不等式组:2552,3(1)4. x x x x ++⎧⎨-⎩>①<②解:解不等式①,得x <1. 解不等式②,得x >-3.所以原不等式组的解集是-3<x <1.18.(2021•连云港)解不等式组:{3x −1≥x +1x +4<4x −2.解:解不等式3x ﹣1≥x +1,得:x ≥1,解不等式x +4<4x ﹣2,得:x >2, ∴不等式组的解集为x >2.17.(2021·安顺、贵阳) (1)有三个不等式2x +3<﹣1,﹣5x >15,3(x ﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;解:(1)第一种组合:⎩⎨⎧>--<+②① 155132x x ,解不等式①,得x <﹣2,解不等式②,得x <﹣3,∴原不等式的解集是x <﹣3;第二种组合:⎩⎨⎧>--<+②① 6)1(3132x x ,解不等式①,得x <﹣2,解不等式②,得x>3,∴原不等式组无解;第三种组合:⎩⎨⎧>->-②① 6)1(3155x x ,解不等式①,得x <﹣3,解不等式②,得x>3,∴原不等式组无解; (任选其中一种组合即可)17.(2021•乐山)当x 取何正整数值时,代数式x+32与2x−13的值的差大于1. 解:依题意得:x+32−2x−13>1,去分母,得:3(x +3)﹣2(2x ﹣1)>6,去括号,得:3x +9﹣4x +2>6,移项,得:3x ﹣4x >6﹣2﹣9,合并同类项,得:﹣x >﹣5,系数化为1,得:x <5.18.(2021•凉山州)解不等式:1−x 3−x <3−x+24.解:去分母,得:4(1﹣x )﹣12x <36﹣3(x +2),去括号,得:4﹣4x ﹣12x <36﹣3x ﹣6,移项、合并,得:﹣13x <26,系数化为1得,x >﹣2.(2021•宁波)(2)解不等式组:{2x +1<93−x ≤0. 解:(2){2x +1<9①3−x ≤0②,解①得:x <4,解②得:x ≥3,∴原不等式组的解集是:3≤x <4. 17.(2021•武汉)解不等式组{2x ≥x −1,①4x +10>x +1.②请按下列步骤完成解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .解:{2x ≥x −1,①4x +10>x +1.②(1)解不等式①,得x ≥﹣1;(2)解不等式②,得x >﹣3;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是x ≥﹣1.故答案为:x ≥﹣1;x >﹣3;x ≥﹣1.16.(2021·山西16题)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2x−13>3x−22−1.解:2(2x ﹣1)>3(3x ﹣2)﹣6……第一步4x ﹣2>9x ﹣6﹣6……第二步4x ﹣9x >﹣6﹣6+2……第三步﹣5x >﹣10……第四步x >2……第五步任务一:填空:①以上解题过程中,第二步是依据 (运算律)进行变形的;②第 步开始出现错误,这一步错误的原因是 ; 任务二:请直接写出该不等式的正确解集.解:2x−13>3x−22−1,2(2x ﹣1)>3(3x ﹣2)﹣6……第一步,4x ﹣2>9x ﹣6﹣6……第二步,4x ﹣9x >﹣6﹣6+2……第三步,﹣5x >﹣10……第四步,x >2……第五步,任务一:填空:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;②第五步开始出现错误,这一步错误的原因是化系数为1可能用到性质3,即可能变不等号方向,其它都不会改变不等号方向;任务二:该不等式的正确解集是x <2.故答案为:乘法分配律;五,化系数为1可能用到性质3,即可能变不等号方向,其它都不会改变不等号方向;x <2.17.(2021•宜昌)解不等式组{x −3(x −2)≥42x−13≤x+12. 解:{x −3(x −2)≥4①2x−13≤x+12②, 解不等式①得:x ≤1,解不等式②得:x ≤5,∴不等式组解集为x ≤1.15.(2021•陕西)解不等式组:{x +5<43x+12≥2x −1. 解:解不等式x +5<4,得:x <﹣1,解不等式3x+12≥2x ﹣1,得:x ≤3,∴不等式组的解集为x <﹣1.19.(2021•天津19题)解不等式组{x +4≥3,①6x ≤5x +3.②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .解:(Ⅰ)解不等式①,得x ≥﹣1;(Ⅱ)解不等式②,得x ≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x ≤3.故答案为:x ≥﹣1,x ≤3,﹣1≤x ≤3.。
京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习试题(含答案解析)

七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1B .a <-1C .a >1D .a >-12、若a >b ,则下列不等式一定成立的是( ) A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +13、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( ) A .5B .2C .4D .64、下列判断不正确的是( ) A .若a b >,则33a b +>+ B .若a b >,则33a b -<- C .若22a b >,则a b >D .若a b >,则22ac bc >5、如果a b <,那么下列不等式中正确的是( )A .22a b < B .11a b ->- C .a b -<-D .22a b -+<-+6、不等式组3x x a>⎧⎨>⎩的解是x >a ,则a 的取值范围是( )A .a <3B .a =3C .a >3D .a ≥37、如果关于x 的方程ax ﹣3(x +1)=1﹣x 有整数解,且关于y 的不等式组31252130y a y +⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a 的个数为( ) A .3B .4C .5D .68、某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x 题,可得式子为( ) A .10x ﹣3(30﹣x )>70 B .10x ﹣3(30﹣x )≤70 C .10x ﹣3x ≥0D .10x ﹣3(30﹣x )≥709、不等式34x x ≥+的解集在数轴上表示正确的是( ) A .B .C .D .10、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( ) A .n >1-B .n <1-C .n >2D .n <2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1﹣3<2x 的解集是 ___.2、如果关于x的不等式组3020x ax b-≥⎧⎨-≤⎩的整数解只有1,2,3,那么a的取值范围是______,b的取值范围是______.3、不等式组121aa a-<⎧⎨>-⎩的解集为____________.4、若不等式组9433x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为__________.5、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式4x﹣1>3x;(2)解不等式组3(1)5(1)21531123x xx x-≤+-⎧⎪-+⎨>-⎪⎩.2、解不等式1226123x x++≥-,并将解集在数轴上表示;3、由于传染病防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?4、某厨具店购进A型和B型两种电饭煲进行销售,其进价与售价如表:(1)一季度,厨具店购进这两种电饭煲共30台,用去了5600元,问该厨具店购进A,B型电饭煲各多少台?