建筑材料的基本性质
建筑材料的基本性质

建筑材料的基本性质第⼀章建筑材料的基本性质1.建筑材料的基本物理性质密度:材料在绝对密实状态下单位体积的质量。
表观密度:材料在⾃然状态下单位体积的质量堆积密度:散粒或粉状材料,如砂、⽯⼦、⽔泥等,在⾃然堆积状态下单位体积的质量。
孔隙率:在材料⾃然体积内孔隙体积所占的⽐例。
空隙率:散粒材料⾃然堆积体积中颗粒之间的空隙体积所占的⽐例。
空隙率的⼤⼩反映了散粒材料的颗粒互相填充的致密程度。
材料的压实度:散粒堆积材料被碾压或振压等压实的程度。
相对密度:散粒材料压实程度的另⼀种表⽰⽅法。
2.材料与⽔有关的性质①亲⽔性:材料能被⽔润湿的性质(亲⽔性材料与⽔分⼦的亲和⼒⼤于⽔分⼦⾃⾝的内聚⼒)憎⽔性:材料不能被⽔润湿的性质。
②吸⽔性:材料浸⼊⽔中吸收⽔的能⼒(材料吸⽔率是固定的)吸湿性:材料在潮湿空⽓中吸收⽔分的性质。
【平衡含⽔率】:在⼀定温度和湿度条件下,材料与空⽓湿度达到平衡时的含⽔率。
③耐⽔性:材料长期在⽔作⽤下不破坏,且其强度也不显著降低的性质。
④抗渗性:材料抵抗压⼒⽔渗透的性质。
⑤抗冻性:材料在吸⽔饱和状态下,能经受多次冻融作⽤⽽不破坏,且强度和质量⽆显著降低的性质。
3.①材料的强度:材料在外⼒作⽤下抵抗破坏的能⼒。
影响材料强度的因素:孔隙率低,强度⾼温度⾼含⽔率⾼,强度低②材料的⽐强度:是材料的强度与其表观密度的⽐值③材料的理论强度:指结构完整的理想固体从材料结构的理论上分析,材料所能承受的最⼤应⼒。
4.弹性:材料在外⼒作⽤下产⽣变形,当外⼒除去后,变形能完全恢复的性质。
塑性:材料在外⼒作⽤下产⽣变形,外⼒除去后,仍保持变形后的形状,并不破坏的性质5.耐久性:材料在所处环境下,抵抗所受破坏作⽤,在规定的时间内,不变质、不损坏,保持其原有性能的性质。
6.材料(微观结构):晶体、玻璃体、胶体晶体类型:原⼦晶体,离⼦晶体,分⼦晶体,⾦属晶体第三章⽓硬性胶凝材料1.胶凝材料:在⼀定条件下,通过⾃⾝的⼀系列变化⽽把其他材料胶结成具有强度的整体的材料①有机胶凝材料:以天然或⼈⼯合成的⾼分⼦化合物为主要成分的胶凝材料。
建筑材料-第二章 建筑材料的基本性质

建筑材料-第二章建筑材料的基本性质建筑材料第二章建筑材料的基本性质建筑材料是构成建筑物的物质基础,其性能的优劣直接影响着建筑物的质量、耐久性和使用功能。
在建筑工程中,了解建筑材料的基本性质是至关重要的,这有助于我们合理选择和使用材料,确保建筑的安全、舒适和经济。
一、物理性质(一)密度密度是指材料在绝对密实状态下单位体积的质量。
对于大多数固体材料而言,绝对密实状态是指不含任何孔隙的状态。
但在实际情况中,完全不含孔隙的材料几乎不存在,因此在测定密度时,通常会将材料磨成细粉,然后用李氏瓶等方法测定其体积,从而计算出密度。
(二)表观密度表观密度是指材料在自然状态下单位体积的质量。
这里的自然状态包括材料内部存在的孔隙。
