实验三高斯列主元消去法

合集下载

Gauss列主元素消去法实验

Gauss列主元素消去法实验

Lab06.Gauss 列主元素消去法实验【实验目的和要求】1.使学生深入理解并掌握Gauss 消去法和Gauss 列主元素消去法步骤; 2.通过对Gauss 消去法和Gauss 列主元素消去法的程序设计,以提高学生程序设计的能力;3.对具体问题,分别用Gauss 消去法和Gauss 列主元素消去法求解。

通过对结果的分析比较,使学生感受Gauss 列主元素消去法优点。

【实验内容】1.根据Matlab 语言特点,描述Gauss 消去法和Gauss 列主元素消去法步骤。

2.编写用不选主元的直接三角分解法解线性方程组Ax=b 的M 文件。

要求输出Ax=b 中矩阵A 及向量b ,A=LU 分解的L 与U ,det A 及解向量x 。

3.编写用Gauss 列主元素消去法解线性方程组Ax=b 的M 文件。

要求输出Ax=b 中矩阵A 及向量b 、PA=LU 分解的L 与U 、det A 及解向量x ,交换顺序。

4.给定方程组(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11134.981.4987.023.116.427.199.103.601.3321x x x(2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----15900001.582012151********.23107104321x x x x 先用编写的程序计算,再将(1)中的系数3.01改为3.00,0.987改为0.990;将(2)中的系数2.099999改为2.1,5.900001改为9.5,再用Gauss 列主元素消去法解,并将两次计算的结果进行比较。

【实验仪器与软件】1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;2.Matlab 6.0及以上版本。

实验讲评:实验成绩:评阅教师:200 年 月 日Lab06.Gauss 列主元素消去法实验第一题:1、算法描述:Ⅰ、Gauss 消去法由书上定理5可知 设Ax=b ,其中A ∈R^(n(1)如果()0(1,2,....,1)k kka k n ≠=-,则可通过高斯消去法将Ax=b 约化为等价的 角形线性方程组,且计算公式为:① 消元计算(k=1,2,….,n-1)()()(1)()()(1)()()/,1,...,,,,1,...,,,1,...,.k k ik ik kk k k k ij ij ik kj k k k iiik k m a a i k n a a m a i j k n b b m b i k n ++==+=-=+=-=+② 回带公式()()()()()1/,()/,1,...,2,1.n n n n nn ni i i i iii j ii j i x b a x ba x a i n =+==-=-∑(2)如果A 为非奇异矩阵,则可通过高斯消去法将方程组Ax=b 约化方程组为上三角矩阵以上消元和回代过程总的乘除法次数为332333nn nn +-≈,加减法次数为32353263nnn n+-≈以上过程就叫高斯消去法。

Gauss列主元消去法实验

   Gauss列主元消去法实验

<数值计算方法>实验报告1.实验名称实验2 Gauss 列主元消去法2.实验题目用Gauss 列主元消去法求解线性方程组。

0.0011 2.0002 3.0003 1.0001.0001 3.7122 4.6233 2.0002.0001 1.0722 5.6433 3.000x x x x x x x x x ++=⎧⎪-++=⎨⎪-++=⎩3.实验目的加深自己对Gauss 列主元消去法的理解和认识,并且通过做实验或做练习来加强自己Gauss 列主元消去法的掌握,学会并灵活运用Gauss 列主元消去法来求解方程组。

4.基础理论-------Gauss 列主元消去法1.Gauss 列主元消去法的基本思想是:在进行第k (k=1,2,...,n-1)步消元时,从第k 列的kk a 及以下的各元素中选取绝对值最大的元素,然后通过行变换将它交换到主元素kk a 的位置上,再进行消元。

2.Gauss 列主元消去法的优点:当kk a (k=1,2,...,n-1)的绝对值很小时,用Gauss 列主元消去法来求解方程组时,可以避免所的数值结果产生较大误差或失真。

5.实验环境实验系统:Win 7实验平台:VisualC++语言6.实验过程写出算法→编写程序→计算结果Gauss 列元消去法的算法Input:方程组未知量的个数n;增广矩阵()()1,2,...,T ij A a A A An ==,其中i=1,2,…,n; j=1,2,…,n+1Output:方程组的解x1,x2,…,xn,或失败信息。