(2)为了满足市场需求,二季度厨具店决定用不超过9560元的资金采购两种电饭煲共50 台,且A 型电饭俣的数量不少于B型电饭煲数量,问厨具店有哪几种进货方案?(3)在(2)的条件下,全部售完,请你通过计算判断,哪种进货方案厨具店利润最大,并求出最大利润.5、阅读下列材料:根据绝对值的定义,||x表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=12||.x x根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M是数轴上一个动点,表示数m.(1)AB = 个单位长度;(2)若48m m ++-=20,求m 的值;(写过程)(3)若关于x 的方程|1||1||5|x x x a -+++-=无解,则a 的取值范围是 .---------参考答案----------- 一、单选题 1、B 【解析】 【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围. 【详解】解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变, 10a ∴+<,1a ∴<-,故选:B . 【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变. 2、A【解析】 【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可. 【详解】 解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >,∴1133a b +>+,故本选项不符合题意; 故选:A . 【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 3、C 【解析】 【分析】先求出3﹣2x =3(k ﹣2)的解为x 932k-=,从而推出3k ≤,整理不等式组可得整理得:1x x k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.4、D【解析】【分析】根据不等式得性质判断即可. 【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误; 故选:D . 【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变. 5、A 【解析】 【分析】根据不等式的性质解答. 【详解】解:根据不等式的性质3两边同时除以2可得到22a b <,故A 选项符合题意; 根据不等式的性质1两边同时减去1可得到11a b -<-,故B 选项不符合题意;根据不等式的性质2两边同时乘以-1可得到a b ->-,故C 选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到22a b -+>-+,故D 选项不符合题意;故选:A.【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变.6、D【解析】【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.7、C【解析】【分析】先解关于y的不等式组可得解集为2133ay+≤≤,根据关于y的不等式组有解可得2133a+≤,由此可得4a≤,再解关于x的方程可得解为42xa=-,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得42a-的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:31252130ya y+⎧≤⎪⎨⎪+-≤⎩①②,解不等式①,得:3y≤,解不等式②,得:213ay+≥,∴不等式组的解集为2133ay+≤≤,∵关于y的不等式组有解,∴2133a+≤,解得:4a≤,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵4a≤,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.【解析】【分析】根据得分−扣分不少于70分,可得出不等式.【详解】解:设答对x题,答错或不答(30−x),则10x−3(30−x)≥70.故选:D.【点睛】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.9、A【解析】【分析】先解不等式,再利用数轴的性质解答.【详解】解:34≥+x x解得2x≥,∴不等式34≥+的解集在数轴上表示为:x x故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.【解析】【分析】先根据新运算的定义和3✬4=2将m用n表示出来,再代入5✬8>2可得一个关于n的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n+=,解得243nm-=,由5✬8>2得:582m n+>,将243nm-=代入582m n+>得:5(24)823nn-+>,解得1n>-,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.二、填空题1、6x>-.【解析】【分析】先移项,然后系数化为1,即可求出不等式的解集.【详解】32x-<,23x -<,∴2)3x <, ∴x∴2)x >-,∴6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.2、 03a ≤< 68b ≤<【解析】【分析】 先解不等式组可得解集为:,32a b x ≤≤再利用整数解只有1,2,3,列不等式01,34,32a b ≤≤<< 再解不等式可得答案.【详解】解:3020x a x b -≥⎧⎨-≤⎩①② 由①得:,3a x ≥ 由②得:,2bx ≤ 因为不等式组有整数解,所以其解集为:,32ab x ≤≤又整数解只有1,2,3,01,34,32a b ∴≤≤<< 解得:03,68,a b ≤≤<<故答案为:03,68a b ≤≤<<【点睛】本题考查的是一元一次不等式组的解法,一元一次不等式组是整数解问题,解题过程中注意确定字母取值范围时的“等于号”的确定是解题的关键.3、132a <<【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式12a -<得: 3a <解不等式1a a 得:12a >∴原不等式组的解集为132a << 故答案为:132a <<【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.4、1k ≥-【解析】【分析】先解一元一次不等式组中的两个不等式,再根据解集为2x <,可得32k +≥,从而可得答案.【详解】解:9433x x x k +>+⎧⎨-<⎩①② 由①得:36x ->-2x ∴<由②得:3x k <+不等式组9433x x x k +>+⎧⎨-<⎩的解集为2x <, 32k ∴+≥1∴≥-k故答案为:1k ≥-【点睛】本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.5、20~45【解析】【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg ,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.三、解答题1、(1)1x>;(2)133x-≤<.