例如,对于块状材料,在计算表观密度时,其体积是指材料的整体体积,包括内部孔隙。
(三)堆积密度堆积密度是指粉状或粒状材料在堆积状态下单位体积的质量。
堆积状态下的体积不仅包括材料颗粒的体积,还包括颗粒之间的空隙体积。
(四)孔隙率孔隙率是指材料内部孔隙的体积占材料总体积的百分比。
孔隙的存在会对材料的性能产生重要影响,例如,孔隙率较大的材料通常保温隔热性能较好,但强度可能相对较低。
(五)空隙率空隙率是指散粒状材料在堆积体积中,颗粒之间的空隙体积占堆积体积的百分比。
空隙率的大小反映了材料颗粒之间的填充程度,对材料的堆积密度和施工性能有重要意义。
(六)吸水性吸水性是指材料在水中吸收水分的能力。
通常用吸水率来表示,吸水率又分为质量吸水率和体积吸水率。
质量吸水率是指材料吸水饱和时所吸收水分的质量占材料干燥质量的百分比;体积吸水率是指材料吸水饱和时所吸收水分的体积占材料自然体积的百分比。
(七)吸湿性吸湿性是指材料在潮湿空气中吸收水分的性质。
吸湿性的大小用含水率表示,即材料中所含水分的质量占材料干燥质量的百分比。
(八)耐水性耐水性是指材料长期在水的作用下不破坏,其强度也不显著降低的性质。
通常用软化系数来表示,软化系数越大,说明材料的耐水性越好。
建筑材料的基本性质

θ
γSL
(a)
γL
(b)
材料的润湿示意图 a亲水性材料;b憎水性材料
二 材料的吸水性与吸湿性
1.吸水性Water Absorption
材料在水中能吸收水分的性质称吸水性.材料的吸水
性用吸水率Ratio of Water Absorption表示,
有质量吸水率与体积吸水率两种表示
方法.
1质量吸水率
二、 材料的孔隙率与空隙率
1. 密实度Dense 密实度是指材料的固体物质部分的体积占总体积的比例,
说明材料体积内被固体物质所充填的程度,即反映了材料 的致密程度,按下式计算:
DV V0
2.孔隙率Porosity
孔隙率材料内部孔隙的体积占材料总体积的百分率,称
为材料的孔隙率P.可用下式表示:
PV0 V V0
第二章 建筑材料的基本性质
建筑材料在建筑物的各个部位的功能不同,均要承受 各种不同的作用,因而要求建筑材料必须具有相应的基本 性质.
基本性质主要包括物理性质、力学性质、耐久性、 装饰性、防火性、防放射性等 物理性质包括密度、密实性、空隙率计算材料用量、 构件自重、配料计算、确定堆放空间 力学性质包括强度、弹性、塑脆韧性、硬度.
如混凝土抗冻等级F15是指所能承受的最大冻融次数是15次在15℃的温度冻结后,再在20 ℃的水中融化,为一次冻融循环,这时 强度损失率不超过25%,质量损失不超过5%.
五材料的抗冻性Frost Resistance
• 材料的抗冻性与材料的强度、孔结构、耐水性和吸水饱 和程度有关. • 材料抗冻等级的选择,是根据结构物的种类、使用条件、气 候条件等来决定的.
Wv Wm0
材料的吸水性与其亲水性、疏水性、孔隙率大小、孔隙特征有关.