1. for i ←1ton-1 do;2. temp ←|ii a |;3. p ←I;4. for j ←i+1 to n do5. if ||ji a >temp then6. p ←j;8. end9. end10. if temp=0 then11. |return False;12. end13. if p ≠I then14. p A ⇔i A ;//i,p 两行交换15. end//列选主元16. for j ←i+1 to n do17.*j ji i A m A -ji m ←/ji ii a a ;18. j A ←*j ji i A m A -;//消元19. end7.实验结果原方程组的解为:X1=-0.490396 , x2=-0.051035 ,x3=0.3675208.附录程序清单#include<iostream.h> #include"stdio.h"#include"math.h"void main ( ){ int n=3,i,j,k,p;doubleA[10][10]={{0.001,2.000,3.000,1.000},{-1.000,3.712,4.623,2.000},{-2.0 00,1.072,5.643,3.000}},temp,m,x[100];for(i=0;i<n;i++){ //选主元temp=fabs(A[i][i]); p=i;for(k=i+1;k<n;k++)if(fabs(A[k][i])>temp){temp=fabs(A[k][i]); p=k;}if(temp==0){ printf("\n无法求解:");return;}if(p!=i)for(j=0;j<n+1;j++){ temp=A[i][j];A[i][j]=A[p][j];A[p][j]=temp;}//消元for(k=i+1;k<n;k++){ m=A[k][i]/A[i][i];for(j=i+1;j<=n;j++)A[k][j]=A[k][j]-m*A[i][j];}}//回代for(i=n-1;i>=0;i--){x[i]=A[i][n];for(j=i+1;j<n;j++)x[i]=x[i]-A[i][j]*x[j];x[i]=x[i]/A[i][i];}printf("\nx=\n");for(i=0;i<n;i++)printf("%f \n",x[i]);}。

高斯列主元消去法实验报告

高斯列主元消去法实验报告

《数值计算方法》实验报告专业:年级:学号:姓名:成绩:1.实验名称实验2高斯列主元消去法2. :用Gauss列主消去法求解线性方程组0.001*X1+2.000*X2+3.000*X3=1.000-1.000*X1+3.217*X2+4.623*X3=2.000-2.000*X1+1.072*X2+5.643*X3=3.0003.实验目的a.熟悉运用已学的数值运算方法求解线性方程—Gauss列主消去法;b.加深对计算方法技巧的认识,正确使用计算方法来求解方程;c.培养用计算机来实现科学计算和解决问题的能力。

4.基础理论列主元消去法:a.构造增广矩阵b.找到每列绝对值的最大数;c.行变换;d.消去;e.回代5.实验环境Visual C++语言6.实验过程实现算法的流程图:7.结果分析a.实验结果与理论一致;b.由于数值设置成双精度浮点型,所以初值对计算结果影响不大;c.运用程序能更好的实现计算机与科学计算的统一和协调。

8. 附录程序清单#include<stdio.h>#include<math.h>int main(){int n=3,i,j,k,p;double a[4][4];double b[4];double x[4];double m[4][4];double temp;a[1][1]=0.001; a[1][2]=2.000; a[1][3]=3.000; b[1]=1.000;a[2][1]=-1.000; a[2][2]=3.1712; a[2][3]=2.000; b[2]=2.000;a[3][1]=-2.000; a[3][2]=1.072; a[3][3]=5.643; b[3]=3.000;for(i=1;i<=n-1;i++){temp=a[i][i];p=i;for(j=i+1;j<=n;j++)if(fabs(a[j][i])>temp){temp=a[j][i];p=j;}if(temp==0)return 0;if(p!=i) //换行{for(j=1;j<=n;j++)a[0][j]=a[i][j];for(j=1;j<=n;j++)a[i][j]=a[p][j];for(j=1;j<=n;j++)a[p][j]=a[0][j];b[0]=b[i];b[i]=b[p];b[p]=b[0];}for(j=i+1;j<=n;j++){m[j][i]=a[j][i]/a[i][i];for(k=i;k<=n;k++)a[j][k]=a[j][k]-m[j][i]*a[i][k];}}if(a[n][n]==0)return 0;x[n]=b[n]/a[n][n];for(i=n-1;i>=1;i--)//回代{temp=0;for(j=i+1;j<=n;j++)temp=temp+a[i][j]*x[j];temp=b[i]-temp;x[i]=temp/a[i][i];}for(i=1;i<=n;i++)//输出结果{printf("输出结果为:x[%d]=%lf ",i,x[i]);}printf("\n");return 0;}。