【解析】【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x﹣1>3x;431x x->解得1x>;(2)3(1)5(1)21531123x xx x-≤+-⎧⎪⎨-+>-⎪⎩①②解不等式①得:3x≥-,解不等式②得:13 x<∴不等式组的解集为133x -≤< 【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.2、7x ≥-,数轴表示见解析【解析】【分析】先去分母,然后再求解一元一次不等式即可.【详解】 解:1226123x x ++≥- 去分母得:()()3162226x x +≥-+,去括号得:336452x x +≥--,移项、合并同类项得:749x ≥-,系数化为1得:7x ≥-;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.3、(10)10;(2)4【解析】【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤,∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.4、(1)厨具店购进A ,B 型电饭煲各10台,20台;(2)有四种方案:①购买A 型电饭煲25台,购买B 型电饭煲25台;②购买A 型电饭煲26台,购买B 型电饭煲24台;③购买A 型电饭煲27台,购买B 型电饭煲23台,④购买A 型电饭煲28,购买B 型电饭煲22台;(3)购买A 型电饭煲28,购买B 型电饭煲22台时,橱具店赚钱最多.【解析】【分析】(1)设橱具店购进A 型电饭煲x 台,B 型电饭煲y 台,根据橱具店购进这两种电饭煲共30台且用去了5600元,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,即可;(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据橱具店决定用不超过9560元的资金采购电饭煲和电压锅共50个且A型电饭俣的数量不少于B型电饭煲数量,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.【详解】解:(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,根据题意得:302001805600x yx y+=⎧⎨+=⎩,解得:1020xy=⎧⎨=⎩,答:厨具店购进A,B型电饭煲各10台,20台;(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据题意得:() 20018050956050a aa a⎧+-≤⎨≥-⎩,解得:25≤a≤28.又∵a为正整数,∴a可取25,26,27,28,故有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;(3)设橱具店赚钱数额为w元,当a=25时,w=25×100+25×80=4500;当a=26时,w=26×100+24×80=4520;当a=27时,w=27×100+23×80=4540;当a=28时,w=28×100+22×80=4560;综上所述,当a=28时,w最大,即购买A 型电饭煲28,购买B 型电饭煲22台时,橱具店赚钱最多.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据数量关系,列出关于a 的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.5、(1)12;(2)m =-8或12;(3)6a <【解析】【分析】(1)根据题中所给数轴上两点距离公式可直接进行求解;(2)由题意可分当4m <-,48m -≤≤,8m >三种情况进行分类求解即可;(3)由题意可分当1x <-,11x -≤≤,15x <≤,5x >四种情况进行分类求解,然后根据方程无解可得出a 的取值范围.【详解】解:(1)由题意得:()8412AB =--=;故答案为12;(2)由题意得:①当4m <-时,则有:4820m m ---+=,解得:8m =-;②当48m -≤≤时,则有4820m m +-+=,方程无解;③当8m >时,则有4820m m ++-=,解得:12m =,综上所述:m =-8或12;(3)由题意得:①当1x <-时,则有115x x x a -+---+=,解得:53a x -=, ∵方程无解, ∴513a -≥-,解得:8a ≤;②当11x -≤≤时,则有115x x x a -+++-+=,解得:7x a =-,∵方程无解,∴71a -<-或71a ->,解得:8a >或6a <;③当15x <≤时,则有115x x x a -++-+=,解得:5x a =-,∵方程无解,∴51a -≤或55a ->,解得:10a >或6a ≤;④当5x >时,则有115x x x a -+++-=,解得:53a x +=, ∵方程无解, ∴553a +≤,解得:10a ≤; 综上所述:当关于x 的方程|1||1||5|x x x a -+++-=无解,则a 的取值范围是6a <;故答案为6a <.【点睛】本题主要考查数轴上两点距离、一元一次不等式的解法及一元一次方程的解法,熟练掌握数轴上两点距离、一元一次不等式的解法及一元一次方程的解法是解题的关键.。
专题10 一元一次不等式(组)(归纳与讲解)(解析版)

专题10 一元一次不等式(组) 【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)【注意】1. 不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2. 用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤: (1)审题; (2)设未知数;(3)找出能够包含未知数的不等量关系; (4)列出不等式(组); (5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值; (7)写出答案(包括单位名称).【技巧归纳】技巧1:一元一次不等式组的解法技巧 【类型】一、解普通型的一元一次不等式组1.不等式组⎩⎪⎨⎪⎧-2x <6,x -2≤0的解集,在数轴上表示正确的是( )2.解不等式组,并把解集表示在数轴上.⎩⎪⎨⎪⎧2x +5≤3(x +2),①1-2x 3+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是( )A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________. 5.用两种不同的方法解不等式组-1<2x -13≤5.【类型】三、“绝对值”型不等式转化为不等式组求解. 6.解不等式⎪⎪⎪⎪3x -12≤4.【类型】四、“分式”型不等式转化为不等式组求解 7.解不等式3x -62x +1<0.参考答案 1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1:原不等式组可化为下面的不等式组⎩⎨⎧-1<2x -13,①2x -13≤5.②解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由⎪⎪⎪⎪3x -12≤4,得-4≤3x -12≤4.则原不等式可转化为⎩⎨⎧3x -12≥-4,①3x -12≤4.②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:解题时要先将不等式转化为不等式组再进行求解. 7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:(Ⅰ)⎩⎪⎨⎪⎧3x -6>0,2x +1<0或(Ⅱ)⎩⎪⎨⎪⎧3x -6<0,2x +1>0.解(Ⅰ)的不等式组得⎩⎪⎨⎪⎧x >2,x <-12.