建筑材料 基本性质

胶体是建筑材料中常见的一种微观结构形式,通常是由极细微的固体颗粒均匀分 布在液体中所形成。胶体与晶体和玻璃体最大的不同是可呈分散相和网状结构两种结 构形式,分别祢为溶胶和凝胶。溶胶失水后成为具有一定强度的凝胶结构,可以把材 料中的晶体或其他固体颗粒粘结为整体,如气硬性胶凝材料水玻璃和硅酸盐水泥石中 的水化硅酸钙和水化铁酸钙都呈胶体结构。
(2)体积密度 也称容重,是指材料在自然状态下,单位体积所具有的质量,按下式计算
材料在自然状态下的体积是指包含材料内部孔隙在内的体积。 当材料含有水分时,其质量和体积就均有所变化。故测定体积密度时,须注明 含水情况。 在烘干状态下的体积密度,称为干体积密度。
(3)堆积密度 堆积密度是指粉状、颗粒或纤维材料在自然堆积状态下,单位体积(包含颗粒
材料的含水率大小,除与材料本身的特性有关外,还与周围环境的温度、湿度 有关。气温越低、相对湿度越大,材料的含水率也就越大。材料堆放在工地现场, 不断向空气中挥发水分,又同时从空气中吸收水分,其稳定的含水率是达到挥发与 吸收动态平衡时的一种状态。在混凝土施工配合比设计中要考虑砂、石料含水率的 影响。
材料含水或吸水对材料的影响:会使材料的表观胀,木材腐朽等结果。
5.层状构造 该种构造形式最适合于制造复合材料,可以综合各层材料的性能优势, 其性能往往呈各向异性。胶合板、复合木地板、纸面石膏板、夹层玻璃都 是层状构造。
2.1.4 建筑材料的孔隙
材料实体内部和实体间常常部分被空气所占据,一般称材料实体内部 被空气所占据的空间为孔隙,而材料实体之间被空气所占据的空间称为空 隙。孔隙状况对建筑各种基本性质具有重要的影响。
建筑材料 第一章 建筑材料的基本性质

解: 孔隙率
P V0 V 100% V0
1
0
100%
ρ0=m/V0=2420/(24×11.5×5.3)=1.65g/cm3
ρ=m/V=50/19.2=2.60g/cm3
P
1
1.65 2.6
100%
36.5%
§1.2 材料的力学性质
一、材料的强度
材料在外力作用下抵抗破坏的能力称为材料 的强度,以材料受外力破坏时单位面积上所承受 的外力表示。材料在建筑物上所承受的外力主要 有拉力、压力、剪力和弯力,材料抵抗这些外力 破坏的能力,分别称为抗拉、抗压、抗剪和抗弯 强度。
§1.3 材料与水有关的性质
建筑物中的材料在使用过程中经常会直接或 间接与水接触,如水坝、桥墩、屋顶等,为防 止建筑物受到水的侵蚀而影响使用性能,有必 要研究材料与水接触后的有关性质。
§1.3 材料与水有关的性质
(一)材料的亲水性与憎水性 材料容易被水润湿的性质称为亲水性。具有
这种性质的材料称为亲水性材料,如砖、石、 木材、混凝土等。
§1.2 材料的力学性质
课堂练习: 3、已知甲材料在绝对密实状态下的体积为40cm3,
在自然状态下体积为160 cm3;乙材料的密实度为 80%,求甲、乙两材料的孔隙率,并判断哪种材料 较宜做保温材料?