高斯列主元消去法求线性方程

高斯列主元消去法求线性方程

MATLAB 高斯列主元消去一. 高斯列主元消去法的算法过程对于线性方程组AX=b ,A 为n*n 矩阵:(1)Step1——在增广矩阵(A ,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A ,b )做初等行变换使原方程组的第一行第一列的系数 为1,且第一列其它系数都为0.Step2——在增广矩阵(A ,b )中的第二列中(从第二行开始)找到绝对值 最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组的第二行第二列的系数为1,且第二列中第二行以下的系数都为0. Step3——在增广矩阵(A ,b )中的第三列中(从第三行开始)找到绝对值 最大的元素,将其所在行与第三行交换,再对(A ,b )做初等行变换使原方程组的第三行第三列的系数为1,且第三列中第二行以下的系数都为0。

重复此过程…….(2)如果增广矩阵的秩为n ,则可以将增广矩阵的前n 列化为主对角线都为1的矩阵; 如果增广矩阵的秩为m<n ,则可以将增广矩阵的前m 行m 列矩阵化为主对角线 都是1的矩阵,m 行后的系数均为0;如果增广矩阵的前n 列的秩不等于增广矩 阵的秩,此时方程组无解。

(3)接下来,通过初等变换把对角线上每个1所对应的列上的其他元素变为0,就可以得到增广矩阵的最简阶梯型。

这时可以容易得到最简阶梯型对于方程组的解,即得到方程组的解。

二. 算法的流程图三.运行结果(1)随机生成增广矩阵(6*7):C =-94 -89 -41 88 83 -57 -1441 70 -27 -30 -82 93 43-67 -24 -31 -62 -49 -14 8318 -21 26 83 -15 56 7821 -35 32 -43 15 5 -7454 11 98 10 79 -34 -77方程组的解为:x =-811/542554/10151329/1117521/628-1763/1053-673/4428检查结果:Right result!>>(2)随机生成增广矩阵(6*7):C =78 -42 24 86 68 -43 830 -54 60 -81 11 -97 -44-92 -60 -80 19 67 40 -520 -24 45 -54 -60 90 -4378 18 29 -94 24 49 92-23 -47 -6 15 -66 51 -54 方程组的解为:x =1421/1429417/650-557/592-413/1529253/304964/1123检查结果:Right result!>>四.各个重点步骤的设计方法或注意事项生成增广矩阵时,对生成0到1之间的随机数进行变换:C=floor(200*rand(n,n+1)-100)求方程组的唯一解时,对第i列做初等变换前,应该注意找出首非零元绝对值最大的一行,并与第i行进行交换。

实验三 高斯消去法和三角分解法1

实验三 高斯消去法和三角分解法1

实验报告实验三 高斯消去法与矩阵的三角分解一、实验目的1、掌握列主元素消去法,并且能够用MATLAB 编写相关程序,实现高斯消去法的求解。

2、能够用矩阵理论理解与研究高斯消去法,通过对矩阵的初等变换实现高斯消去法。

3、学会矩阵的三角分解,并且能够用MATLAB 编写相关程序,实现矩阵的三角分解,解方程组。

二、上机内容⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡2822171310871234567112345611123451111234111112311111121111111764321x x x x x x1、用列主元素高斯消去法求解方程组。