∴此不等式组无解. 解(Ⅱ)的不等式组得⎩⎪⎨⎪⎧x <2,x >-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用 【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2; (2)4x -13-x >1; (3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x5.解:去分母,得5(4-3x)-1<3(7+5x). ① 去括号,得20-15x -1<21+15x. ② 移项,合并同类项,得-30x <2. ③ 系数化为1,得x >-115. ④【类型】二、解含字母系数的一元一次不等式 3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5.二元一次方程组⎩⎪⎨⎪⎧2x +3y =10,4x -3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来. 【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围. 8.关于x 的两个不等式①3x +a2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围. 参考答案1.解:(1)x >13x -2,23x > -2, x > -3.这个不等式的解集在数轴上的表示如图所示.(2)4x -13-x >1,4x -1-3x > 3,x > 4.这个不等式的解集在数轴上的表示如图所示.(3)x +13≥2(x +1),x +1≥ 6x +6, -5x ≥ 5, x ≤ -1.这个不等式的解集在数轴上的表示如图所示.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x). 去括号,得20-15x -15<21+15x. 移项,合并同类项,得-30x <16. 系数化为1,得x >-815.3.解:移项,合并同类项得,(a -1)x >2,当a -1>0,即a >1时,x >2a -1; 当a -1=0,即a =1时,x 无解; 当a -1<0,即a <1时,x <2a -1. 4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:解方程组⎩⎪⎨⎪⎧ 2x +3y =10,4x -3y =2,得⎩⎪⎨⎪⎧x =2,y =2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13, 去括号,得9-3x +1<13, 移项,合并同类项,得-3x <3, 系数化为1,得x >-1. 在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用 【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是( )A .m >-2B .m <2C .m <-2D .m >22.已知方程组⎩⎪⎨⎪⎧x +y =-7-a ,x -y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围. 【类型】二、与不等式(组)的解集的综合问题 题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6.已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87.如果不等式组⎩⎪⎨⎪⎧2x -a ≥0,3x -b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,则a 的取值范围是__________.9.若不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7 ②有解,求实数a 的取值范围.参考答案 1.B2.解:(1)解方程组得⎩⎪⎨⎪⎧x =-3+a ,y =-4-2a.∵x 为非正数,y 为负数,∴⎩⎪⎨⎪⎧-3+a ≤0,-4-2a <0,解得-2<a ≤3. (2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b ,得⎩⎪⎨⎪⎧a +b =-3,-3a +b =13,解得⎩⎪⎨⎪⎧a =-4,b =1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y4<2,解得-7<y <5.4.a <25.解:⎩⎪⎨⎪⎧2x -a <1.①,x -2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9. 6.A7.解:解不等式组得a 2≤x <b3.∵不等式组仅有整数解1,2,3, ∴0<a 2≤1,3<b3≤4.解得0<a ≤2,9<b ≤12. ∵a ,b 为整数,∴a =1,2,b =10,11,12. 8.a ≤19.解:⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②,解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<x <a -1,则a -1>-6,a >-5. 【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2 -3 【详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式① 得: x>1+a ,解不等式①得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为: -2, -3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m的取值范围是().A.m>3B.m≥3C.m≤3D.m<3【答案】C【解析】详解:841x xx m+<-⎧⎨>⎩①②,解①得,x>3;解①得,x>m,①不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m①3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13 B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 100 5 120x x -+>, 15 220x >,解得:443x >, 根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题. 故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是( ). A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+ D .am an -<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、①m >n ,①-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意; B 、①m >n ,①m +1>n +1,则1144m n ++>,故该选项成立,符合题意; C 、①m >n ,①m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、①m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意; 故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件, 根据题意,得:100x +80(10﹣x )≤900, 故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是( )A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集. 