解:(1)甲材料的孔隙率
P甲=(V0-V)/V0×100%=(160-40)/160×100% =75%
§1.1 材料的基本物理性质
(一)密度 钢材、玻璃等少数密实材料可根据外形尺
寸求得体积。
大多数有孔隙的材料,在测 定材料的密度时,应把材料磨成 细粉,干燥后用李氏瓶测定其体 积(排液法)。材料磨的越细, 测得的密度数值就越精确。砖、 石等材料的密度即用此法测得。
1建筑材料的基本性质

例如:硅酸盐水泥熟料中,铝酸三钙、硅酸三钙、 硅酸二钙和铁铝酸四钙的性能都是不同的;
3. 相组成
系统:把一种或一组从周围环境中被想象 地孤 立起来的物质称为系统。 相:把系统中一切具有相同组成、相同物理性 质和化学性质的均匀部分的总和称为相。 材料内部,特别是固体相和结构特征直接决定 材料的力学性能。
4. 耐燃性
耐燃性是指材料能够经受火焰和高温的作用而 不破坏,强度也不显著降低的性能,是影响建 筑物防火、结构耐火等级的重要因素。 根据材料的耐燃性可分为四类: (1)不燃材料,混凝土,石材等 (2)难燃材料,沥青混凝土 (3)可燃材料,木材,沥青等 (4)易燃材料,纤维植物
5. 温度变形 温度变形是指材料在温度变化时产生体积变
Qa
AZ(t2 t1)
显然,导热系数越小,材料的隔热性能越好。
材料的导热系数决定于: (1)材料的化学组成、结构、构造; (2)孔隙率与孔隙特征、含水状况导热时的温度。
2. 热容量 材料加热时吸收热量,冷却时放出热量的性质称 为热容量。 热容量的大小用比热容来表示。 比热容在数值上等于1g材料,温度升高或降低 1K时所吸收或放出的能量Q。
化,多数的材料在温度升高时体积膨胀,温度 下降时体积收缩。用线膨胀系数α来表示
L
(t2 t1)L
第二节 材料的力学性质
材料的力学性质,主要是指在外力(荷载)作用 下抵抗破坏的能力和变形的有关性质。
一、理论强度 二、强度、比强度 三、材料的变形性质
一、理论强度
➢固体材料的强度主要取决于结构质点间的相互 作用力。 ➢理论上来说,材料受外力作用后破坏主要是由于 拉力造成质点间的断裂,或者是剪力造成质点间 的滑移。 ➢材料的理论强度一般都远远大于实际强度。
建筑材料的基本性质

t-透水时间
A-透水面积c㎡
h-静水压力水头,cm
d-试件厚度,cm
K值愈大,表示材料渗透的水量愈多,即抗渗性愈差。
混凝土的抗渗作用用抗渗等级表示。抗渗等级是以规定的试件,在标准试验方法下所能承受的最大静水压力来确定,以符号Pn表示,其中n为该材料所能承受的最大水压力的十倍的MPa如P4,P6 .P8.P10。分别表示材料能承受0.4MPa,0.6 MPa,0.8 MPa.1.0 MPa的水压而不渗水。材料的抗渗性与其孔隙率和孔隙特征有关。
当θ=90°时,表明材料完全被水润湿。
上述概念也适用于其他液体对固体的润湿情况,称为相应的亲液材料和憎液材料。、
(二)材料的吸水性和吸湿性
1吸水性
材料在水中能吸收水分的性质称为吸水性(Water Absorption).材料的吸水性用吸水率(Ratio of Water Absorption)表示,有质量吸水率与体积吸水率两种表示方法。
一般来说,建筑物的可靠度与安全度,主要决定于由建筑结构材料组成的构件和结构体系,而建筑物的使用功能与建筑品质,主要决定于建筑功能材料。对某一种具体的材料来说它可能兼有多种功能。
(三)建筑材料在建筑工程中的地位
建筑材料是建筑工程的物质基础。建筑,材料,结构,施工四者是密切相关的。从根本上来说,材料是基础,材料决定建筑和施工方法。新材料的出现,可以促进建筑形式的变化,结构设计和施工技术的革新。