2、用列主元消去法求解方程组(实现PA=LU) 要求输出: (1)计算解X;(2)L,U;(3)正整型数组IP(i),(i=1,···,n) (记录主行信息)。

三、实验原理1、列主元素消去法用高斯消去法求解方程组时,为了减小误差,在消去的过程中要避免用绝对值较小的主元素。

因此在高斯消去法的每一步应该在系数矩阵货消去后的低阶矩阵中选取绝对值较大的元素作为主元素,保持|m ik |<=1,以减小计算过程中的舍入误差对计算解的影响。

此方法为完全主元素消去法。

完全主元素消去法在选主元素时花费一定的计算机时间,因此实际计算中常用列主元消去法。

列主元消去法在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。

装订 线第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定t使(2)如果t≠k,则交换[A,b]第t行与第k行元素。

(3)消元计算(4)回代求解计算流程图回代求解 b=b/a (当a nn ≠0)b ←(b -∑a x )/adet=a nn *det输出计算解及行列式及detk=1,2,…,n-1输入n ,A,b,εdet=1按列主元|a i(k),k |=max|a ik |C 0=a i(k),k换行 a ik a i(k)j(j=k,…n ) b k b j(k), 消元计算 (i=k+1,…,n ) a ik=a ik -a kk *m ik a ij=a ij -a kj *m ik (j=k+1,…,n )|C 0|<εi k =kdet=a kk det否否是是k<=n-1输出det(A)=0停机停机2. 矩阵的三角分解法 (1)定理设 n n R A ⨯∈ 。

高斯列主元素消去法

高斯列主元素消去法
return;
}
main()
{floata[N][N+1]={{0.101,2.304,3.555,1.183},{-1.347,3.712,4.623,2.137},{-2.835,1.072,5.643,3.035}};//方程组系数
float x[N],max,m,*c,*d;
int k=0,q=0,n=N,i,j;
for(k=0;k<n && q==0;k++)
{
max=max_value(a,n,k);
if(max==0) q=1;
else
{ if(I!=k)
{
for(j=k;j<n+1;j++)
{
c=&a[I][j];
d=&a[k][j];
change(c,d);
}
}
for(i=k+1;i<n;i++)
{
{ float max;
int i;
max=a[k][k];
for(i=k+1;i<n;i++)
if(max<a[i][k])
{
max=a[i][k];
I=i;
}
return(max);
}
void change(float *p,float *q)
{
float temp;
temp=*p; *p=*q; *q=temp;
}
printf("得到的结果如下:\n");
for(i=0;i<n;i++)
printf(" x[%d]=% 6.4f\n",i+1,x[i]);

实验三 编程实现列主元高斯消去法

实验三   编程实现列主元高斯消去法

实验三编程实现列主元高斯消去法1.实验目的:实现高斯主消元法,对计算过程加深理解。

2.实验内容:编写c++程序,实现对角占优方程组的编程求解。

3.实验步骤1、设计方程组的存储为二位数组,最大方程组数为100,第i行j列的元素值代表第i个方程的第j个系数,输入时没有的系数项填0。

2 对于每个方程按主消元法从0~n-1依次消元。

3迭代求解,对于第i个未知数的值,依次迭代i+1~n-1已求出的结果4.实验结果分析:对于除数很小的情况程序不能很好的解决,对于不是对角占优的也不能搜索出主元素,以后在进一步解决上述问题。

#include<iostream>using namespace std;const int MAX=100;double str[MAX][MAX];int main(){while(1){cout<<"输入方程组个数0<n<100"<<endl;int n,m,i,j,k,flag=0;cin>>n;if(n<=0||n>=100)break;cout<<"输入方程组的系数"<<endl;for(i=0;i<n;i++){for(j=0;j<=n;j++){cin>>str[i][j];if(i==j&&str[i][j]==0)flag=1;}}if(flag==1){cout<<"方程组不是对角占优的,此程序不能解决"<<endl;system("pause");return 0;}for(i=0;i<n;i++){for(j=n;j>=i;j--)//对角变一str[i][j]/=str[i][i];for(k=i+1;k<n;k++)//方程消元{double tem=str[k][i]/str[i][i];for(j=i;j<=n;j++){str[k][j]-=str[i][j]*tem;}}}double ans[MAX]={0};ans[n-1]=str[n-1][n];for(i=n-2;i>=0;i--){ans[i]=str[i][n];for(j=n-1;j>i;j--)ans[i]-=str[i][j]*ans[j];}for(i=0;i<n;i++)cout<<"X"<<i+1<<" = "<<ans[i]<<endl;system("pause");}}。