【详解】由30x +>得:3x >- 由50x -≤得:5x ≤ ①35x -<≤ 故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键. 4.不等式3﹣x <2x +6的解集是( )A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可. 【详解】解:326x x -<+, 移项得362x x -<+, 合并同类项得33x -<, 系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键. 5.在数轴上表示不等式1x >-的解集正确的是( ) A . B .C .D .【答案】A【分析】根据不等式解集的表示方法依次判断. 【详解】解:在数轴上表示不等式x >−1的解集的是A . 故选:A .【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A ,B 两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A 种西瓜__________kg .【答案】120【分析】设批发A 种西瓜x kg ,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A 种西瓜x kg ,则 (6-4)x +120043x-×(4-3)≥1200×40%, 解得x ≥120.答:该超市至少批发A 种西瓜120kg . 故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解. 7.不等式2103x --<的解集为____. 【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解. 【详解】解:去分母,得:230x --<, 移项,得:23x <+, 合并同类项,得:5x <. ①不等式的解集为:5x <. 故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意①不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【分析】先求出每个一元一次不等式的解集,再求两个解集的公共部分,即是不等式组的解集. 【详解】解:解不等式36x x -≤,得:3x ≥, 解不等式312(1)x x +>-,得:3x >-, ①3x ≥与3x >-的公共部分为3x ≥, ①不等式组的解集是:3x ≥. 在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)一、单选题1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示; ①将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴①; ①平移数轴①使点A 位于点B 的正下方,如图2所示;①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧. 则整数k 的最小值为( )A .511B .510C .509D .500【答案】A【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解. 【详解】解:依题意,4AC =,2042AB =①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧, ∴k ⋅AC AB >,即42042k >, 解得15102k >,k 为正整数,①k 的最小值为511, 故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -, 移项,得:3+2<1x x -, 合并同类项,得:<1x -, 系数化为1,得>1x -, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b+=.则下列结论正确的是( )A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c =【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b+=,得出c b <;B.根据112a cb +=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b+=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断. 【详解】A.①0a b >>, ①11a b <, ①112a c b+=,①11c b>, ①c b <,故A 错误;B.①112a cb +=,即2a c ac b+=, ①()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,①a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误. 故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5 B .﹣3C .0D .2【答案】D【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8, 解不等式①得:y ≤a ,①原不等式组的解集为:﹣8<y ≤a , ①不等式组至少有3个整数解, ①a ≥﹣5, 1133x ax x++=--, 去分母得①1﹣x ﹣a =x ﹣3,解得:x 42a-=, ①分式方程有非负整数解, ①x ≥0(x 为整数)且x ≠3, ①42a-为非负整数,且42a -≠3, ①a ≤4且a ≠﹣2,①符合条件的所有整数a 的值为:﹣4,0,2,4, ①符合条件的所有整数a 的和是:2, 故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是( ) A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c =-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数, 则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩, 解得37711c ≤≤, ①3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c =﹣2+3c,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____. 【答案】254m >-## 6.25m >-##164m >- 【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得. 【详解】解:根据题意得254()0m =-->Δ, 解得,254m >-, 故答案为:254m >-. 【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算. 7.若关于x 的分式方程232x mx -=-的解是非负数,则m 的取值范围是________. 【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解. 【详解】解:关于x 的分式方程232x mx -=-的解为:x =6−m , ①分式方程有可能产生增根2, ①6−m ≠2, ①m ≠4,①关于x 的分式方程232x mx -=-的解是非负数, ①6−m ≥0, 解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4. 