土木工程中在计算材料用量,构件自重,配料计算以及确定堆放空间时,均需要用到材料的上述状态参数,见表
材料名称
密度/g
表观密度/k g
堆积密度/k g
气孔率/%
钢材
7.8-7.9
7850
1建筑材料的基本性质

1建筑材料的基本性质建筑材料的基本性质指的是材料在建筑工程中所表现出来的特性和本质。
建筑材料的基本性质对于建筑设计、施工和维护具有重要的影响,下面将介绍建筑材料的几个基本性质。
1.强度和稳定性:建筑材料的强度是指材料抵抗外部力的能力。
建筑材料应具有足够的强度来承受荷载和维持结构的稳定。
不同的建筑材料具有不同的强度,如混凝土、钢材和木材等。
此外,建筑材料还应具有稳定性,即在长期使用和环境变化的情况下,材料的性能应保持稳定。
2.耐久性:建筑材料的耐久性是指在长期使用和环境条件下材料的性能是否能够保持。
耐久性对于建筑工程的整体安全和使用寿命至关重要。
一般来说,建筑材料应具有耐久性,能够抵抗腐蚀、变形、老化等现象。
3.导热性:建筑材料的导热性是指材料对热的传导能力。
建筑中需要考虑材料的导热性,以确保室内温度的控制和节能效果的实现。
例如,保温材料通常具有较低的导热性,能够防止室外热量传导到室内。
4.导电性:建筑材料的导电性是指材料对电流的传导能力。
对于一些建筑结构,如电气系统和照明系统,需要考虑材料的导电性以确保电流的安全传输。
5.吸声性:建筑材料的吸声性是指材料对声音的吸收能力。
在室内设计中,吸声性是非常重要的,可以减少噪音的传播和反射,提供良好的声学环境。
6.抗震性:建筑材料的抗震性是指材料在地震或其他振动情况下的稳定性和抵抗能力。
建筑材料应具有足够的抗震性能,以确保在地震等自然灾害中建筑结构的安全性。
7.可塑性和可加工性:建筑材料的可塑性和可加工性是指材料能够通过加工和成型来满足建筑设计的要求。
可塑性通常指材料的变形能力,而可加工性指材料的加工难易程度。
8.轻质性和重质性:建筑材料的轻质性和重质性是指材料的密度和重量。
不同的建筑材料具有不同的重量和密度特性,这将直接影响到建筑结构的设计和施工成本。
9.可回收性:建筑材料的可回收性是指材料能否进行再利用或回收利用。
建筑工程产生的废弃材料对环境造成很大的影响,因此可回收性成为了现代建筑施工的一个重要考量因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)影响材料吸湿性的因素: (1)与吸水性相同。 材料的亲、憎水性 材料的孔隙率
材料的孔隙特征
(2)周围环境条件的影响,空气的湿度大、温度低时,材 料的吸湿性大,反之则小。
4)材料吸水与吸湿后对其性质的影响:会产生不利的影响, 如材料吸水或吸湿后,使其质量增加,体积膨胀,导热性增 大,强度和耐久性下降。
有一块砖重2625g,其含水率为5% ,该湿砖所含水
量为多少? 解:
(二)材料的吸水性与吸湿性 1、 吸水性:
1)概念:材料在水中能吸收水的性质。 2)指标:吸水率为材料浸水后在规定时间内吸入水的 质量(或体积)占材料干燥质量(或干燥时体积)的百分比。
质量吸水率:材料吸水饱和状态,所吸水分质量占干质量的百分率 体积吸水率:材料吸水饱和状态,所吸收水分体积占干体积百分率 材料吸水饱和
开口细微连通且孔隙率大,吸水性强。
·
2.吸湿性:
1)概念:材料在潮湿空气中吸收水分的性质
2)指标
含水率:自然状态, 材料所含水的质量占材料干
燥质量的百分比。
m含 m干 mw W含 100 % 100 % m干 m干
材料的含水率随温度和空气湿度的变化而变 化。当材料中的湿度与空气湿度达到平衡时的 含水率称为平衡含水率。