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析实验报告(1)学院:信息学院班级:计算机0903班姓名:***学号:********课题一A.问题提出给定下列几个不同类型的线性方程组,请用适当的方法求解线性方程组1、设线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------1368243810041202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 x *= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )T2、设对称正定阵系数阵线方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------19243360021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515229232060 x * = ( 1, -1, 0, 2, 1, -1, 0, 2 )T3、三对角形线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 x *= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )TB.(1)对上述三个方程组分别用Gauss 顺序消去法与Gauss 列主元消去法;平方根 与改进平方根法;追赶法求解(选择其一) (2)编写算法通用程序(3)在应用Gauss 消去时,尽可能利用相应程序输出系数矩阵的三角分解式C.(1)通过该课题的程序编制,掌握模块化结构程序设计方法 (2)掌握求解各类线性方程组的直接方法,了解各种方法的特点 (3)体会高斯消去法选主元的必要性 实验步骤:(高斯消去法,列主元,LU )1顺序高斯消去法2.LU 分解法3.列主元高斯消去法(如下图)(1)高斯消去法运行结果如下(2)对方程的系数矩阵进行LU分解并求出方程组的解(3)列主元高斯消去法实验体会总结:利用gauss消去法解线性方程组的时候,如果没有经过选主元,可能会出现数值不稳定的现象,使得方程组的解偏离精确解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 高斯列主元消去法
一、实验目的:
1、掌握高斯消去法的基本思路和迭代步骤。

2、 培养编程与上机调试能力。

二、高斯列主元消去法的基本思路与计算步骤:
设有方程组Ax b =,设A 是可逆矩阵。

高斯消去法的基本思想就是僵局真的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。

列主元高斯消去法计算步骤:
将方程组用增广矩阵[]()(1)ij n n B A b a ⨯+== 表示。

步骤1:消元过程,对1,2,,1k n =-
(1) 选主元,找{},1,,k i k k n ∈+ 使得
,max k i k ik
k i n a a ≤≤= (2) 如果
,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。

(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。

(4) 消元,对,,i k n = ,计算/,ik
ik kk l a a =对1,,1j k n =++ ,计算 .
ij ij ik kj a a l a =- 步骤 2:回代过程:
(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。

(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑
三:程序流程图
四:程序清单:
function X=uptrbk(A,b)
% A是一个n阶矩阵。

% b是一个n维向量。

% X是线性方程组AX=b的解。

[N N]=size(A);
X=zeros(1,N+1);
Aug=[A b];
for p=1:N-1
[Y,j]=max(abs(Aug(p:N,p)));%返回向量的最大值存入y,最大值的序号存入j。

C=Aug(p,:);
Aug(p,:)=Aug(j+p-1,:);
Aug(j+p-1,:)=C;
if Aug(p,p)==0
'A是奇异阵,方程无惟一解'
break
end
for k=p+1:N
m=Aug(k,p)/Aug(p,p);
Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);
end
end
% 这里用到程序函数backsub来进行回代。

X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));
function X=backsub(A,b)
% A是一个n阶上三角非奇异阵。

% b是一个n维向量。

% X是线性方程组AX=b的解。

n=length(b);%取b向量的个数。

X=zeros(n,1);
X(n)=b(n)/A(n,n);
for k=n-1:-1:1
X(k)=(b(k)-A(k,k+1:n)*X(k+1:n))/A(k,k);
End
五、测试数据与结果:
测试数据:(第8章习题三第2题)求解线性方程组:
解:建立一个主程序gs.m
clc
clear
A=[1,2,3;5,4,10;3,-0.1,1];
b=[1;0;2];
uptrbk(A,b)
然后在MA TLAB命令窗口运行上述主程序,即:
>> gs
计算结果如下:
ans =
1.2000
2.0000
-1.4000
六、小结
本实验通过MA TLAB程序编程实现了高斯列主元消去法的求解,能加深对高斯列主元消去法的基本思路与计算步骤的理解。

主元消去法解决了主元素的选择问题,避免主元素很小导致舍入误差扩散和其他元素的严重增长,这就使算法具有较好的数值稳定性。

相关文档
最新文档