故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元. ①求w 与a 的函数关系式(不要求写出a 的取值范围);①若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+①购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1)根据总数,设立未知数,建立分式方程,即可求解.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式. ①根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解. (1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元. 依题意得100100510x x =++. 解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元; (2)解:①“神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.①购进“神舟”模型的数量不超过“天宫”模型数量的13. ()12003a a ∴≤-. 解得:50a ≤.51000w a =+.50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩ 【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解. 【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②, 解不等式①,得 1x ≥-,解不等式①,得 >7x -,①该不等式组的解集为 1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
完整版)一元一次不等式应用题分类专题(10种)

完整版)一元一次不等式应用题分类专题(10种)1.一堆玩具要分给若干个小朋友,每人分3件,剩余4件;每人分4件,最后一人得到的玩具最多3件。
问小朋友的人数至少有多少人?2.用若干辆载重量为8吨的汽车运一批货物。
每辆汽车只装4吨时,剩下20吨货物;每辆汽车装满8吨时,最后一辆汽车不满也不空。
问有多少辆汽车?3.一次知识竞赛有15道题,对1题记8分,错1题扣4分,不答不得分。
XXX2道题没答,飞艇队全答了,两队的成绩都超过了90分。
问两队分别至少答对了几道题?4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得分不少于35分的射手为优胜者。
问至少要中靶多少次才能成为优胜者?5.某校校长暑假将带领该校“三好学生”去三峡旅游。
甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,问至少要多少名学生选甲旅行社比较好?6.XXX有存款600元,XXX有存款2000元。
从本月开始,XXX每月存款500元,XXX每月存款200元。
问到第几个月,XXX的存款能超过XXX的存款?7.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s。
为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?8.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。
已知XXX步行速度为90米/分,跑步速度为210米/分。
问XXX至少需要跑几分钟?9.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方。
现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?10.某工人计划在15天里加工408个零件。
最初三天中每天加工24个。
问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?11.在1千克含有40克食盐的海水中,加入食盐,使其成为浓度不低于20%的食盐水。
专题10 一元一次不等式(组)(课件)2023年中考数学一轮复习(全国通用)

1. 一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不 等式的两边都是整式,这样的不等式叫做一元一次不等式.
2. 一元一次不等式的解法: 一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知项的 系数化为1.
知识点2:一元一次不等式及其解法
典型例题
知识点3:一元一次不等式组及其解法
知识点梳理
3. 解不等式组:求不等式组的解集的过程,叫做解不等式组.
4. 一元一次不等式组的解法: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.
知识点3:一元一次不等式组及其解法
知识点梳理
5. 解集在数轴上的表示(令a>b):
典型例题
【例8】(2022•聊城)关于x,y的方程组
2x y x 2 y
2k k
3
的解中x与y的和不小于5,
则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
【解答】解:把两个方程相减,可得x+y=k-3, 根据题意得:k-3≥5, 解得:k≥8. 所以k的取值范围是k≥8. 故选:A.
知识点4:一元一次不等式(组)的实际应用
典型例题
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得
100x 75y 8250 (120 100)x (100 75) y 2350
.
解这个方程组,得
x 30
y
70
,
所以,生产A产品30件,B产品70件.
知识点4:一元一次不等式(组)的实际应用
知识点梳理
知识点1:不等式及其性质
5. 不等式基本性质:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 一元一次不等式(组)一、解读考点二、考点归纳归纳 1:有关概念基础知识归纳:1、不等式:用不等号表示不等关系的式子,叫做不等式.2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3、用数轴表示不等式的方法4、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.5、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.基本方法归纳:判断不等式(组)时只需看未知数的个数及未知数的次数为1即可;不等式的解只需带入不等式是否成立即可;不等式(组)的解集是所有解得集合.注意问题归纳:不等式组的解集是所有解得公共部分.【例1】如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).【答案】<.考点:不等式的定义.归纳 2:不等式基本性质基础知识归纳:1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变.基本方法归纳:观察不等式的变化再选择应用那个性质.注意问题归纳:不等式两边都乘以(或除以)同一个负数,不等号的方向改变;乘以(或除以)同一个正数,不等号的方向不变.【例2】若x>y,则下列式子中错误..的是()A、x-3>y-3B、x y>33C、x+3>y+3D、-3x>-3y【答案】D.考点:不等式基本性质。