与质量有关的性质
物理性质
与水有关的性质 与热有关的性质
材 料 的 基 本 性 质
力学性质
强度 变形性 抗冲击性 表面性质
耐久性
材 料 的 力 学 性 质
抗压强度 抗拉强度 强度 抗剪强度 抗弯(折)强度 弹性变形 变形性 塑性变形 弹、塑性变形 抗冲击性——韧性、脆性 表面性能——耐磨性、硬度
本章内容
例:一种材料孔隙率增大时,以下性质①密度、②表
观密度、③吸水率、④强度、⑤抗冻性,其中哪些一 定下降? A ①②; B ①③;
C ②④;
D ②③。
答案:C
1.某材料自然状态下体积为1m3,孔隙率为33%,干燥质
量为 1600kg,求该材料的实际密度? 2.已知材料实际密度为3.0g/cm3,表观密度为2650kg/m3, 求孔隙率。 3.某砂,视密度为2.60g/cm3,堆积密度为1600 kg/m3,
1.1 材料的物理性质 1.2 材料的力学性质 1.3 材料的耐久性
§1-1材料的基本物理性质
材料的体积构成
体积是材料占有的空间尺寸。由于材料具有不 同的物理状态,因而表现出不同的体积。
2
1 V
V闭 V开 V空
3 4
V’
V0 V0’
图1.1 材料的体积示意图 1-固体物质 2-闭口孔隙 3-开口孔隙 4-颗粒间空隙
2)指标
含水率:自然状态, 材料所含水的质量占材料干
燥质量的百分比。
m含 m干 mw W含 100 % 100 % m干 m干
材料的含水率随温度和空气湿度的变化而变 化。当材料中的湿度与空气湿度达到平衡时的 含水率称为平衡含水率。
练习:
1.已知材料实际密度为4.2g/cm3,表观密度为 2500kg/m3,求孔隙率。 2.某砂,视密度为2.95g/cm3,堆积密度为1300 kg/m3,求填充率、空隙率。 3.某绝对干燥的质量为2600g的标准尺寸烧结普通砖, 吸水饱和后的质量为2900g,求W质、W体
质量吸水率:W
质量
m湿 m干 0 m湿 m干 0 Vw W体 V 100 % 100 % 100 % w m干 m干 w 0
m湿 m干 mw 100 % 100 % m干 m干
W体 W质0
·
2.吸湿性:
1)概念:材料在潮湿空气中吸收水分的性质
各种材料的质量吸水率如下:
粘土砖8%~20%
花岗岩0.5%~0.7% 混凝土2%~3%
木材、海绵大于100%
3)影响材料吸水性的因素
材料的亲、憎水性
材料的孔隙率 材料的孔隙特征
4)吸水性大小对材料性能的影响
某绝对干燥的质量为2600g的标准尺寸烧结普通
砖,吸水饱和后的质量为2900g,求W质、W体
质量吸水率:W
质量
m湿 m干 mw 100 % 100 % m干 m干
m湿 m干 0 m湿 m干 0 Vw W体 V 100 % 100 % 100 % w m干 m干 w 0
W体 W质0
质量吸水率与体积吸水率的关系为
W体 W质 0
求填充率、空隙率。
二、材料与水有关的性质
(一). 材料的亲水性与憎水性
1.亲水性:材料在空气中与水接触时,表面能被润湿的性质 憎水性:材料在空气中与水接触时,表面不能被润湿的性质
2.指标——润湿角:在材料、水和空气的三向交叉点处沿水滴表面做 切线,此切线与材料和水接触面的夹角θ ,称为润湿角。
亲水性材料:润湿角θ ≤90°(表现为亲水性)
水分子间内聚力<水分子与材料分子间吸引力 憎水性材料:润湿角θ >90°(表现为憎水性)
水分子间内聚力>水分子与材料分子间吸引力
润湿 角
亲水性
润湿 角
憎水性
亲水性:θ≤90°,如木材、砖、混凝土、石、砖瓦、陶器、等。 憎水性:90°<θ<180°,如沥青、石蜡、塑料等。憎水性材料具 有较好的防水性和防潮性,常用作防水材料,也可用于亲水性材 料的表面处理,以减少吸水率,提高抗渗性。