归纳 3:一元一次不等式(组)的解法基础知识归纳:1、解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.2、一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.基本方法归纳:根据解一元一次不等式(组)的步骤计算即可.注意问题归纳:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【例3】解不等式组2x51x331x1x48+---⎧⎪⎪⎨⎪⎪⎩><,并写出它的非负整数解.【答案】0,1,2,3.【解析】2x51x331x1x48+---⎧⎪⎪⎨⎪⎪⎩>①<②,解①得,12x5>-,解②得,7x2<,∴原不等式组的解集为:127x52-<<,它的非负整数解为:0,1,2,3.考点:一元一次不等式(组)的解法。
归纳 4:一元一次不等式(组)的应用基础知识归纳:1、列一元一次不等式(组)解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找不等关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列一元一次不等式(组)(4)解一元一次不等式(组).(5)检验,看解集是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解一元一次不等式(组)→答.基本方法归纳:解题时先理解题意找到不等关系列出一元一次不等式(组)求解最后检验即可.注意问题归纳:找对不等关系最后一定要检验.【例4】甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为X 张(X ≥9).(1)分别用含x 的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【答案】(1)甲厂家所需金额为:3×800+80(x ﹣9)=1680+80x ;乙厂家所需金额为:(3×800+80x )×0.8=1920+64x ;(2)16.【解析】(1)甲厂家所需金额为:3×800+80(x ﹣9)=1680+80x ;乙厂家所需金额为:(3×800+80x )×0.8=1920+64x ;(2)由题意,得:1680+80x >1920+64x ,解得:x >15.答:购买的椅子至少16张时,到乙厂家购买更划算.考点:一元一次不等式(组)的应用.三、考题训练:1.(2015乐山)下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >【答案】C .【解析】试题分析:A .在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,故本选项错误;B .在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,故本选项错误;C .当c =0时,若a b >,则不等式22ac bc >不成立,故本选项正确;D .在不等式22ac bc >的两边同时除以不为0的2c ,该不等式仍成立,即a b >,故本选项错误.故选C .考点:不等式的性质.2.(2015广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .2y x =+B .22y x =+ C.y =.12y x =+【答案】C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.3.(2015南宁)不等式132<-x 的解集在数轴上表示为( )A .B .C .D .【答案】D .【解析】试题分析:2x <4,解得x <2,用数轴表示为:.故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式.4.(2015泰安)不等式组43262355x x x ->-⎧⎪⎨-≥-⎪⎩的整数解的个数为( )A .1B .2C .3D .4【答案】C .【解析】试题分析:432623 55x x x ->-⎧⎪⎨-≥-⎪⎩①②,解不等式①得,32x >-,解不等式②得,1x ≤,所以,不等式组的解集是312x -<≤,所以,不等式组的整数解有﹣1、0、1共3个.故选C . 考点:一元一次不等式组的整数解.5.(2015恩施州)关于x 的不等式组314(1)x x x m ->-⎧⎨<⎩的解集为x <3,那么m 的取值范围为( ) A .m =3 B .m >3 C .m <3 D .m ≥3【答案】D .【解析】试题分析:不等式组变形得:3x x m <⎧⎨<⎩,由不等式组的解集为x <3,得到m 的范围为m ≥3,故选D . 考点:1.解一元一次不等式组;2.含待定字母的不等式(组).6.(2015永州)若不等式组11x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( )A .A ﹣1≤m <0B .﹣1<m ≤0 C.﹣1≤m ≤0 D.﹣1<m <0【答案】A .考点:1.一元一次不等式组的整数解;2.含待定字母的不等式(组).7.(2015庆阳)已知点P (1a +,12a -+)关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】C .【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.8.(2015淄博)一次函数3y x b =+和3y ax =-的图象如图所示,其交点为P (﹣2,﹣5),则不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】C .【解析】 试题分析:从图象得到,当x =﹣2时,3y x b =+的图象对应的点在函数3y ax =-的图象上面,∴不等式33x b ax +>-的解集为x >﹣2.故选C .考点:1.一次函数与一元一次不等式;2.在数轴上表示不等式的解集.9.(2015淄博)若a 满足不等式组211122a a -≤⎧⎪⎨->⎪⎩,则关于x 的方程21(2)(21)02a x a x a ---++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能【答案】C .考点:1.根的判别式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题.10.(2015东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5【答案】B .考点:一元一次不等式的应用.11.(2015衢州)写出一个解集为x >1的一元一次不等式: .【答案】x ﹣1>0.(答案不唯一).【解析】试题分析:移项,得x ﹣1>0(答案不唯一).故答案为:x ﹣1>0.(答案不唯一).考点:1.不等式的解集;2.开放型.12.(2015宿迁)关于x 的不等式组⎩⎨⎧>->+1312x a x 的解集为1<x <3,则a 的值为 . 【答案】4.【解析】试题分析:2131x a x +>⎧⎨->⎩①②,∵解不等式①得:x >1,解不等式②得:x <a ﹣1,∵不等式组⎩⎨⎧>->+1312x a x 的解集为1<x <3,∴a ﹣1=3,∴a =4.故答案为:4.考点:解一元一次不等式组.13.(2015白银)定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 .【答案】x >﹣1.【解析】试题分析:3⊕x <13,3(3﹣x )+1<13,解得:x >﹣1.故答案为:x >﹣1.考点:1.一元一次不等式的应用;2.新定义.14.(2015重庆市)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为 . 【答案】35. 【解析】试题分析:∵使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解的a 满足的条件是a >32-,使关于x 的一元一次方程32123x a x a -++=的解为负数的a 的a <65,∴使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的a 的值为﹣1,0,1,三个数,∴使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为35,故答案为:35. 考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.15.(2015玉林防城港)解不等式组:10314x x x -≥⎧⎪⎨-<⎪⎩,并把解集在数轴上表示出来.【答案】1≤x <4.考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集.16.(2015百色)解不等式组422(3)2135x xx x+≥+⎧⎨+>-⎩,并求其整数解.【答案】2≤x<6,整数解为2,3,4,5.【解析】试题分析:先求出每个不等式的解集,再求出不等式组的解集即可.试题解析:422(3) 213 5 x xx x+≥+⎧⎨+>-⎩①②,∵解不等式①得:x≥2,解不等式②得:x<6,∴不等式组的解集为2≤x<6,∴不等式组的整数解为2,3,4,5.考点:1.解一元一次不等式组;2.一元一次不等式组的整数解.17.(2015桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【答案】(1)文学名著40元,动漫书18元;(2)有三种方案,具体见试题解析.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.综合题.18.(2015成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?【答案】(1)120件;(2)150元.考点:1.分式方程;2.一元一次不等式的应用;3.应用题.19.(2015甘孜州)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【答案】(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254(元).【解析】试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,再根据经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.试题解析:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴52x ,经销商盈利为w=11x+17(10﹣x)+9(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B 种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).考点:1.一元一次不等式的应用;2.方案型;3.最值问题;4.综合题.20.(2015攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.【答案】(1)甲40,乙40;(2)进货方案见试题解析,利润最大的方案:甲商品38件,乙商品42件.考点:1.一元一次不等式组的应用;2.一元一次方程的应用;3.应用题;4.方案型;5.最值问题;6.综合题.21.(2015资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.【答案】(1)120,90;(2)11种;(3)购买篮球40,足球60个时,y最小值为10200元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式组的应用;4.方案型;5.最值问题.22.(2015达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?【答案】(1)购买1台平板电脑需3000元,购买1台学习机需800元;(2)方案1:购买平板电脑38台,学习机62台;方案2:购买平板电脑39台,学习机61台;方案3:购买平板电脑40台,学习机60台;方案1最省钱.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.最值问题;5.综合题.23.(2015泸州)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)20,5;(2)购进A种花草的数量为11株、B种20株,费用最省;最省费用是320元.考点:1.一元一次不等式的应用;2.二元一次方程组的应用;3.应用题;4.方案型;5.最值问题.24.(2015孝感)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【答案】(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)该服装公司执行规定后违背了广告承诺.考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式的应用;4.最值问题;5.综合题.25.(2015内江)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.【答案】(1)1600,2000;(2)有7种,当购进电冰箱34台,空调66台获利最大,最大利润为13300元;(3)当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大;当k=50时,每种进货方案的总利润都一样.试题解析:(1)设每台空调的进价为x 元,则每台电冰箱的进价为(x +400)元,根据题意得:8000064000400x x=+,解得:x =1600,经检验,x =1600是原方程的解,x +400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元. (2)设购进电冰箱x 台,这100台家电的销售总利润为y 元,则y =(2100﹣2000)x +(1750﹣1600,第1题,100﹣x )=﹣50x +15000,根据题意得:1002501500013000x x x -≤⎧⎨-+≤⎩,解得:133403x ≤≤,∵x 为正整数,∴x =34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y =﹣50x +15000,k =﹣50<0,∴y 随x 的增大而减小,∴当x =34时,y 有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.(3)当厂家对电冰箱出厂价下调k (0<k <100)元,若商店保持这两种家电的售价不变,则利润y =(2100﹣2000+k )x +(1750﹣1600)(100﹣x )=(k ﹣50)x +15000,当k ﹣50>0,即50<k <100时,y 随x 的增大而增大,∵133403x ≤≤,∴当x =40时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台;当k ﹣50<0,即0<k <50时,y 随x 的增大而减小,∵133403x ≤≤,∴当x =34时,这100台家电销售总利润最大,即购进电冰箱34台,空调66台;当k =50时,每种进货方案的总利润都一样;答:当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大;当k=50时,每种进货方案的总利润都一样.考点:1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用;4.分类讨论;5.方案型;6.最值问题.。