1200~1300
__ __
钢材
泡沫塑料
7.85
__
7850
20~50
__
__
密度类别 实际密度
符号 ρ ρˊ
表达式 ρ=m/v ρˊ=m/vˊ
体积状态 ①绝干状态②绝对密实
视密度
①绝干状态②含闭口孔隙、 不含开口孔隙
表观密度
ρ0
ρ0=m/ v0
①自然状态②含闭口、开 口孔隙
堆积密度
ρ0 ˊ
ρ0ˊ=m/v0ˊ
第一章 建筑材料的基本性质
建筑材料的基本性质: 1 、含义:是指材料处于不同的使用条件和使用环境时,通常必 须考虑的最基本的、共有的性质。因为建筑材料所处的建(构)筑物的 部位不同、使用环境不同,人们对材料的功能要求也就有所不同,所起 的作用就不同,要求的性质也就有所不同。 2、举例:柱、梁等结构材料要求有良好的力学性能;防水材料 要求有抗渗防水性能;外墙装饰材料要求有装饰性能;墙体、楼板还要 求有隔热保温、吸声隔音功能等等。
(2) 空隙率
空隙率是指散粒材料在某种堆积体积内,颗
粒之间的空隙体积所占的比例。计算式为:
V0 V V 0 P 1 (1 ) 100% V0 V0
空隙率与填充率的关系为:
P D 1
1.1 建筑材料的物理性质
(二)材料的孔隙率与空隙率
一、
与质量有关的性质
(一)、材料的实际密度、视密度、表观密度和堆积 密度
1.实际密度(俗称比重) (1)定义:实际密度是指多孔材料在绝对密实状 态下单位体积的质量(与材料孔隙无关) 。 (2)计算公式:
m V
(g/cm3)
(3)测定方法:磨细、烘干、称量、排液体法测体积。
2.视密度 (1)定义:指材料在不含开口空隙时,单位体积的 质量(与材料内部孔隙有关)。
石子
表1.1 常用建筑材料的物理参数
材料 石灰岩 花岗岩 碎石(石灰岩) 密度ρ(g/cm3) 2.60 2.60~2.80 2.60 表观密度(容 重)ρ′ (kg/m3) 1800~2600 2500~2700 __ 堆积密度ρ′0(kg/m3) __ __ 1400~1700
砂
粘土
2.60
2.60
材料的含水状态
(二)材料的吸水性与吸湿性 1、 吸水性:
材料吸水饱和
1)概念:材料在水中能吸收水的性质。 2)指标:吸水率为材料浸水后在规定时间内吸入水的 质量(或体积)占材料干燥质量(或干燥时体积)的百分比。
质量吸水率:材料吸水饱和状态,所吸水分质量占干质量的百分率 体积吸水率:材料吸水饱和状态,所吸收水分体积占干体积百分率
2. 指标:软化系数 K软——软化系数
K软
饱
f干
一般规定K>0.85为耐水材料
3.影响材料耐水性的因素
其组成成分在水中的溶解度和材料内部开口孔隙率的大小
(四)抗渗性
1.抗渗性:材料在水、油等液体压力作用下抵抗 渗透的性质。 (不透水性) 2.指标:抗渗等级 Pn 混凝土、砂浆等的抗渗性用抗渗等级来表示。如 P6 、P8 、P10 、P12 等__
1450~1650
1600~1800
普通粘土砖
2.50~2.80
1600~1800
__
材料 粘土空心砖
密度ρ(g/cm3) 2.50
体积密度(容 重)ρ′ (kg/m3) 1000~1400
堆积密度 ρ′0(kg/m3) __
水泥
普通混凝土 木材
3.10
__ 1.55
__
2100~2600 400~800
表观体积是指包括内部封 闭孔隙在内的体积。其封 闭孔隙的多少,孔隙中是 否含有水及含水的多少, 均可能影响其总质量或体 积。 因此,材料的表观密 度与其内部构成状态及含 水状态有关。
材料四种含水状态
反映散粒堆积的紧密(压实)程度及可能的堆放空间。